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Abstract

This is supplemental material for the NIPS paper “The variational hierarchical EM
algorithm for clustering hidden Markov models” [1]. It contains the derivation of
the VHEM-H3M algorithm, and the associated E-step and M-step computations.

1 Derivation of the VHEM algorithm for HMMs

We derive the VHEM algorithm for hidden Markov models. We present the problem formulation in
Section 1.1, and derive the variational lower bound in Sections 1.2, the variational E-step in Section
1.3 and the M-step in Section 1.4

For the reader’s convenience, we summarize the notation used in [1] in Table 1.

1.1 Formulation

LetM(b) be a base hidden Markov mixture model with K(b) components. The goal of the VHEM
algorithm is to find a reduced hidden Markov mixture modelM(r) with K(r) < K(b) (i.e., fewer)
components that representsM(b) well. The likelihood of a random sequence y1:τ ∼ M(b) is given
by

p(y1:τ |M(b)) =

K(b)∑
i=1

ω
(b)
i p(y1:τ |z(b) = i,M(b)), (1)

where z(b) ∼ multinomial(ω
(b)
1 , · · ·ω(b)

K(b)) is the hidden variable that indexes the mixture compo-

nents. p(y1:τ |z = i,M(b)) is the likelihood of y1:τ under the ith mixture component, and ω(b)
i is the

mixture weight for the ith component. The likelihood of the random sequence y1:τ ∼M(r) is

p(y1:τ |M(r)) =

K(r)∑
j=1

ω
(r)
j p(y1:τ |z(r) = j,M(r)), (2)

where z(r) ∼ multinomial(ω
(r)
1 , · · · , ω(r)

K(r)) is the hidden variable for indexing components in
M(r).

At a high level, the VHEM-H3M algorithm estimates the reduced H3M model M(r) in (2) from
virtual sequences distributed according to the base H3M modelM(b) in (1). From this estimation
procedure, the VHEM algorithm provides:

1. a soft clustering of the originalK(b) components intoK(r) groups, where the cluster mem-
bership is encoded in assignment variables that represents the responsibility of each reduced
mixture component over each base mixture component, i.e., ẑi,j = P (z(r) = j|z(b) = i),
for i = 1, . . . ,K(b) and j = 1, . . . ,K(r);
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Table 1: Notation used in the derivation of the VHEM-H3M algorithm.

variables base model (b) reduced model (r)
index for HMM components i j
HMM states β ρ
HMM state sequence β1:τ = {β1, · · · , βτ} ρ1:τ = {ρ1, · · · , ρτ}
index for component of GMM m `

models
H3M M(b) M(r)

HMM component M(b)
i M(r)

j

GMM emission M(b)
i,β M(r)

j,ρ

component of GMM M(b)
i,β,m M(r)

j,ρ,`

parameters
H3M mixture weights ω(b) = {ω(b)

i } ω(r) = {ω(r)
j }

HMM initial state π(b),i = {π(b),i
β } π(r),j = {π(r),j

ρ }
HMM state transition matrix A(b),i = [a

(b),i
β,β′ ] A(r),j = [a

(r),j
ρ,ρ′ ]

GMM emission {c(b),iβ,m , µ
(b),i
β,m ,Σ

(b),i
β,m}Mm=1 {c(r),jρ,` , µ

(r),j
ρ,` ,Σ

(r),j
ρ,` }M`=1

probability distributions notation short-hand
HMM state sequence (b) p(x1:τ = β1:τ |z(b) = i,M(b)) p(β1:τ |M(b)

i ) = π
(b),i
β1:τ

HMM state sequence (r) p(x1:τ = ρ1:τ |z(r) = j,M(r)) p(ρ1:τ |M(r)
j ) = π

(r),j
ρ1:τ

HMM observation likelihood (r) p(y1:τ |z(r) = j,M(r)) p(y1:τ |M(r)
j )

GMM emission likelihood (r) p(yt|xt = ρ,M(r)
j ) p(yt|M(r)

j,ρ)

Gaussian component likelihood (r) p(yt|ζt = `, xt = ρ,M(r)
j ) p(yt|M(r)

j,ρ,`)
expectations

HMM observation sequence Ey1:τ |z(b)=i,M(b) [·] EM(b)
i

[·]
GMM emission E

yt|xt=β,M(b)
i

[·] EM(b)
i,β

[·]
Gaussian component E

yt|ζt=m,xt=β,M(b)
i

[·] EM(b)
i,β,m

[·]
expected log-likelihood lower bound variational distribution

EM(b)
i

[log p(Yi|M(r))] LiH3M qi(zi = j) = zij

EM(b)
i

[log p(y1:τ |M(r)
j )] Li,jHMM qi,j(ρ1:τ |β1:τ ) = φi,jρ1:τ |β1:τ

= φi,j1 (ρ1|β1)
∏τ
t=2 φ

i,j
t (ρt|ρt−1, βt)

EM(b)
i,β

[log p(y|M(r)
j,ρ)] L(i,β),(j,ρ)

GMM qi,jβ,ρ(ζ = `|m) = η
(i,β),(j,ρ)
`|m

2. novel cluster centers represented by the individual mixture components of (2), i.e.,
p(y1:τ |z(r) = j,M(r)) for j = 1, . . . ,K(r).

