
A Online convex optimization on the simplex

By using a standard reduction, the results of the main body of the paper (for linear optimization on
the simplex) can be applied to online convex optimization on the simplex. In this setting, at each
step t the forecaster chooses p̂t ∈ ∆d and then is given access to a convex loss `t : ∆d → [0, 1].
Now, using Algorithm 1 with the loss vector `t ∈ ∂`t(p̂t) given by a subgradient of `t leads to the
desired bounds. Indeed, by the convexity of `t, the regret at each time t with respect to any vector
ut ∈ Rd+ with ‖ut‖1 > 0 is then bounded as
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))
6
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B Proof of Theorem 3; application of the bound to two different updates

Proof. The beginning and the end of the proof are similar to the one of Theorem 2, as they do not
depend on the specific weight update. In particular, inequalities (6) and (7) remain the same. The
proof is modified after (8), which this time we upper bound using the first condition in (12),
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By definition of the shared update (11), we have 1/p̂i,t 6 Zt/(αwi,t) and vi,t/p̂i,t 6 1/(1 − α).
We then upper bound the quantity at hand in (14) by∑
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Proceeding as in the end of the proof of Theorem 2, we then get the claimed bound, provided that
we can show that
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which we do next. Indeed, the left-hand side can be rewritten as
T∑
t=2

d∑
i=1

(
ui,t ln

1

wi,t
− ui,t ln

1

wi,t+1

)
+

T∑
t=2

d∑
i=1

(
ui,t ln

1

wi,t+1
− ui,t−1 ln

1

wi,t

)

6

(
T∑
t=2

d∑
i=1

ui,t ln
C wi,t+1

wi,t

)
+

(
d∑
i=1

ui,T ln
1

wi,T+1
−

d∑
i=1

ui,1 ln
1

wi,2

)

6

(
d∑
i=1

(
max

t=1,...,T
ui,t

) T∑
t=2

ln
C wi,t+1

wi,t

)
+

(
d∑
i=1

(
max

t=1,...,T
ui,t

)
ln

1

wi,T+1
−

d∑
i=1

ui,1 ln
1

wi,2

)

=

d∑
i=1

(
max

t=1,...,T
ui,t

)(
(T − 1) lnC + ln

1

wi,2

)
−

d∑
i=1

ui,1 ln
1

wi,2
,

where we used C > 1 for the first inequality and the second condition in (12) for the second
inequality. The proof is concluded by noting that (12) entails wi,2 > (1/C)wi,1 > (1/C)vi,1 =
1/(dC) and that the coefficient maxt=1,...,T ui,t − ui,1 in front of ln(1/wi,2) is nonnegative.
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The first update uses wj,t = maxs6t vj,s. Then (12) is satisfied with C = 1. Moreover, since a sum
of maxima of nonnegative elements is smaller than the sum of the sums, Zt 6 min{d, t} 6 T . This
immediately gives the following result.

Corollary 4. Suppose Algorithm 1 is run with the update (11) with wj,t = maxs6t vj,s. For all
T > 1, for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d, and for all q1, . . . , qT ∈ ∆d,
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The second update we discuss uses wj,t = maxs6t e
γ(s−t)vj,s in (11) for some γ > 0. Both

conditions in (12) are satisfied with C = eγ . One also has that
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as ex > 1 + x for all real x. The bound of Theorem 3 then instantiates as
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when sequences ut = qt ∈ ∆d are considered. This bound is best understood when γ is tuned
optimally based on T and on two bounds m0 and n0 over the quantities m(qT1 ) and n(qT1 ). Indeed,
by optimizing n0Tγ+m0 ln(1/γ), i.e., by choosing γ = m0/(n0 T ), one gets a bound that improves
on the one of the previous corollary:

Corollary 5. Let m0, n0 > 0. Suppose Algorithm 1 is run with the update wj,t =

maxs6t e
γ(s−t)vj,s where γ = m0/(n0 T ). For all T > 1, for all sequences `1, . . . , `T of loss

vectors `t ∈ [0, 1]d, and for all q1, . . . , qT ∈ ∆d such that m(qT1 ) 6 m0 and n(qT1 ) 6 n0, we have
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As the factors e−γt cancel out in the numerator and denominator of the ratio in (11), there is a
straightforward implementation of the algorithm (not requiring the knowledge of T ) that needs to
maintain only d weights.

