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1 Derivation of Marginal Likelihood

We derive the marginal likelihood as follows. Throughoug wse f°(x) to compactly denote
[fO(x1)--- fO(x,)] . As discussed in the paper, each trial can be described aslependent draw
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whereY = 021, + 327 K, and fO(x) ~ N(0, Ko). Therefore, the joint distribution of =
{y®, ... .y} is given by:
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Thenp(Y | A) = [p(Y | £ ) )p(f0(x))df°(x) is derived as
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2 MCMC Sampler Pseudocode

We assume (i) a cost matri¥’ taken to be the absolute value of the empirical correlati@a m
trix of a set of trials, (ii) a priorF on the partition points, and (iii) hyperparametérs=
{k,d° ... ,d*=1 0%} defining the mGP kernel bandwith, variances, and nuggeendite sam-
pler is initialized with a hierarchical partitiad drawn from the normalized cuts proposal

The covariance matri = o21,, + Zf;ll K, (as defined in Sec. 4 of the main paper) is a deter-
ministic function of the hierarchical partitiod and the hyperparametetsin what follows, we use
ker nel to define a function that provides this mapping for a givetifian set at a given tree level.
The likelihoodp(Y | £,6) = p(Y | A, 9) is computed exactly as in Eq. (13) of the main paper.

Algorithm 1 details the global search iterations and AlgoritBithe local (which can also produce
global searches if the root note is selected). The localckealgorithm additionally assumes a
node-proposal distribution indicated hpdepr oposal .

Algorithm 1 One lIteration of mMGP MCMC Sampler - GLOBAL SEARCH
Input: Cost matrixi¥, hyperparameters previous partitiond and corresponding

{z1,...29.-1_1} « partition points of4

A0 =X, % = 0pxn initialize structures for proposal
fore=1,...,L —1do
forv=1:2:2%do

{Af ALY ~ gl | A/(ﬂflw, w) normalized cut proposal
S(AS) = ¥(AS) +kernel (Af,0,¢) add K, submatrix corresponding td/

(AL ) =X (AL +kernel (A, ,0,¢) addK, submatrix corresponding td.’, ,
=% +0%I,
{#1,... 251 _, } < partition points of4’
’ ’ e e £—1
p~ Berlmin(r(A' | A). 1)), (A | A) = BEil T Rl sy
A—pA+(1-pA T+ pX+(1-px% accept or reject proposal
Output: A4, %

3 Alternative Covariance and Tree Specifications

The ideas underlying the mGP readily extend to other conaeicdhyperparameter specifications
beyond the one presented in the main paper (see Sec. 3). &opkx instead of assuming a single
bandwidth parameter scaled by the partition size, one could instantiate a pobboidwidths that
are selected between by each partition set. Likewise, wkldntroduce a set of partition-specific
scale parameterg. Of course, these changes come at the cost of performingeinde over the
assignments as well as issues associated with identifiabili

For our hierarchical partition prior and proposal, we assiaanced, binary trees as a simplifying
assumption. Working within such a framework, one couldvalfor unbalanced trees as follows.
First, force siblings in the tree to share scale parametkrs: de for i odd. Then, place a spike

and slab prior onl!. If d! = df,, = 0, then the functions defined on the associated partition sets
will exactlyequal the parent function, making it as if that split werethete.

For unbalanced tree priors, one could employ a Mondriange®@]; splits of the input space
continue along branches as long as a budget has not beerstedhalikewise, one could consider
schemes similar to those employed in the randomized andlamted partitions of the optional
Polya treeT] (tailored there to the density estimation task). For uabeéd tree proposals, we could
introduce randomized stopping criterion to the normalizetd proposals based on the extent of the
drop in correlation at each stage. Just like in image segatient we could also use normalized cuts
to produce a variable number of splits at every level leathmgpn-binary tree proposals.