Finally, because we take the expectation over the virtual samples, the estimation is carried out in an
efficient manner that requires only knowledge of the parameters of the base model without the need
of generating actual virtual samples.

Notation. We will always use i and j to index the components of the base model, M(b), and the
reduced model,M(r), respectively. To reduce clutter, we will also use the short-hand notationM(b)

i

andM(r)
j to denote the ith component ofM(b) and the jth component ofM(r). Hidden states of

the HMMs are denoted with β and ρ for the base modelM(b)
i and reduced modelM(r)

j . The GMM

emission models for each hidden state are denoted as M(b)
i,β and M(r)

j,ρ . We will use m and ` for
indexing the Gaussian mixture components of the emission models of the base and reduced models,
respectively, The individual Gaussian components are denoted as M(b)

i,β,m for the base model and

M(r)
j,ρ,` for the reduced model. Finally, we denote the parameters of i-th HMM component of the

base mixture model as M(b)
i = {π(b),i, A(b),i, {{c(b),iβ,m , µ

(b),i
β,m ,Σ

(b),i
β,m}Mm=1}Sβ=1}, and for the j-th

HMM in the reduced mixture asM(r)
j = {π(r),j , A(r),j , {{c(r),jρ,` , µ

(r),j
ρ,` ,Σ

(r),j
ρ,` }M`=1}Sρ=1}.
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When appearing in a probability distribution, the short-hand model notation (e.g., M(b)
i ) always

implies conditioning on the model being active. For example, we will use p(y1:τ |M(b)
i ) as short-

hand for p(y1:τ |z(b) = i,M(b)), or p(yt|M(b)
i,β) as short-hand for p(yt|xt = β, z(b) = i,M(b)).

Furthermore, we will use π(b),i
β1:τ

as shorthand for the probability of the state sequence β1:τ in the

base HMM componentM(b)
i , i.e., p(β1:τ |M(b)

i ), and likewise for the reduced HMM component.

Expectations will also use the short-hand model notation to imply conditioning on the model. In
addition, expectations are assumed to be taken with respect to the output variable (y1:τ or yt), unless
otherwise specified. For example, we will use EM(b)

i
[·] as short-hand for Ey1:τ |M(b),z(b)=i[·].

Table 1 summarizes the notation used in the derivation, including the variable names, model param-
eters, and short-hand notations for probability distributions and expectations. The bottom of Table 1
also summarizes the variational lower bound and variational distributions, which will be introduced
subsequently.

1.2 Variational HEM algorithm

To learn the reduced model in (2), we consider a set of N virtual samples distributed accordingly
to the base model M(b) in (1), such that Ni = Nω

(b)
i samples are drawn from the ith compo-

nent. We denote the set of Ni virtual samples for the ith component as Yi = {y(i,m)
1:τ }

Ni
m=1, where

y
(i,m)
1:τ ∼M(b)

i , and the entire set of N samples as Y = {Yi}K
(b)

i=1 . Note that, in this formulation, we
are not considering virtual samples {x(i,m)

1:τ , y
(i,m)
1:τ } for each base component, according to its joint

distribution p(x1:τ , y1:τ |M(b)
i ). The reason is that the hidden state space of each base mixture com-

ponentM(b)
i may have a different representation (e.g., the numbering of the hidden states may be

permuted between the components). This basis mismatch will cause problems when the parameters
ofM(r)

j are computed from virtual samples of the hidden states of {M(b)
i }K

(b)

i=1 . Instead, we treat

Xi = {x(i,m)
1:τ }

Ni
m=1 as “missing” information, and estimate them in the E-step. The log-likelihood

of the virtual samples is

log p(Y |M(r)) =

K(b)∑
i=1

log p(Yi|M(r)) (3)

where, in order to obtain a consistent clustering, we assume the entirety of samples Yi is assigned to
the same component of the reduced model [2].

