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1 Derivation of Marginal Likelihood

We derive the marginal likelihood as follows. Throughout, we usef0(x) to compactly denote
[f0(x1) · · · f

0(xn)]
′. As discussed in the paper, each trial can be described as an independent draw
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wherec1 = (2π)−n/2|Σ|−1/2, c2 = (2π)−n/2|K0|
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Then,p(Y | A) =
∫

p(Y | f0(x),A)p(f0(x))df0(x) is derived as
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2 MCMC Sampler Pseudocode

We assume (i) a cost matrixW taken to be the absolute value of the empirical correlation ma-
trix of a set of trials, (ii) a priorF on the partition points, and (iii) hyperparametersθ =
{κ, d0, . . . , dL−1, σ2} defining the mGP kernel bandwith, variances, and nugget noise. The sam-
pler is initialized with a hierarchical partitionA drawn from the normalized cuts proposalq.

The covariance matrixΣ = σ2In +
∑L−1

ℓ=1 Kℓ (as defined in Sec. 4 of the main paper) is a deter-
ministic function of the hierarchical partitionA and the hyperparametersθ. In what follows, we use
kernel to define a function that provides this mapping for a given partition set at a given tree level.
The likelihoodp(Y | Σ, θ) = p(Y | A, θ) is computed exactly as in Eq. (13) of the main paper.

Algorithm 1 details the global search iterations and Algorithm2 the local (which can also produce
global searches if the root note is selected). The local search algorithm additionally assumes a
node-proposal distribution indicated bynodeproposal.

Algorithm 1 One Iteration of mGP MCMC Sampler - GLOBAL SEARCH
Input: Cost matrixW , hyperparametersθ, previous partitionA and correspondingΣ

{z1, . . . z2L−1−1} ← partition points ofA

A
′0 = X , Σ′ = 0n×n initialize structures for proposal

for ℓ = 1, . . . , L− 1 do

for ν = 1 : 2 : 2ℓ do

{A
′ℓ
ν ,A

′ℓ
ν+1} ∼ q(· | A

′ℓ−1
(ν+1)/2,W ) normalized cut proposal

Σ′(A
′ℓ
ν ) = Σ′(A

′ℓ
ν ) + kernel(A

′ℓ
ν , θ, ℓ) addKℓ submatrix corresponding toA

′ℓ
ν

Σ′(A
′ℓ
ν+1) = Σ′(A

′ℓ
ν+1) + kernel(A

′ℓ
ν+1, θ, ℓ) addKℓ submatrix corresponding toA

′ℓ
ν+1

Σ′ = Σ′ + σ2In

{z′1, . . . z
′
2L−1−1} ← partition points ofA′

ρ ∼ Ber(min(r(A′ | A), 1)), r(A′ | A) =
p(Y |Σ′,θ)

∏
i F (z′
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∏
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ℓ
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ℓ
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(ν+1)/2

,W )
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∏

i F (zi)
∏

νodd,ℓ q({A
′ℓ
ν ,A

′ℓ
ν+1}|A

′ℓ−1
(ν+1)/2

,W )

A ← ρA′ + (1 − ρ)A, Σ← ρΣ′ + (1 − ρ)Σ accept or reject proposal

Output: A,Σ

3 Alternative Covariance and Tree Specifications

The ideas underlying the mGP readily extend to other covariance hyperparameter specifications
beyond the one presented in the main paper (see Sec. 3). For example, instead of assuming a single
bandwidth parameterκ scaled by the partition size, one could instantiate a pool ofbandwidths that
are selected between by each partition set. Likewise, we could introduce a set of partition-specific
scale parametersdℓi . Of course, these changes come at the cost of performing inference over the
assignments as well as issues associated with identifiability.

For our hierarchical partition prior and proposal, we assume balanced, binary trees as a simplifying
assumption. Working within such a framework, one could allow for unbalanced trees as follows.
First, force siblings in the tree to share scale parameters:dℓi = dℓi+1 for i odd. Then, place a spike
and slab prior ondℓi . If dℓi = dℓi+1 = 0, then the functions defined on the associated partition sets
will exactlyequal the parent function, making it as if that split were notthere.

For unbalanced tree priors, one could employ a Mondrian process [2]; splits of the input space
continue along branches as long as a budget has not been exhausted. Likewise, one could consider
schemes similar to those employed in the randomized and unbalanced partitions of the optional
Polya tree [7] (tailored there to the density estimation task). For unbalanced tree proposals, we could
introduce randomized stopping criterion to the normalizedcuts proposals based on the extent of the
drop in correlation at each stage. Just like in image segmentation, we could also use normalized cuts
to produce a variable number of splits at every level leadingto non-binary tree proposals.
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Algorithm 2 One Iteration of mGP MCMC Sampler - LOCAL SEARCH
Input: Cost matrixW , hyperparametersθ, previous partitionA and correspondingΣ

