
Non-parametric Approximate Dynamic Programming via

the Kernel Method

A . Online Suppliment

A .1. Introduction

This paper supplements our submission in NIPS 2012. The supplement aids the paper in the
following ways:

• It provides technical proofs that are not necessary for the conceptual understanding of the
paper.

• It outlines the numerical scheme we use to solve the optimization problem of interest.

Section A .2 provies the proof of Proposition 1 of the NIPS 2012 paper. Section A .3 proves the main
theoretical guarantee. Finally, Section A .4 outlines and proves the correctness of the numerical
procedure we use to solve the program of interest.

A .2. Duality of the Sampled RSALP

We aim to approximate the optimal cost-to-go function via solving the sampled version of the
Regularized Smoothed Approximate Linear Program (RSALP):

(1)

maximize 1
N

�

x∈Ŝ

wx�x, z� + b −
κ

N

�

x∈Ŝ

sx −
Γ
2 �z, z�

subject to �x, z� + b ≤ ga,x + αEx,a[�X�, z� + b] + sx, ∀x ∈ Ŝ, a ∈ A,
sx ≥ 0, ∀x ∈ Ŝ,

z ∈ H, b ∈ R, s ∈ RŜ .

We do so by numerically solving its dual1,

(2)

minimize 1
2λ�Qλ + R�λ + S

subject to
�

a∈A

λx,a ≤
κ

N
∀x ∈ Ŝ,

�

x∈Ŝ,a∈A

λx,a = 1
1 − α

, λ ≥ 0,

λ ∈ RŜ×A.

In the main paper we have the dual program without the offset S. Here we define S as:

S � −
�

x∈Ŝ

�

y∈Ŝ

wxwy�x, y�.

As we’ll soon see, adding this constant makes the primal and dual optima equal.
1To be made precise in Proposition 1

1

Proposition 1. Programs (1) and (2) have equal (finite) optimal values. The optimal solution to

(2) is attained at some λ∗. The optimal solution to (1) is attained at some (z∗, s∗, b∗) with

(3) z∗ = 1
Γ



 1
N

�

x∈Ŝ

wxx −
�

x∈Ŝ,a∈A

λ∗
x,a

�
x − αEx,a[X�]

�

 .

Proof. We begin with a few observations about the primal program, (1):

1. The weight vector, z can be restricted without loss to some finite ball in H. The optimal
value of the primal is consequently finite.

2. The primal has a feasible interior point: consider setting z = 0, b = 0, and sx = max(− mina gx,a, �)
for some � > 0.

3. The optimal value of the primal is achieved. To see this, we note that it suffices to restrict
z to the finite dimensional space spanned by the vectors in {x : x ∈ Ŝ}, so that the feasible
region of the primal can now be restricted, without loss of optimality, to a compact subset
of H × R|Ŝ| × R. Since the objective function of the primal is continuous, we know that its
optimal value must be achieved by the Weierstrass theorem.

We next derive the dual to (1). As in Luenberger [1997], Chapter 8, we define the Lagrangian:

L(z, b, s, λ) �
�

−
1
N

�

x∈Ŝ

wxx +
�

(x,a)∈Ŝ×A

λx,a
�
x − αEx,a[X�]

�
, z

�

+ C

2 ||z||
2
H

+
�

x∈Ŝ

sx



 κ

N
−

�

a∈A)
λx,a



 − b



1 − (1 − α)
�

(x,a)∈Ŝ×A

λx,a



 −
�

(x,a)∈P̂

gx,aλx,a.

and define the dual function G(λ) � inf(z,b,s)∈D L(z, b, s, λ) where we denote by D the feasible region
of the primal problem. Now, observe that for any given λ, L(z, b, s, λ) is (uniquely) minimized at

(4) z∗(λ) = 1
Γ



 1
N

�

x∈Ŝ

wxx −
�

x∈Ŝ,a∈A

λx,a

�
x − αEx,a[X�]

�

 ,

for any finite b, s. This follows from the observation that for any z ∈ H, �z, z� − �z̄, z� is minimized
at −

1
2z by the Cauchy-Schwarz inequality. It follows immediately that on the set defining the

feasible region of the program (2), we must have that

G(λ) = 1
2λ�Qλ + R�λ + S

and moreover that G(λ) = +∞ outside that set. This suffice to establish that the dual problem
infλ≥0 G(λ) is precisely program (2).