The original formulation of HEM [2] maximizes (3) with respect toM(r), and uses the law of large
numbers to turn the virtual samples Yi into an expectation over the base model componentsM(b)

i .
In this paper, we will start with a different objective function to derive the VHEM algorithm. To
estimateM(r), we will maximize the average log-likelihood of all possible samples, weighted by
their likelihood of being generated byM(b)

i , i.e., the expected log-likelihood of the virtual samples,

J (M(r)) = EM(b)

[
log p(Y |M(r))

]
=

K(b)∑
i=1

EM(b)
i

[
log p(Yi|M(r))

]
, (4)

where the expectation is over the base model components M(b)
i . Maximizing (4) will eventually

lead to the same estimate as maximizing (3), but allows us to strictly preserve the lower bound,
which would otherwise be ruined when using the law-of-large numbers with (3).

A general approach to deal with maximum likelihood estimation in the presence of hidden variables
(which is the case for H3Ms) is the EM algorithm [3]. Although in the traditional formulation the
EM algorithm is presented as an alternation between an expectation step (E step) and a maximiza-
tion step (M step), in this work we take a variational perspective [4, 5, 6], which views each step as a
maximization step. The variational E-step first obtains a family of lower bounds to the log-likelihood
(i.e., to equation 4), indexed by variational parameters, and then optimizes over the variational pa-
rameters to find the tightest bound. The corresponding M-step then maximizes the lower bound
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(with the variational parameters fixed) with respect to the model parameters. One advantage of the
variational formulation is that it readily allows for useful extensions to the EM algorithm, such as
replacing a difficult inference in the E-step with a variational approximation. In practice, this is
achieved by restricting the maximization in the variational E-step to a smaller domain for which the
lower bound is tractable.

1.2.1 Lower bound to an expected log-likelihood

Before proceeding with the derivation of VHEM for H3Ms, we first need to derive a lower-bound
to an expected log-likelihood term (e.g., (4)). In all generality, let {O,H} be the observation and
hidden variables of a probabilistic model, respectively, where p(H) is the distribution of the hidden
variables, p(O|H) is the conditional likelihood of the observations, and p(O) =

∑
H p(O|H)p(H)

is the observation likelihood. We can define a variational lower bound to the observation log-
likelihood [7, 8]:

log p(O) ≥ log p(O)−D(q(H)||p(H|O)) (5)

=
∑
H

q(H) log
p(H)p(O|H)

q(H)
(6)

where p(H|O) is the posterior distribution of H given observation O, and D(p‖q) =∫
p(y) log p(y)

q(y)dy is the Kullback-Leibler (KL) divergence between two distributions, p and q. We
introduce a variational distribution q(H), which approximates the posterior distribution, where∑
H q(H) = 1 and q(H) ≥ 0. When the variational distribution equals the true posterior,

q(H) = P (H|O), then the KL divergence is zero, and hence the lower-bound reaches log p(O).
When the true posterior is not possible to calculate, then typically q is restricted to some set of
approximate posterior distributions Q that are tractable, and the best lower-bound is obtained by
maximizing over q ∈ Q,

log p(O) ≥ max
q∈Q

∑
H

q(H) log
p(H)p(O|H)

q(H)
(7)

Using the lower bound in (7), we can now derive a lower bound to an expected log-likelihood
expression. Let Eb[·] be the expectation of O with respect to a distribution pb(O). Since pb(O) is
non-negative, taking the expectation on both sides of (7) yields,

Eb [log p(O)] ≥ Eb

[
max
q∈Q

∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(8)

≥ max
q∈Q

Eb

[∑
H

q(H) log
p(H)p(O|H)

q(H)

]
(9)

= max
q∈Q

∑
H

q(H)

{
log

p(H)

q(H)
+ Eb [log p(O|H)]

}
, (10)

where (9) follows from Jensen’s inequality (i.e., f(E[x]) ≤ E[f(x)] when f is convex), and the
convexity of the max function.

1.2.2 Variational lower bound

We now derive the lower bound of the expected log-likelihood cost function in (4). The derivation
will proceed by successively applying the lower bound from (10) on each arising expected log-
likelihood term, which results in a set of nested lower bounds. We first define the following three
lower bounds:

EM(b)
i

[log p(Yi|M(r))] ≥ LiH3M , (11)

EM(b)
i

[log p(y1:τ |M(r)
j )] ≥ Li,jHMM , (12)

EM(b)
i,β

[log p(y|M(r)
j,ρ)] ≥ L(i,β),(j,ρ)

GMM . (13)
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The first lower bound, LiH3M , is on the expected log-likelihood of an H3M M(r) with respect to
an HMMM(b)

i . The second lower bound, Li,jHMM , is on the expected log-likelihood of an HMM
M(r)

j , marginalized over observation sequences from a different HMMM(b)
i . Although the data log-

likelihood log p(y1:τ |M(r)
j ) can be computed exactly using the forward algorithm [9], calculating

its expectation is not analytically tractable since log p(y1:τ |M(r)
j ) is essentially a mixture model1.