Algorithm 2 One lIteration of mMGP MCMC Sampler - LOCAL SEARCH
Input: Cost matrixi¥, hyperparameters previous partitiond and corresponding

{z1,...2o-1_1 } + partition points of4

Y ¥ A+ A initialize proposals to previous values
A% ~ nodepr oposal select a set (tree node) to repartition
S {(w,0) | Af c AL} node descendants
for (v,£) € S do

(AL =¥/ (AF) —kernel (A, 0,0) remove contributions from node descendants
for (v,£) € S such that is odddo

{AL AL Y ~ gl A,(f;llw, W) normalized cut proposal

S(AY) = X(AL) +kernel (Af,0,0) add K, submatrix corresponding td *

S(AL) = X(AL,) +kernel (Af,,0,¢)  addK, submatrix corresponding td;’,
{1,... 251, } < partition points of4’
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A—pA +(1—-pA T+ pX+(1-pk accept or reject proposal
Output: A, X

Another possible extension is to utilize GPs pinned to 0 atehdpoints to define th¢’ of the
additive mGP specification outlined in Sec. 3 of the main papleis would enable changes in cor-
relation (i.e., non-stationarity) without introducingdontinuities in the resulting functign Recall,
however, that our inferences over the hierarchical partiéillow for blurring of discontinuities, pro-
ducing functions which can appear smooth if discontingitiee not present in the data.

4 Details on MEG Experiments

In what follows, we expound upon the data collection, prittings, and hyperparameter optimiza-
tion for our MEG experiments. We also provide additional fegito supplement the results of the
main paper. Recall that for the MEG experiments, the data feach wordw and sensop were
treated independently. That is, each assumed a uniquégrasiructure for the mGP. Additionally,
for all models the hyperparameters were set in a trainirig-deiven fashion, as outlined below.

4.1 MEG Data Acquisition

Subjects gave their written informed consent approved kyUhiversity of Pittsburgh (protocol
PRO09030355) and Carnegie Mellon (protocol HS09-343)tiriginal Review Boards. MEG data
were recorded using an Elekta Neuromag device (Elekta Of)levithe machine has 306 sensors, to
reduce the dimension of the data, only recordings from thersgradiometers were used for these
experiments. The data was acquired at 1 kHz, high-pasfilter 0.1 Hz and low-pass filtered at
330 Hz. Eye movements (horizontal and vertical eye movesentvell as blinks) were monitored
by recording the differential activity of muscles abovedvehnd beside the eyes. At at the beginning
of each session we recorded the position of the particigeads with four head position indicator
(HPI) coils placed on the subject’s scalp. The HPI coilsnglavith three cardinal points (nasian,
left and right pre-auricular), were digitized into the syst

The data were preprocessed using the Signal Space Separetthod (SSS)4, 5] and temporal
extension of SSS (tSSSJ][to remove artifacts and noise unrelated to brain activityaddition,
we used tSSS to realign the head position measured at thentregiof each block to a common
location. The MEG signal was then low-pass filtered to 50 Hetoove the contributions of line
noise and down-sampled to 200 Hz. The Signal Space Prajectathod (SSP)d was then used
to remove signal contamination by eye blinks or movemestsyell as MEG sensor malfunctions
or other artifacts. Each MEG repetition starts 260 ms beftineulus onset, and ends 1440 ms after
stimulus onset, for a total of 1.7 seconds and 340 time poindsta per sample. MEG recordings



are known to drift with time, so we correct our data by sulitracthe mean signal amplitude during
the 200ms before stimulus onset, for each sensor/repgtitiv. Because the magnitude of the MEG
signal is very small, we multiply the signal li$'? to avoid numerical precision problems.

4.2 MEG Prior Settings

The hierarchical partition priop(.A), determined byF' on X’ as described in Sec. 5 of the main
paper, was set as follows for a given wasdand sensop. All of the training trials associated with
sensorp except for those of the considered word were used to produeeuwasively minimized
normalized cut partition for a 4-level tree. The associa®dngth of each cut (i.e., amount of
empirical correlation cut) was also recorddd.was then defined as a kernel-smoothed version of
the cut points and associated cut strengths, along withibaseass at all points. This prior was
used to mimic the information that might be garnered from maio expert. Experiments were
also run under a uniform prior and produced nearly identieallts after burn-in. The aggregated
posterior changepoints samples, depicted in Fig. 7 onlfefagl 1, were clearly different from the
prior setting, demonstrating learning of the partitionrsi(not dominated by the prior).