The first conclusion of Theorem 1, pp. 224-225 of Luenberger [1997] and the first and second
observations we made at the outset of our proof then suffice to establish that programs (1) and
(2) have equal optimal values (i.e. strong duality holds) and that the optimal value of the dual
program is achieved at some λ∗. Our third observation, (4), and the second conclusion of Theorem
1, pp. 224-225 of Luenberger [1997] then suffice to establish our second claim. �

2

A .3. Proof of the Performance Guarantee

A .3.1. Guarantee for the Exact Program

In this section we will prove a stronger guarantee than than Theorem 1 of the NIPS2012 submission.
Before proceeding with our analysis, we introduce some additional notation. Let Ψ = {ψ ∈ RS :
ψ ≥ 1}, be the set of all functions on the state space bounded from below by 1. For any ψ ∈ Ψ,
let us define the weighted ∞-norm � · �∞,1/ψ by

||J ||∞,1/ψ � max
x∈S

|J(x)|
ψ(x) .

Our use of such weighted norms will allow us to emphasize approximation error differently across
the state space. Further, we define

β(ψ) � max
x,a

�
x� p(x, x�, a)ψ(x�)

ψ(x) .

For a given ψ, β(ψ) gives us the worst-case expected gain of the Lyapunov function ψ for any state
action pair (x, a).

Let us redefine the ‘idealized’ distribution. Let ν be an arbitrary distribution over S and denote
by µ∗ and Pµ∗ an optimal policy and the transition probability matrix corresponding to this policy
respectively. We the define a distribution over S, πµ∗,ν according to

(5) π�
µ∗,ν � (1 − α)ν�(I − αPµ∗)−1 = (1 − α)

∞�

t=0
αtν�P t

µ∗ .

This idealized distribution will play the role of the sampling distribution π in the sequel.
It is notationally convenient for us introduce the Bellman operator defined by

(TJ)(x) = min
a∈A

�
g(x, a) + αEx,a[J(X �)]

�
,

for all x ∈ S. Let Ŝ be a set of N states drawn independently at random from S; here we pick a
specific sampling distribution π = πµ∗,ν . The ‘idealized’ sampled program we consider is:

(6)

maximize ν�J̃z,b −
2

1−α
1
N

�
x∈Ŝ

sx

subject to J̃z,b ≤ T J̃z,b + s,
�z�H ≤ C, |b| ≤ B, s ≥ 0,

z ∈ H, b ∈ R, s ∈ RŜ .

Let (ẑ, b̂) be an optimal solution to the idealized sampled program, (6) and let K � maxx∈S �x�H.
Further define:

Ξ(C, B, K, δ) �
�

4CK(1 + α) + 4B(1 − α) + 2�g�∞

� �

1 +
�

1
2 ln(1/δ)

�

.

Notice that Ξ(C, B, K, δ)2 scales as the square of C, K and B and further is O(ln 1/δ). The following
result will constitute our main approximation guarantee:

3

Theorem 1. For any �, δ > 0, let N ≥
Ξ(C,B,K,δ)2

�2 . If (ẑ, b̂) is an optimal solution to (6), then with

probability at least 1 − δ − δ4

(7)
���J∗

− J̃ẑ,b̂

���
1,ν

≤ inf
�z�H≤C,|b|≤B,ψ∈Ψ

�J∗
− J̃z,b�∞,1/ψ

�

ν�ψ +
2(π�

µ∗,νψ)(αβ(ψ) + 1)
1 − α

�

+ 4�

1 − α
.