The third lower bound, L(i,β),(j,ρ)
GMM , is on the expected log-likelihood of a GMM emission density

M(r)
j,ρ with respect to another GMMM(b)

i,β . This lower bound does not depend on time, as we have
assumed that the emission densities are time-invariant.

Looking at an individual term in (4), p(Yi|M(r)) is the likelihood under a mixture of HMMs, as
in (2), where the observation variable is Yi and the hidden variable is zi (the assignment of Yi to a
componentM(r)

j ). Hence, introducing the variational distribution qi(zi) and applying (10), we have

EM(b)
i

[
log p(Yi|M(r))

]
≥ max

qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+ EM(b)

i
[log p(Yi|M(r)

j )]

}
(14)

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+ EM(b)

i
[log p(y1:τ |M(r)

j )Ni ]

}
(15)

= max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiEM(b)

i
[log p(y1:τ |M(r)

j )]

}
, (16)

where in (15) we use the fact that Yi is an i.i.d. set of Ni samples. In (16), log p(y1:τ |M(r)
j ) is the

observation log-likelihood of an HMM, which is a mixture distribution, and hence its expectation
cannot be calculated directly. Instead we use ithe lower bound Li,jHMM defined in (12), yielding

EM(b)
i

[
log p(Yi|M(r))

]
≥ max

qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiLi,jHMM

}
, LiH3M .

(17)

Next, we calculate the lower bound Li,jHMM . Starting with (12), we first rewrite the expectation
EM(b)

i
to explicitly marginalize over the HMM state sequence β1:τ fromM(b)

i ,

EM(b)
i

[log p(y1:τ |M(r)
j )] = E

β1:τ |M(b)
i

[
E
y1:τ |β1:τ ,M(b)

i
[log p(y1:τ |M(r)

j )]
]

(18)

=
∑
β1:τ

π
(b),i
β1:τ

E
y1:τ |β1:τ ,M(b)

i
[log p(y1:τ |M(r)

j )] (19)

For the HMM likelihood p(y1:τ |M(r)
j ), the observation variable is y1:τ and the hidden variable is

the state sequence ρ1:τ . We therefore introduce a variational distribution qi,j(ρ1:τ |β1:τ ) on the state
sequence ρ1:τ , which depends on a particular sequence β1:τ fromM(b)

i . Applying (10) to (19), we

1For an observation sequence of length τ , an HMM with S states can be considered as a mixture model
with O(Sτ ) components.
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have

EM(b)
i

[log p(y1:τ |M(r)
j )]

≥
∑
β1:τ

π
(b),i
β1:τ

max
qi,j

∑
ρ1:τ

qi,j(ρ1:τ |β1:τ )

{
log

p(ρ1:τ |M(r)
j )

qi,j(ρ1:τ |β1:τ )
+ E

y1:τ |β1:τ ,M(b)
i

[log p(y1:τ |ρ1:τ ,M(r)
j )]

}
(20)

=
∑
β1:τ

π
(b),i
β1:τ

max
qi,j

∑
ρ1:τ

qi,j(ρ1:τ |β1:τ )

{
log

p(ρ1:τ |M(r)
j )

qi,j(ρ1:τ |β1:τ )
+
∑
t

EM(b)
i,βt

[log p(yt|M(r)
j,ρt

)]

}
(21)

≥
∑
β1:τ

π
(b),i
β1:τ

max
qi,j

∑
ρ1:τ

qi,j(ρ1:τ |β1:τ )

{
log

p(ρ1:τ |M(r)
j )

qi,j(ρ1:τ |β1:τ )
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, Li,jHMM (22)

where in (21) we use the conditional independence of the observation sequence given the state
sequence, and in (22) we use the lower bound, defined in (13), on each expectation.

Finally, we derive the lower bound L(i,β),(j,ρ)
GMM for (13). First we rewrite the expectation with respect

toM(b)
i,β to explicitly marginalize out the GMM hidden assignment variable ζ,

EM(b)
i,β

[log p(y|M(r)
j,ρ)] = E

ζ|M(b)
i,β

[
EM(b)

i,β,ζ

[log p(y|M(r)
j,ρ)]

]
(23)

=

M∑
m=1

c
(b),i
β,mEM(b)

i,β,m

[
log p(y|M(r)

j,ρ)
]

(24)

Note that p(y|M(r)
j,ρ) is a GMM emission distribution, and hence the observation variable is y, and

the hidden variable is ζ. Therefore, we introduce the variational distribution qi,jβ,ρ(ζ|m), which is

conditioned on the observation y arising from the m-th component inM(b)
i,β , and apply (10),

EM(b)
i,β

[log p(y|M(r)
j,ρ)]

≥
M∑
m=1

c
(b),i
β,m max

qi,jβ,ρ

M∑
ζ=1

qi,jβ,ρ(ζ|m)

{
log

p(ζ|M(r)
j,ρ)

qi,jβ,ρ(ζ|m)
+ EM(b)

i,β,m

[log p(y|M(r)
j,ρ,ζ)]

}
, L(i,β),(j,ρ)

GMM ,

(25)

where EM(b)
i,ρ,m

[log p(y|M(r)
j,ρ,`)] is the expected log-likelihood of a Gaussian distribution M(r)

j,ρ,`

with respect to another GaussianM(b)
i,ρ,m, which has a closed-form solution (see Section 1.3.1).