4.3 Hyperparameter Optimization

The following describes how the hyperparameter optimizeis performed for the MEG compar-
isons. In all scenarios, the input spate= [1 : 340] was first normalized to take values|in: 1],
as was the case for the simulated study.

Gaussian Process The GP was specified as follows. The covariance function akeantto be a
squared exponential, which for wotdand sensop took the forme,, , = dy, , exp(—«||z — 2’| |3).
The scale parameter was constrained to be a fixed lineaiduraftthe average time-specific sample
variancea— » of the training datadw » = a2 wp- Likewise, the nugget noise was of the form

= Bo— The parameters, o°, and were optimized on a grid to maximize the marginal
Irkeﬁ)rhood of the training data over aII words and sensors.

Hierarchical GP  For the 2-level hierarchical GP (hGP), a squared exporlémiael was also
assumed for both levels. As irl][ a single bandwidth parameter was assumed. In partid’lmlrar,

the shared top level GR), , = d, , exp(—«||lz — 2/[|3), and for the trial-specific levek;, ,
dy, , exp(—rllz — z']]3). As in the GP the hyperparameters Were constrained as ndumxto— o
d0 = a3, dy,, = otey, ,, andoy, | = (a7, . Hereys, o°, o', and3 were jointly optimized

P
to maxrmrze marginal Irkelrhood For numerrca reasons, rrhlnlmum allowable nugget noise was
setto 1% of52, , (i.e.,5 = 0.01).

Multiresolution GP  For the multiresolution GP (mGP), a squared exponentiahddewith a
shared bandwidthk is used for each GP in the hierarchy, as specified in Sec. 3eofrihin pa-
per. The scale paramete{ré0 d',...,d*='} were constrained as follows. The global parent GP
was assigned scal = a’52 The scale parameters of the- 1 trial-specific levels of the mGP
hierarchy were constrained Gy a fixed functional form as mdimulated data setup, determined
by two parameters. In particulat’ = [a! exp(—p * ()2, . Finally, the nugget noise followed

o, = B0 ,. Inthis scenariox, a°, o', p, and were jointly optimized to maximize marginal

w,p T
likelihood based on initial samples of tree partitioh€™) using the hyperparameter settings of the
simulated data example. Again, for numerical reasons, themmam allowable nugget noise was set
to 1% ofs7, ,

The optimized hyperparameter values were as follows:
| K al al B P
GP 1350 0.15 - 1 -
hGP | 13000 0.033 1 0.01 -
mGP | 900 01 167 001 11

For the hGP, a large bandwidth (low temporal correlatiotgken to account for the abrupt changes.
Also note that the parent GP was given little variance angatsthe variance was attributed to the
lower level GP to account for the significant trial-to-tnedriation. The GP accounts for both the
large trial-to-trial variability and the abrupt changesoiiigh a large nugget noise. The mGP variance
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Figure 1:Heldout test data for the visual cortex sensor #77 and 6rdiftevords. For = 70, we show the
predictive meany;., . 3o under an hGP and mGP conditionedydn, _; and 15 training sequences.
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dropped off fairly rapidly with tree level, as indicated py Note that both the hGP and mGP are
able to account for trial-to-trial variability in the treéelharchy instead of through the nugget noise,
as indicated by low values ¢f.

In our optimization procedure, we found that the perforneaatthe GP was the most sensitive
to changes in the hyperparameter specification. Both the &@&PGP were fairly robust over a
reasonably large range of settings (partially indicateclflat marginal likelihood of the training

data over the range.)

4.4 Additional Figures

We provide some additional figures related to the MEG regutisented in Fig. 6 of the main paper.

In Fig. 1, we display examples of the heldout test data for the visudég sensor #77 and 6 different
words. Each plot only shows the first heldout trial of eachdydhe results of Fig. 6 in the main
paper perform a full analysis on each of the 5 heldout trigls: 7 = 70, we show the predictive
meanyr. . s, conditioned oryy.. ;, and 15 training sequences. We compare the performance of the
mMGP to that of the hGP. Only the predictive mean is displagediarity. The predictive variances
associated with the hGP were similar to, but slightly lardpam those of the mGP (7% larger on
average). The 95% predictive intervals included the heldbservations in all 6 cases for the mGP
and in 5 cases for the hGP. However, note the significantkgbetean predictions for the mGP.
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