{z1, . . . z2L−1−1} ← partition points ofA

Σ′ ← Σ, A′ ← A initialize proposals to previous values

Aℓ∗
ν∗ ∼ nodeproposal select a set (tree node) to repartition

S ← {(ν, ℓ) | A
′ℓ
ν ⊂ A

ℓ∗
ν∗} node descendants

for (ν, ℓ) ∈ S do
Σ′(A

′ℓ
ν ) = Σ′(A

′ℓ
ν )− kernel(A

′ℓ
ν , θ, ℓ) remove contributions from node descendants

for (ν, ℓ) ∈ S such thatν is odddo
{A

′ℓ
ν ,A

′ℓ
ν+1} ∼ q(· | A

′ℓ−1
(ν+1)/2,W ) normalized cut proposal

Σ′(A
′ℓ
ν ) = Σ′(A

′ℓ
ν ) + kernel(A

′ℓ
ν , θ, ℓ) addKℓ submatrix corresponding toA

′ℓ
ν

Σ′(A
′ℓ
ν+1) = Σ′(A

′ℓ
ν+1) + kernel(A

′ℓ
ν+1, θ, ℓ) addKℓ submatrix corresponding toA

′ℓ
ν+1

{z′1, . . . z
′
2L−1−1} ← partition points ofA′

ρ ∼ Ber(min(r(A′ | A), 1)), r(A′ | A) =
p(Y |Σ′,θ)

∏
i F (z′

i)
∏

(νodd,ℓ)∈S q({Aℓ
ν ,A

ℓ
ν+1}|A

ℓ−1
(ν+1)/2

,W )

p(Y |Σ,θ)
∏

i F (zi)
∏

(νodd,ℓ)∈S q({A′ℓ
ν ,A

′ℓ
ν+1}|A

′ℓ−1
(ν+1)/2

,W )

A ← ρA′ + (1 − ρ)A, Σ← ρΣ′ + (1 − ρ)Σ accept or reject proposal

Output: A,Σ

Another possible extension is to utilize GPs pinned to 0 at the endpoints to define theφℓ of the
additive mGP specification outlined in Sec. 3 of the main paper. This would enable changes in cor-
relation (i.e., non-stationarity) without introducing discontinuities in the resulting functiong. Recall,
however, that our inferences over the hierarchical partition allow for blurring of discontinuities, pro-
ducing functions which can appear smooth if discontinuities are not present in the data.

4 Details on MEG Experiments

In what follows, we expound upon the data collection, prior settings, and hyperparameter optimiza-
tion for our MEG experiments. We also provide additional figures to supplement the results of the
main paper. Recall that for the MEG experiments, the data from each wordw and sensorp were
treated independently. That is, each assumed a unique partition structure for the mGP. Additionally,
for all models the hyperparameters were set in a training-data-driven fashion, as outlined below.

4.1 MEG Data Acquisition

Subjects gave their written informed consent approved by the University of Pittsburgh (protocol
PRO09030355) and Carnegie Mellon (protocol HS09-343) Institutional Review Boards. MEG data
were recorded using an Elekta Neuromag device (Elekta Oy). While the machine has 306 sensors, to
reduce the dimension of the data, only recordings from the second gradiometers were used for these
experiments. The data was acquired at 1 kHz, high-pass filtered at 0.1 Hz and low-pass filtered at
330 Hz. Eye movements (horizontal and vertical eye movements as well as blinks) were monitored
by recording the differential activity of muscles above below and beside the eyes. At at the beginning
of each session we recorded the position of the participantshead with four head position indicator
(HPI) coils placed on the subject’s scalp. The HPI coils, along with three cardinal points (nasian,
left and right pre-auricular), were digitized into the system.

The data were preprocessed using the Signal Space Separation method (SSS) [4, 5] and temporal
extension of SSS (tSSS) [3] to remove artifacts and noise unrelated to brain activity.In addition,
we used tSSS to realign the head position measured at the beginning of each block to a common
location. The MEG signal was then low-pass filtered to 50 Hz toremove the contributions of line
noise and down-sampled to 200 Hz. The Signal Space Projection method (SSP) [6] was then used
to remove signal contamination by eye blinks or movements, as well as MEG sensor malfunctions
or other artifacts. Each MEG repetition starts 260 ms beforestimulus onset, and ends 1440 ms after
stimulus onset, for a total of 1.7 seconds and 340 time pointsof data per sample. MEG recordings
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are known to drift with time, so we correct our data by subtracting the mean signal amplitude during
the 200ms before stimulus onset, for each sensor/repetition pair. Because the magnitude of the MEG
signal is very small, we multiply the signal by1012 to avoid numerical precision problems.

4.2 MEG Prior Settings

The hierarchical partition priorp(A), determined byF on X as described in Sec. 5 of the main
paper, was set as follows for a given wordw and sensorp. All of the training trials associated with
sensorp except for those of the considered word were used to produce arecursively minimized
normalized cut partition for a 4-level tree. The associatedstrength of each cut (i.e., amount of
empirical correlation cut) was also recorded.F was then defined as a kernel-smoothed version of
the cut points and associated cut strengths, along with baseline mass at all points. This prior was
used to mimic the information that might be garnered from a domain expert. Experiments were
also run under a uniform prior and produced nearly identicalresults after burn-in. The aggregated
posterior changepoints samples, depicted in Fig. 7 only forlevel 1, were clearly different from the
prior setting, demonstrating learning of the partition points (not dominated by the prior).