We prepare the ground for the proof by developing appropriate uniform concentration guaran-
tees for appropriate function classes.

A .3.2. Uniform Concentration Bounds

We begin with defining the empirical Rademacher complexity of a class of functions F from S to
R as

R̂n(F) = E
�

sup
f∈F

2
n

n�

i=1
σif(Xi)

�����X1, X2, . . . , Xn

�

where σi are i.i.d. random variable that take value 1 with probability 1/2 and −1 with probability
1/2. The Xi are i.i.d. S valued random variables drawn with the distribution π. We denote by
Rn(F) = ER̂n(F) the Rademacher complexity of F .

We begin with the following abstract sample complexity result: Let F be a class of functions
mapping S to R that are uniformly bounded by some constant B. Moreover denote for any function
f ∈ F , the empirical expectation Ênf(X) � 1

n

�n
i=1 f(Xi) where the Xi are i.i.d. We then have

the following sample complexity result:

Lemma 1.

P



sup
f∈F

Ef(X) − Ênf(X) ≥ Rn(F) +

�
2B

2 ln(1/δ)
n



 ≤ δ.

This result is standard; for completeness, the proof may be found in Appendix ??. Next, we
establish the Rademacher complexity of a specific class of functions. Fixing a policy µ, consider
then the set of functions mapping S to R defined according to:

FS,µ �
�

x �→ �x, z� − αEx,µ(x)[�X�, z�] : �z�H ≤ C
�

We have:

Lemma 2. For any policy µ,

Rn (FS,µ) ≤
2CK(1 + α)

√
n

.

Proof. Observe that, due to triangle inequality

�x − αEx,µ(x)[X�]�H ≤ �x�H + αEx,µ(x)[�X�
�H] ≤ K(1 + α),

4

for all x ∈ S. Now, let Xi be i.i.d. samples in S and Xi be the corresponding elements in H,

R̂n (FS,µ) = 2
n

E
�

sup
z:�z�H≤C

�
�

i

σi

�
Xi − αEXi,µ(Xi)[X�]

�
, z

� ����X1, . . . , Xn

�

≤
2
n

E
�

sup
z:�z�H≤C

�����
�

i

σi

�
Xi − αEXi,µ(Xi)[X�]

������
H

�z�
H

����X1, . . . , Xn

�

= 2C

n
E

������
�

i

σi

�
Xi − αEXi,µ(Xi)[X�]

������
H

����X1, . . . , Xn

�

≤
2C

n

��

i

�Xi − αEXi,µ(Xi)[X�]�2
H

≤
2CK(1 + α)

√
n

.

�

Now, consider the class of functions mapping S to R, defined according to:

FS,µ �
�

x �→

�
J̃z,b(x) − (TµJ̃z,b)(x)

�+
: �z�H ≤ C, b ≤ B

�

Now, FS,µ = φ · (FS,µ + (1 − α)FB − gµ), where φ = (·)+ and FB = {x �→ b : |b| ≤ B}. It is easy
to show that Rn(FB) ≤ 2B/

√
n, so that with the previous Lemma, Theorem 12, parts 4 and 5 of

Bartlett and Mendelson [2002] allow us to conclude

Corollary 1.

Rn(FS,µ) ≤
4CK(1 + α) + 4B(1 − α) + 2�gµ�∞

√
n

� C
√

n

Now, define
FS �

�
x �→

�
J̃z,b(x) − (T J̃z,b)(x)

�+
: �z�H ≤ C, b ≤ B

�

We have:

Lemma 3. For every f ∈ FS we have that �f�∞ ≤ C/2. Moroever,

P
�
ÊN f(X) − Ef(X) ≥ �

�
≤ δ4

provided N ≥
Ξ(C,B,K,δ)2

�2 .