In summary, we have derived a variational lower bound of the expected log-likelihood of the virtual
samples in (4),

J (M(r)) = EM(b)

[
log p(Y |M(r))

]
≥
K(b)∑
i=1

LiH3M , (26)

which is composed of three nested lower bounds, corresponding to different model elements (the
H3M, the component HMMs, and the emission GMMs),

LiH3M = max
qi

∑
j

qi(zi = j)

{
log

p(zi = j|M(r))

qi(zi = j)
+NiLi,jHMM

}
, (27)

Li,jHMM =
∑
β1:τ

π
(b),i
β1:τ

max
qi,j

∑
ρ1:τ

qi,j(ρ1:τ |β1:τ )

{
log

p(ρ1:τ |M(r)
j )

qi,j(ρ1:τ |β1:τ )
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, (28)

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m max

qi,jβ,ρ

M∑
ζ=1

qi,jβ,ρ(ζ|m)

{
log

p(ζ|M(r)
j,ρ)

qi,jβ,ρ(ζ|m)
+ EM(b)

i,β,m

[log p(y|M(r)
j,ρ,ζ)]

}
,

(29)
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where qi(zi), qi,j(ρ1:τ |β1:τ ), and qi,jβ,ρ(ζ|m) are the corresponding variational distributions. Finally,
the variational HEM algorithm for HMMs consists of two alternating steps:

• (variational E-step) given M(r), calculate the variational distributions qi,jβ,ρ(ζ|m),
qi,j(ρ1:τ |β1:τ ), and qi(zi) for the lower bounds in (29), (28), and (27);

• (M-step) update the model parameters viaM(r)∗ = argmaxM(r)

∑K(b)

i=1 LiH3M .

We next derive the E- and M-steps of the algorithm.

1.3 Variational E-step

The variational E-step consists of finding the variational distributions to maximize the lower bounds
in (29), (28), and (27). In particular, given the nesting of the lower bounds, we proceed by first
maximizing the GMM lower bound L(i,β),(j,ρ)

GMM for each pair of emission GMMs in the base and
reduced models. Next, the HMM lower bound Li,jHMM is maximized for each pair of HMMs in
the base and reduced models, followed by maximizing the H3M lower bound LiH3M for each base
HMM. Finally, a set of summary statistics are calculated, which will be used in the M-step.

1.3.1 Variational distributions

We first consider the forms of the three variational distributions, as well as the optimal parameters
to maximize the corresponding lower bounds.

GMM: For the GMM lower bound L(i,β),(j,ρ)
GMM , we assume each variational distribution has the form

qi,jβ,ρ(ζ = l|m) = η
(i,β),(j,ρ)
`|m (30)

where
∑M
`=1 η

(i,β),(j,ρ)
`|m = 1, and η(i,β),(j,ρ)`|m ≥ 0, ∀`. Intuitively, η(i,β),(j,ρ) is the responsibility

matrix between each pair of Gaussian components in GMMs M(b)
i,β and M(r)

j,ρ , where η(i,β),(j,ρ)`|m

represents the probability that an observation from componentm ofM(b)
i,β corresponds to component

` ofM(r)
j,ρ .

Substituting into (29), we have

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m max

η
(i,β),(j,ρ)

`|m

M∑
`=1

η
(i,β),(j,ρ)
`|m

log
c
(r),j
ρ,`

η
(i,β),(j,ρ)
`|m

+ EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)]

 .

(31)

The maximizing variational parameters are obtained using Appendix C.2,

η̂
(i,β),(j,ρ)
`|m =

c
(r),j
ρ,` exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

}
∑
`′ c

(r),j
ρ,`′ exp

{
EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`′)]

} , (32)

where the expected log-likelihood of a GaussianM(r)
j,ρ,` with respect to another GaussianM(b)

i,ρ,m is
computable in closed-form,

EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)] = −d

2
log 2π − 1

2
log
∣∣∣Σ(r),j
ρ,`

∣∣∣− 1

2
tr
(

(Σ
(r),j
ρ,` )−1Σ

(b),i
β,m

)
− 1

2
(µ

(r),j
ρ,` − µ

(b),i
β,m)T (Σ

(r),j
ρ,` )−1(µ

(r),j
ρ,` − µ

(b),i
β,m).