4.3 Hyperparameter Optimization

The following describes how the hyperparameter optimization is performed for the MEG compar-
isons. In all scenarios, the input spaceX = [1 : 340] was first normalized to take values in[0 : 1],
as was the case for the simulated study.

Gaussian Process The GP was specified as follows. The covariance function was taken to be a
squared exponential, which for wordw and sensorp took the formcw,p = dw,p exp(−κ||x− x′||22).
The scale parameter was constrained to be a fixed linear function of the average time-specific sample
varianceσ̂2

w,p of the training data:dw,p = α0σ̂2
w,p. Likewise, the nugget noise was of the form

σ2
w,p = βσ̂2

w,p. The parametersκ, α0, andβ were optimized on a grid to maximize the marginal
likelihood of the training data over all words and sensors.

Hierarchical GP For the 2-level hierarchical GP (hGP), a squared exponential kernel was also
assumed for both levels. As in [1], a single bandwidth parameter was assumed. In particular,for
the shared top level GP,c0w,p = d0w,p exp(−κ||x − x′||22), and for the trial-specific level,c1w,p =

d1w,p exp(−κ||x− x′||22). As in the GP, the hyperparameters were constrained as a function of σ̂2
w,p:

d0w,p = α0σ̂2
w,p, d1w,p = α1σ̂2

w,p, andσ2
w,p = βσ̂2

w,p. Here,κ, α0, α1, andβ were jointly optimized
to maximize marginal likelihood. For numerical reasons, the minimum allowable nugget noise was
set to 1% of̂σ2

w,p (i.e.,β = 0.01).

Multiresolution GP For the multiresolution GP (mGP), a squared exponential kernel with a
shared bandwidthκ is used for each GP in the hierarchy, as specified in Sec. 3 of the main pa-
per. The scale parameters{d0, d1, . . . , dL−1} were constrained as follows. The global parent GP
was assigned scaled0 = α0σ̂2

w,p. The scale parameters of theL− 1 trial-specific levels of the mGP
hierarchy were constrained by a fixed functional form as in the simulated data setup, determined
by two parameters. In particular,dℓ = [α1 exp(−ρ ∗ ℓ)]σ̂2

w,p. Finally, the nugget noise followed
σ2
w,p = βσ̂2

w,p. In this scenario,κ, α0, α1, ρ, andβ were jointly optimized to maximize marginal
likelihood based on initial samples of tree partitionsA(m) using the hyperparameter settings of the
simulated data example. Again, for numerical reasons, the minimum allowable nugget noise was set
to 1% ofσ̂2

w,p.

The optimized hyperparameter values were as follows:

κ α0 α1 β ρ
GP 1350 0.15 – 1 –
hGP 13000 0.033 1 0.01 –
mGP 900 0.1 1.67 0.01 1.1

For the hGP, a large bandwidth (low temporal correlation) istaken to account for the abrupt changes.
Also note that the parent GP was given little variance and instead the variance was attributed to the
lower level GP to account for the significant trial-to-trialvariation. The GP accounts for both the
large trial-to-trial variability and the abrupt changes through a large nugget noise. The mGP variance
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Figure 1:Heldout test data for the visual cortex sensor #77 and 6 different words. Forτ = 70, we show the
predictive meany∗

τ :τ+30 under an hGP and mGP conditioned ony
∗

1:τ−1 and 15 training sequences.

dropped off fairly rapidly with tree level, as indicated byρ. Note that both the hGP and mGP are
able to account for trial-to-trial variability in the tree hierarchy instead of through the nugget noise,
as indicated by low values ofβ.

In our optimization procedure, we found that the performance of the GP was the most sensitive
to changes in the hyperparameter specification. Both the hGPand GP were fairly robust over a
reasonably large range of settings (partially indicated bya flat marginal likelihood of the training
data over the range.)

4.4 Additional Figures

We provide some additional figures related to the MEG resultspresented in Fig. 6 of the main paper.
In Fig.1, we display examples of the heldout test data for the visual cortex sensor #77 and 6 different
words. Each plot only shows the first heldout trial of each word; the results of Fig. 6 in the main
paper perform a full analysis on each of the 5 heldout trials.For τ = 70, we show the predictive
meany∗τ :τ+30 conditioned ony∗1:τ−1 and 15 training sequences. We compare the performance of the
mGP to that of the hGP. Only the predictive mean is displayed for clarity. The predictive variances
associated with the hGP were similar to, but slightly largerthan those of the mGP (7% larger on
average). The 95% predictive intervals included the heldout observations in all 6 cases for the mGP
and in 5 cases for the hGP. However, note the significantly better mean predictions for the mGP.
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