The first claim above follows from routine algebra and the Cauchy-Schwarz inequality; the
second is Hoeffding’s inequality. Corollary 1, Lemma 1 and the first part of Lemma 3 yields the
following sample complexity result:

Theorem 2. Provided

N ≥
Ξ(C, B, K, δ)2

�2

we have

P



 sup
f∈F̄S,µ

Ef(X) − ÊN f(X) ≥ �



 ≤ δ.

Theorem 2 will constitute a crucial sample complexity bound for our main result; we now
proceed with the proof of Theorem 1.

5

A .3.3. Proof of Theorem 1

Let (ẑ, b̂, ŝ) be the optimal solution to the sampled program (6). Define

ŝµ∗ = (J̃ẑ,b̂ − Tµ∗ J̃ẑ,b̂)
+.

Observe that we may assume without loss of generality that

ŝ = (J̃ẑ,b̂ − T J̃ẑ,b̂)
+,

so that ŝ ≥ ŝµ∗ . Now, by definition, J̃ẑ,b̂ ≤ Tµ∗ J̃ẑ,b̂ + ŝµ∗ , so that by Lemma 2 of Desai et al. [2011],
we have that

J̃ẑ,b̂ ≤ J∗ + ∆∗ŝµ∗ ,

where ∆∗ = (I − αPµ∗)−1. Let π̂µ∗,ν be the empirical distribution obtained by sampling N states
according to πµ∗,ν . Now let z, b satisfying �z�H ≤ C, |b| ≤ B be given, and define sz,b � (T J̃z,b −

J̃z,b)+. Then, (z, b, sz,b) constitue a feasible solution to (6). Finally, let ψ ∈ Ψ be arbitrary. We
then have with probability at least 1 − δ − δ4,

�J∗
− J̃ẑ,b̂�1,ν = �J∗

− J̃ẑ,b̂ + ∆∗ŝµ∗ − ∆∗ŝµ∗�1,ν

≤ �J∗
− J̃ẑ,b̂ + ∆∗ŝµ∗�1,ν + �∆∗ŝµ∗�1,ν

= ν�
�
J∗

− J̃ẑ,b̂

�
+ 2ν�∆∗ŝµ∗

= ν�
�
J∗

− J̃ẑ,b̂

�
+ 2

1 − α
π�

µ∗,ν ŝµ∗

≤ ν�
�
J∗

− J̃ẑ,b̂

�
+ 2

1 − α
π̂�

µ∗,ν ŝµ∗ + 2�

1 − α

≤ ν�
�
J∗

− J̃ẑ,b̂

�
+ 2

1 − α
π̂�

µ∗,ν ŝ + 2�

1 − α

≤ ν�
�
J∗

− J̃z,b

�
+ 2

1 − α
π̂�

µ∗,νsz,b + 2�

1 − α

≤ ν�
�
J∗

− J̃z,b

�
+ 2

1 − α
π�

µ∗,νsz,b + 4�

1 − α
.

≤ (ν�ψ)�J∗
− J̃z,b�∞,1/ψ + 2

1 − α
(π�

µ∗,νψ)�T J̃z,b − J̃z,b�∞,1/ψ + 4�

1 − α
.

(8)

The second equality follows by our observation that J̃ẑ,b̂ ≤ J∗ + ∆∗ŝµ∗ and since ∆∗ŝµ∗ ≥ 0. The
second inequality above holds with probability at least 1 − δ by virtue of Theorem 2 and the fact
that ŝµ∗ ∈ FS,µ∗ . The subsequent inequality follows from our observation that ŝ ≥ ŝµ∗ . The fourth
inequality follows from the assumed optimality of (ẑ, b̂, ŝ) for the sampled program (6) and the
feasibility of (z, b, sz,b) for the same. The fifth inequality holds with probability 1 − δ4 and follows
from the Heoffding bound in Lemma 3 since sz,b ∈ FS . The final in equality follows from the
observation that for any s ∈ RS , ψ ∈ Ψ a and probability vector ν, ν�s ≤ (ν�ψ)�s�∞,1/ψ.