(33)

HMM: For the HMM lower bound Li,jHMM , we assume each variational distribution takes the form
of a Markov chain,

qi,j(ρ1:τ |β1:τ ) = φi,j(ρ1:τ |β1:τ ) = φi,j1 (ρ1|β1)

τ∏
t=2

φi,jt (ρt|ρt−1, βt), (34)

7



where
∑S
ρ1=1 φ

i,j
1 (ρ1|β1) = 1, and

∑S
ρt=1 φ

i,j
t (ρt|ρt−1, βt) = 1. The variational distribution

qi,j(ρ1:τ |β1:τ ) represents the distribution of the state sequence ρ1:τ in HMMM(r)
j , whenM(r)

j is

used to explain the observation sequence generated by M(b)
i that evolved through state sequence

β1:τ .

Substituting into (28), we have

Li,jHMM =
∑
β1:τ

π
(b),i
β1:τ

max
φi,j

∑
ρ1:τ

φi,j(ρ1:τ |β1:τ )

{
log

π
(r),j
ρ1:τ

φi,j(ρ1:τ |β1:τ )
+
∑
t

L(i,βt),(j,ρt)
GMM

}
. (35)

The maximization with respect to φi,jt (ρt|ρt−1, βt) and φi,j1 (ρ1|β1) is carried out independently
for each pair (i, j), and follow [10], which is further detailed in Appendix A. By separating terms
and breaking up the summation β1:τ and ρ1:τ , the optimal φ̂i,jt (ρt|ρt−1, βt) and φ̂i,j1 (ρ1|β1) can be
obtained using an efficient recursive iteration (similar to the forward algorithm).

H3M: For the H3M lower bound LiH3M , we assume variational distributions of the form qi(zi =

j) = zij , where
∑K(r)

j=1 zij = 1, and zij ≥ 0. Substituting into (27), we have

LiH3M = max
zij

∑
j

zij

{
log

ω
(r)
j

zij
+NiLi,jHMM

}
. (36)

The maximizing variational parameters of (36) are obtained by using Appendix C.2,

ẑij =
ω
(r)
j exp(NiLi,jHMM )∑
j′ ω

(r)
j′ exp(NiLi,j

′

HMM )
. (37)

Note that in the standard HEM algorithm derived in [2, 11], the assignment probabilities zij are
based on the expected log-likelihoods of the components, (e.g., EM(b)

i
[log p(y1:τ |M(r)

j )] for H3Ms).
For the variational HEM algorithm, these expectations are now replaced with their lower bounds (in
our case, Li,jHMM ).

1.3.2 Lower bound

Substituting the optimal variational distributions into (31), (35), and (36) gives the lower bounds,

LiH3M =
∑
j

ẑij

{
log

ω
(r)
j

ẑij
+NiLi,jHMM

}
, (38)

Li,jHMM =
∑
β1:τ

π
(b),i
β1:τ

∑
ρ1:τ

φ̂i,j(ρ1:τ |β1:τ )

{
log

π
(r),j
ρ1:τ

φ̂i,j(ρ1:τ |β1:τ )
+
∑
t

L(i,βt),(j,ρt)
GMM

}
, (39)

L(i,β),(j,ρ)
GMM =

M∑
m=1

c
(b),i
β,m

M∑
`=1

η̂
(i,β),(j,ρ)
`|m

log
c
(r),j
ρ,`

η̂
(i,β),(j,ρ)
`|m

+ EM(b)
i,β,m

[log p(y|M(r)
j,ρ,`)]

 . (40)

The lower bound Li,jHMM requires summing over all sequences β1:τ and ρ1:τ This summation can be
computed efficiently along with φ̂i,jt (ρt|ρt−1, βt) and φ̂i,j1 (ρ1|β1) using a recursive algorithm from
[10] and is described in Appendix A.
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1.3.3 Summary Statistics

After calculating the optimal variational distributions, we calculate the following summary statistics,
which are necessary for the M-step:

νi,j1 (ρ1, β1) = π
(b),i
β1

φ̂i,j1 (ρ1|β1) (41)

ξi,jt (ρt−1, ρt, βt) =

 S∑
βt−1=1

νi,jt−1(ρt−1, βt−1) a
(b),i
βt−1,βt

 φ̂i,jt (ρt|ρt−1, βt) for t = 2, . . . , τ (42)

νi,jt (ρt, βt) =

S∑
ρt−1=1

ξi,jt (ρt−1, ρt, βt) for t = 2, . . . , τ (43)

and the aggregate statistics

ν̂i,j1 (ρ) =

S∑
β=1

νi,j1 (ρ, β) (44)