In contrast, the corresponding algorithm of [6], using the updates p̂j,t = (1 − α)vj,t +

αS−1
t

∑
s6t−1(s− t)−1vj,s or p̂j,t = (1−α)vj,t+αS−1

t maxs6t−1(s− t)−1vj,s, where St denote
normalization factors, needs to maintainO(dT ) weights with a naive implementation, andO(d lnT )
weights with a more sophisticated one. In addition, the obtained bounds are slightly worse than the
one stated above in Corollary 5 as an additional factor of m0 ln(1 + lnT ) is present in [6, Corol-
lary 9].

C Proof of Theorem 4; illustration of the obtained bound

We first adapt Lemma 1.

Lemma 3. The forecaster based on the loss and shared updates (13) satisfies, for all t > 1 and for
all qt ∈ ∆d,
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whenever ηt 6 ηt−1.
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Proof. By Hoeffding’s inequality,
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Now, by definition of the loss update in (13), for all i ∈ {1, . . . , d},
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valid for all i ∈ {1, . . . , d}. The proof is concluded by taking a convex aggregation over i with
respect to qt.

The proof of Theorem 4 follows the steps of the one of Theorem 2; we sketch it below.

Proof of Theorem 4. Applying Lemma 3 with qt = ut/ ‖ut‖1, and multiplying by ‖ut‖1, we get
for all t > 1 and ut ∈ Rd+,
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We will sum these bounds over t > 1 to get the desired result but need to perform first some
additional boundings for t > 2; in particular, we examine
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where the first difference in the right-hand side can be bounded as in (8) by
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where we used for the second inequality that the shared update in (13) is such that 1/p̂i,t 6 d/αt and
vi,t/p̂i,t 6 1/(1− αt), and for the third inequality, that αt > αT and x 7→ (1− x)/x is increasing
on (0, 1]. Summing (16) over t = 2, . . . , T using (17) and the fact that ηt > ηT , we get
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An application of (15) —including for t = 1, for which we recall that p̂i,1 = 1/d and η1 = η0 by
convention— concludes the proof. �

We now instantiate the obtained bound to the case of, e.g., T–adaptive regret guarantees, when T is
unknown and/or can increase without bounds.

Corollary 6. The forecaster based on the updates discussed above with ηt =
√(

ln(dt)
)
/t for t > 3

and η0 = η1 = η2 = η3 on the one hand, αt = 1/t on the other hand, is such that for all T > 3 and
for all sequences `1, . . . , `T of loss vectors `t ∈ [0, 1]d,

max
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Proof. The sequence n 7→ ln(n)/n is only non-increasing after round n > 3, so that the defined
sequences of (αt) and (ηt) are non-increasing, as desired. For a given pair (r, s) and a given q ∈ ∆d,
we consider the sequence νT1 defined in the proof of Corollary 2; it satisfies that m(uT1 ) 6 1 and
‖ut‖1 6 1 for all t > 1. Therefore, Theorem 4 ensures that
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It only remains to substitute the proposed values of ηt and to note that
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D Proof of Theorem 1

We recall that the forecaster at hand is the one described in Algorithm 1, with the shared update
p̂t+1 = ψt+1

(
Vt+1

)
for

ψt+1

(
Vt+1

)
∈ argmin

x∈∆α
d

K(x,vt+1) , where K(x,vt+1) =
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xi ln
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is the Kullback-Leibler divergence and ∆α
d = [α/d, 1]d ∩∆d is the simplex of convex vectors with

the constraint that each component be larger than α/d.

The proof of the performance bound starts with an extension of Lemma 1.
Lemma 4. For all t > 1 and for all qt ∈ ∆α

d , the generalized forecaster with the shared update (18)
satisfies
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Proof. We rewrite the bound of Lemma 1 in terms of Kullback-Leibler divergences,
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where the last inequality holds by applying a generalized Pythagorean theorem for Bregman diver-
gences (here, the Kullback-Leibler divergence) —see, e.g., [3, Lemma 11.3].

Proof. Let qt =
α

d
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d . We have by rearranging the terms for all t,
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Therefore, by applying Lemma 4 with qt ∈ ∆α
d , we further upper bound the quantity of interest as
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The upper bound is rewritten by summing over t and applying an Abel transform to its first term,
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