Now the proof of Theorem 2 in [Desai et al., 2011] establishes that for any ψ ∈ Ψ and J ∈ RS ,
we have,

�TJ − J�∞,1/ψ ≤ (1 + αβ(ψ))�J∗
− J�∞,1/ψ.

Applied to (8), this yields

�J∗
− J̃ẑ,b̂�1,ν ≤ �J∗

− J̃z,b�∞,1/ψ

�

ν�ψ +
2(π�

µ∗,νψ)(αβ(ψ) + 1)
1 − α

�

+ 4�

1 − α
.

Since our choice of z, b was arbitrary (beyond satisfying �z�H ≤ C, |b| ≤ B), the result follows.

6

A .4. Numerical Scheme

This section outlines an efficient numerical scheme we use to solve the regularized SALP. In par-
ticular, we would like to solve the sampled dual problem (2), in order to find an approximation to
the optimal cost-to-go function. This approach requires solving a QP with the number of variables
equal to NA, where N � |Ŝ| is the number of sampled states and A � |A| is the number of possible
actions. Furthermore, constructing the coefficient matrices Q and R for (2) requires numerical
effort of the order O(N2A2H2), where H is the maximum number of states that can be reached
from an arbitrary state-action pair, i.e.,

H � max
(x,a)∈S×A

��{x�
∈ S | p(x, x�, a) > 0}

��.

These costly steps may prevent scaling up solution of the QP to a large number of samples. Also,
an off-the-shelf QP solver will also require storing the matrix Q in memory, hence the memory
requirement scales as O(N2A2).

In this section, the problem structure of (2) is exploited to design an iterative numerical scheme
that requires per iteration numerical effort and memory requirement that scales at a substantially
lower rate. The method is similar to the efficient implementation of SVM solvers discussed by
Osuna et al. [1997] or Joachims [1999], for example. The main idea is to employ an active set
method, where all but a small subset of variables are frozen and the corresponding subproblem is
solved. In each iteration t, we compute an estimate of λ(t) ∈ RŜ×A of an optimal solution to (2).
The decision variables are updated in an iterative fashion. Given the prior estimate λ(t−1), the
updated solution estimate λ(t) is chosen to be a feasible vector for (2), and is computed as follows:

1. A subset B ⊂ Ŝ × A of the decision variables in (2) is chosen. The size of this subset will be
much smaller than the total number of decision variables, in fact, we shall see that subsets
of cardinality |B| = 2 are sufficient. If a subset B of low cardinality that contains a descent
direction cannot be found, we will establish that the prior iterate λ(t−1) is, in fact, a globally
optimal solution to the original problem (2).

2. Given the subset B, we solve (2) for λ(t), where all indices except those in B are frozen at
their prior values. In other words, λ(t)

x,a � λ(t−1)
x,a for all (x, a) /∈ B. This entails the solution of

a QP with only |B| decision variables.

In the following sections, we will discuss the algorithmic details of each step in our iterative method,
as well as establishing correctness of the overall procedure: each iteration maintains feasibility while
decreasing the objective value of (2), and the procedure will only terminate when a globally optimal
iterate has been reached. We will establish that, in each of the above steps, the total amount of
work is at most O(NA log NA). Moreover, we shall see that our iterative procedure does not require
storage of the entire matrix Q, and has memory requirements of order O(NA).

A .4.1. Subset Selection

The first step in the active set method is to choose the subset B ⊂ Ŝ × A of decision variables
to optimize over. Given the convex objective in (2), if the prior iteration of the algorithm is at a
suboptimal point λ � λ(t−1), then there exists a direction d ∈ RŜ×A such that λ + �d is feasible
with a lower objective value for � > 0 sufficiently small. To select a subset to optimize over, we look
for such a descent direction d of low cardinality �d0�0 ≤ q, i.e., a vector d that is zero on all but at
most q components. If such direction can be found, then we can use the set of non-zero indices of
d as our set B.