ν̂i,j(ρ, β) =
τ∑
t=1

νi,jt (ρ, β) (45)

ξ̂i,j(ρ, ρ′) =

τ∑
t=2

S∑
β=1

ξi,jt (ρ, ρ′, β). (46)

The statistic ν̂i,j1 (ρ) is the expected number of times that the HMMM(r)
j starts from state ρ, when

modeling sequences generated by M(b)
i . The quantity ν̂i,j(ρ, β) is the expected number of times

that the HMMM(r)
j is in state ρ when the HMMM(b)

i is in state β, when both modeling sequences

generated by M(b)
i . Similarly, the quantity ξ̂i,j(ρ, ρ′) is the expected number of transitions from

state ρ to state ρ′ of the HMMM(r)
j , when modeling sequences generated byM(b)

i .

1.4 M-step

In the M-step, the lower bound in (26) is maximized with respect to the parametersM(r),

M(r)∗ = argmax
M(r)

K(b)∑
i=1

LiH3M . (47)

The derivation of the maximization is presented in Appendix B. Each mixture component ofM(r)

is updated independently according to

ω
(r)
j

∗
=

∑K(b)

i=1 ẑi,j
K(b)

, (48)

π(r),j
ρ

∗
=

∑K(b)

i=1 ẑi,jω
(b)
i ν̂i,j1 (ρ)∑S

ρ′=1

∑K(b)

i=1 ẑi,jω
(b)
i ν̂i,j1 (ρ′))

, a
(r),j
ρ,ρ′

∗
=

∑K(b)

i=1 ẑi,jω
(b)
i ξ̂i,j(ρ, ρ′)∑S

σ=1

∑K(b)

i=1 ẑi,jω
(b)
i ξ̂i,j(ρ, σ)

, (49)

c
(r),j
ρ,`

∗
=

Ωj,ρ

(
η̂
(i,β),(j,ρ)
`|m

)
∑M
`′=1 Ωj,ρ

(
η̂
(i,β),(j,ρ)
`′|m

) , µ
(r),j
ρ,`

∗
=

Ωj,ρ

(
η
(i,β),(j,ρ)
`|m µ

(b),i
β,m

)
Ωj,ρ

(
η̂
(i,β),(j,ρ)
`|m

) , (50)

Σ
(r),j
ρ,`

∗
=

Ωj,ρ

(
η̂
(i,β),(j,ρ)
`|m

[
Σ

(b),i
β,m + (µ

(b),i
β,m − µ

(r),j
ρ,` )(µ

(b),i
β,m − µ

(r),j
ρ,` )T

])
Ωj,ρ

(
η̂
(i,β),(j,ρ)
`|m

) , (51)

where Ωj,ρ(·) is the weighted sum operator over all base models, HMM states, and GMM compo-
nents (ie., over all tuples (i, β,m)),

Ωj,ρ(f(i, β,m)) =

K(b)∑
i=1

ẑi,jω
(b)
i

S∑
β=1

ν̂i,j(ρ, β)

M∑
m=1

c
(b),i
β,m f(i, β,m). (52)
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Note that the covariance matrices of the reduced models (51) are never smaller (in magnitude) than
the covariance matrices of the base models, due to the outer-product term. This regularization effect
derives from the E-step, which averages all possible observations from the base model.

Appendix A. Derivation of the E-step

The maximization of (35) with respect to φi,jt (ρt|ρt−1, βt) and φi,j1 (ρ1|β1) is carried out indepen-
dently for each pair (i, j), and follow [10]. In particular it uses a backward recursion, starting with
Li,jτ+1(βt, ρt) = 0, for t = τ, . . . , 2,

φ̂i,jt (ρt|ρt−1, βt) =
a
(r),j
ρt−1,ρt exp

{
L(i,βt),(j,ρt)

GMM + Li,jt+1(βt, ρt)
}

∑S
ρ a

(r),j
ρt−1,ρ exp

{
L(i,βt),(j,ρ)

GMM + Li,jt+1(βt, ρ)
} (53)

Li,jt (βt−1, ρt−1) =

S∑
β=1

a
(b),i
βt−1,β

log

S∑
ρ=1

a(r),jρt−1,ρ exp
{
L(i,β),(j,ρ)

GMM + Li,jt+1(β, ρ)
}
, (54)

and terminates with

φ̂i,j1 (ρ1|β1) =
π
(r),j
ρ1 exp

{
L(i,β1),(j,ρ1)

GMM + Li,j2 (β1, ρ1)
}

∑S
ρ π

(r),j
ρ exp

{
L(i,β1),(j,ρ)

GMM + Li,j2 (β1, ρ)
} (55)

Li,jHMM =

S∑
β=1

π
(b),i
β log

S∑
ρ=1

π(r),j
ρ exp

{
L(i,β),(j,ρ)

GMM + Li,j2 (β, ρ)
}

(56)

where (56) is the maxima of the terms in (35) in Section 1.3.1.