7

This problem of finding a descent direction d can be posed as

(9)

minimize h(λ)�d

subject to
�

a∈A

dx,a ≤ 0, ∀ x ∈ Ŝ with
�

x∈A

λx,a = κ

N
,

dx,a ≥ 0, ∀ (x, a) ∈ Ŝ × A with λx,a = 0,�

x∈Ŝ
a∈A

dx,a = 0,

||d||0 ≤ q,
||d||∞ ≤ 1,

d ∈ RŜ×A.

Here, h(λ) � Qλ + R is the gradient of the objective of (2) at a feasible point λ, thus the objective
h(λ)�d seeks to find a direction d of steepest descent. The first three constraints ensure that d is
a feasible direction. The constraint �d�0 ≤ q is added to ensure that the direction is of cardinality
at most q. Finally, the constraint �d�∞ ≤ 1 is added to ensure that the program is bounded, and
may be viewed as normalizing the scale of the direction d.

The program (9) is, in general, a challenging mixed integer program because of the cardinality
constraint. Joachims [1999] discusses an algorithm to solve a similar problem of finding a low
cardinality descent direction in an SVM classification setting. Their problem can be easily solved
provided that the cardinality q is even, however no such solution seems to exist for our case.
However, in our case, when q = 2, there is a tractable way to solve (9). We will restrict attention to
this special case, i.e., consider only descent directions of cardinality two. In Section A .4.3, we will
establish that this is, in fact, sufficient: if the prior iterate λ is suboptimal, then there will exist a
direction of descent of cardinality two.

To begin, define the sets

P1 �
�

(x, a) ∈ Ŝ × A | λa,x = 0
�

, P2 =
�

x ∈ Ŝ |
�

a∈A

λx,a = κ

N

�

.

Consider the following procedure:

1. Sort the set of indices Ŝ×A according to their corresponding component values in the gradient
vector h(λ). Call this sorted list L1.

2. Denote by (x1, a1) the largest element of L1 such that (x1, a1) /∈ P1, and denote by (x2, a2)
the smallest element of L1 such that x2 /∈ P2. Add the tuple (x1, a1, x2, a2) to the list L2.

3. Consider all x ∈ P2. For each such x, denote by (x, a1) the largest element of L1 such that
(x, a1) /∈ P1, and denote by (x, a2) the smallest element of L1. Add each tuple (x, a1, x, a2)
to L2.

4. Choose the element (x∗
1, a∗

1, x∗
2, a∗

2) of L2 that optimizes

(10) min
(x1,a1,x2,a2)∈L2

h(λ)x2,a2 − h(λ)x1,a1 .

Set dx∗
1,a∗

1
= −1, dx∗

2,a∗
2

= 1, and all other components of d to zero..

8

This procedure finds a direction of maximum descent of cardinality two by examining considering
candidate index pairs (x1, a1, x2, x2) for which h(λ)x2,a1 −h(λ)x1,a1 is minimal. Instead of consider-
ing at all N2A2 such pairs, the routine selectively checks only pairs with describe feasible directions
with respect to the constraints of (9). Step 2 considers all pairs with different states, while Step 3
considers all pairs with the same state. It is thus easy to see that the output of this procedure is
an optimal solution to (9), i.e., a direction of steepest descent of cardinality two. Further, if the
value of the minimal objective (10) determined by this procedure is non-negative, then no descent
direction of cardinality two exists, and the algorithm terminates.

In terms of computational complexity, this subset selection step requires us to first compute the
gradient of the objective function h(λ) � Qλ + R. If the gradient is known at the first iteration,
then we can update it at each step by generating two columns of Q, since λ only changes at two
co-ordinates. Hence, the gradient calculation can be performed in O(NA) time, and with O(NA)
storage (since it is not necessary to store Q). For Step 1 of the subset selection procedure, the
component indices must be sorted in the order given by the gradient h(λ). This operation requires
computational effort of the order O(NA log NA). With the sorted indices, the effort required in
the remaining steps to find the steepest direction is via the outlined procedure is O(NA). Thus,
our subset selection step requires total computational effort of the order O(NA log NA).

A .4.2. QP Subproblem

Given a prior iterate λ(t−1), and a subset B � {(x1, a1), (x2, a2)} of decision variable components
of cardinality two as computed in Section A .4.1, we have the restricted optimization problem

(11)

minimize
�

(x,a)∈B

�

(x�,a�)∈B

λx�,a�Q(x, a, x�, a�)λx,a

+
�

(x,a)∈B

λx,a



R(x, a) + 2
�

(x�,a�)/∈B

Q(x, a, x�, a�)λ(t−1)
x�,a�





subject to
�

a: (x,a)∈B

λx,a ≤
κ

N
−

�

a: (x,a)/∈B

λ(t−1)
x,a , ∀ x ∈ {x1, x2}

�

(x,a)∈B

λx,a = 1
1 − α

−
�

(x,a)/∈B

λ(t−1)
x,a ,

λ ∈ RB
+.

This subproblem has small dimension. In fact, the equality constraint implies that λx1,a1 + λx2,a2
is constant, hence, the problem is in fact a one-dimensional QP that can be solved in closed form.
Further, to construct this QP, two columns of Q are required to be generated. This requires
computation effort of order O(NA).

Note that the subset B is chosen so that it is guaranteed to contain a descent direction, according
to the procedure in Section A .4.1. Then, the solution of (9) will produce an iterate λ(t) that is
feasible for the original problem (11) and has lower objective value than the prior iterate λ(t−1).

A .4.3. Correctness

The following proposition establishes the correctness of our active set method: if the prior iterate
λ � λ(t−1) is suboptimal, then there must exist a direction of descent of cardinality two. Our itera-
tive procedure will therefore improve the solution, and will only terminate when global optimality
is achieved.
Proposition 2. If λ ∈ RŜ×A is feasible but suboptimal for (2) then, there exists a descent direction

of cardinality two.

9

The proof of Proposition 2 requires the following lemma:

Lemma 4. Suppose x, y ∈ Rn are vectors such that 1�x = 0 and x�y < 0. Then there exist

co-ordinates {i, j}, such that yi < yj, xi > 0, and xj < 0.

Proof. Define the index sets S+ � {i | xi > 0} and S− � {i | xi < 0}. Under the given hypotheses,
both sets are non-empty. Using the fact that 1�x = 0, define

Z �
�

i∈S+
xi =

�

i∈S−

(xi)−,

where (xi)− � − min(xi, 0) is the negative part of the scalar xi. Observe that Z > 0. Further,
since x�y < 0,

1
Z

�

i∈S+
xiyi <

1
Z

�

i∈S−

(xi)−yi.

Since the weighted average of y over S− is more than its weighted average over S+, we can pick an
element in S+, i and an element of S−, j such that yi < yj . �

Proof of Proposition 2. If λ is suboptimal, since (2) is a convex quadratic program, there will
exist some vector d ∈ RŜ×A is a feasible descent direction at λ. Let g � h(λ) be the gradient at
that point. We must have that g�d < 0, so that it is a descent direction, and that d satisfies the
first three constraints of (9), so that it is a feasible direction).

Define

T �
�

x ∈ Ŝ |
�

a∈A

λx,a = κ

N
, max

a∈A
dx,a > 0, min

a∈A
dx,a < 0

�

, Px � {a ∈ A | dx,a �= 0}

Consider each x ∈ T . Without loss of generality, assume that |Px| = 2, i.e., d has exactly two
non-zero components corresponding to the state x. This is justified at the end of the proof. Denote
these indices by (x, a+) and (x, a−), so that dx,a+ > 0 and dx,a−

< 0. From the first constraint of
(9), we must have that dx,a+ ≤ (dx,a−

)−.
There are two cases:

(i) Suppose gx,a+ < gx,a−
, for some x ∈ T .

Then, we can define a descent direction d̃ ∈ RŜ×A of cardinality two by setting d̃x,a+ = 1,
d̃x,a−

= −1, and all other components of d̃ to zero.

(ii) Suppose that gx,a+ ≥ gx,a−
, for all x ∈ T .

For all x ∈ T , define d̂x � (dx,a−
)− − dx,a+ ≥ 0. Then, the fact that

�
x,a dx,a = 0 implies

that

(12)
�

x/∈T
a∈A

dx,a −
�

x∈T

d̂x = 0.

At the same time, for all x ∈ T , we have that

dx,a+gx,a+ + dx,a−
gx,a−

= −d̂xgx,a−
+ dx,a+(gx,a+ − gx,a−

) ≥ −d̂xgx,a−
.

Then, since d is a descent direction, we have that

(13)
�

x/∈T
a∈A

dx,agx,a −
�

x∈T

d̂xgx,a−
< 0.

10

Now, define the vector d̃ ∈ RŜ×A by

d̃x,a =






dx,a if x /∈ T ,

−d̂x if x ∈ T and (x, a) = (x, a−),
0 otherwise.

Applying Lemma 4 to (12) and (13), there must be a pair of indices (x1, a1) and (x2, a2)
such that d̃x1,a1 > 0, d̃x2,a2 < 0 and gx1,a1 < gx2,a2 . For such (x1, a1) and (x2, a2) we have
a descent direction where we can increase λx1,a1 and decrease λx2,a2 by the same amount
and get a decrease in the objective. Note that since d̃x1,a1 > 0, we have that dx1,a1 > 0 and
x1 /∈ T , hence

�
a λx1,a < κ/N . Also, by construction, (x2, a2) is chosen such that dx2,a2 < 0,

implying that λx2,a2 > 0. Thus the specified direction is also feasible, and we have a feasible
descent direction of cardinality two.

Finally, to complete the proof, consider the case where there are some x ∈ T with |Px| > 2, i.e.,
d has more than two non-zero components corresponding to the state x. For each x ∈ T , define

A
+
x � {a ∈ A | dx,a > 0}, A

−
x � {a ∈ A | dx,a < 0},

a1 ∈ argmin
a∈A

+
x

gx,a, a2 ∈ argmax
a∈A

−
x

gx,a.

Define a new direction d̃ ∈ RŜ×A by

d̃x,a =






�
a�∈A

+
x

dx,a� if x ∈ T and (x, a) = (x, a1),
�

a�∈A
−
x

dx,a� if x ∈ T and (x, a) = (x, a2),
dx,a otherwise.

It is easy to verify that d̃ is also a feasible descent direction. Furthermore, d̃ has only two non-zero
components corresponding to each start x ∈ T . �

References

P. L. Bartlett and S. Mendelson. Journal of machine learning research. Rademacher and Gaussian

Complexities: Risk Bounds and Structural Results, 3:463–482, 2002.

V. V. Desai, V. F. Farias, and C. C. Moallemi. Approximate dynamic programming via a smoothed
linear program. Operations Research, 2011.

T. Joachims. Making large scale svm learning practical. 1999.

D.G Luenberger. Optimization by vector space methods. John Wiley and Sons, 1997.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines.
In Neural Networks for Signal Processing [1997] VII. Proceedings of the 1997 IEEE Workshop,
pages 276 –285, sep 1997. doi: 10.1109/NNSP.1997.622408.

11

	Online Suppliment
	Introduction
	Duality of the Sampled RSALP
	Proof of the Performance Guarantee
	Guarantee for the Exact Program
	Uniform Concentration Bounds
	Proof of Theorem 1

	Numerical Scheme
	Subset Selection
	QP Subproblem
	Correctness