Appendix B. Derivation of the M-step

The M-steps involves maximizing the lower bound in (26) with respect toM(r), while holding the
variational distributions fixed,

M(r)∗ = argmax
M(r)

K(b)∑
i=1

LiH3M . (57)

Substituting (38) and (39) into the objective function of (57),

L(M(r)) =

K(b)∑
i=1

LiH3M (58)

=
∑
i,j

ẑij

log
ω
(r)
j

ẑij
+Ni

∑
β1:τ

π
(b),i
β1:τ

∑
ρ1:τ

φ̂i,j(ρ1:τ |β1:τ )

[
log

π
(r),j
ρ1:τ

φ̂i,j(ρ1:τ |β1:τ )
+
∑
t

L(i,βt),(j,ρt)
GMM

]
(59)

In the following, we detail the update rules for the parameters of the reduced modelM(r).

HMMs mixture weights

Collecting terms in (59) that only depend on the mixture weights {ω(r)
j }K

(r)

j=1 , we have

L̃({ω(r)
j }) =

∑
i

∑
j

ẑij logω
(r)
j =

∑
j

[∑
i

ẑij

]
logω

(r)
j (60)

Given the constraints
∑K(r)

j=1 ω
(r)
j = 1 and ω(r)

j ≥ 0, (60) is maximized using the result in Appendix
C.1, which yields the update in (48).

10



Initial state probabilities

The objective function in (59) factorizes for each HMM M(r)
j , and hence the parameters of each

HMM are updated independently. For the j-th HMM, we collect terms in (59) that depend on the
initial state probabilities {π(r),j

ρ }Sρ=1,

L̃j({π(r),j
ρ }) =

∑
i

ẑijNi
∑
β1

π
(b),i
β1

∑
ρ1

φ̂i,j1 (ρ1|β1) log π(r),j
ρ1 (61)

=
∑
ρ1

∑
i

ẑijNi
∑
β1

π
(b),i
β1

φ̂i,j1 (ρ1|β1)︸ ︷︷ ︸
ν̂i,j1 (ρ1)

log π(r),j
ρ1 (62)

=
∑
ρ

∑
i

ẑijNiν̂
i,j
1 (ρ) log π(r),j

ρ (63)

∝
∑
ρ

[∑
i

ẑijω
(b)
i ν̂i,j1 (ρ)

]
log π(r),j

ρ , (64)

where in the (63) we have used the summary statistic defined in (41). Considering the constraints∑S
ρ=1 π

(r),j
ρ = 1 and π(r),j

ρ ≥ 0, (64) is maximized using the result in Appendix C.1, giving the
update formula in (49).

State transition probabilities

Similarly, for each HMM M(r)
j and previous state ρ, we collect terms in (59) that depend on the

transition probabilities {a(r),jρ,ρ′ }Sρ′=1,

L̃j,ρ({a(r),jρ,ρ′ }
S
ρ′=1) =

∑
i

ẑijNi
∑
β1:τ

π
(b),i
β1:τ

∑
ρ1:τ

φ̂i,j(ρ1:τ |β1:τ ) log π(r),j
ρ1:τ (65)

∝
∑
i

ẑijNi
∑
β1:τ

[
τ∏
t=2

a
(b),i
βt−1,βt

]∑
ρ1:τ

[
τ∏
t=2

φ̂i,jt (ρt|ρt−1, βt)

][
τ∑
t=2

log a(r),jρt−1,ρt

]
(66)

=
∑
i

S∑
ρ′=1

ẑijNiξ̂
i,j(ρ, ρ′) log a

(r),j
ρ,ρ′ (67)

∝
S∑

ρ′=1

[∑
i

ẑijω
(b)
i ξ̂i,j(ρ, ρ′)

]
log a

(r),j
ρ,ρ′ . (68)

Considering the constraints
∑S
ρ′=1 a

(r),j
ρ,ρ′ = 1 and a(r),jρ,ρ′ ≥ 0, (68) is maximized using the result in

Appendix C.1, giving the update in (49).

Emission probability density functions

The cost function (59) factors also for each GMM indexed by (j, ρ, `). Collecting relevant terms in
(59),

L̃(M(r)
j,ρ,`) =

∑
i

ẑijNi
∑
β1:τ

π
(b),i
β1:τ

∑
ρ1:τ

φ̂i,j(ρ1:τ |β1:τ )
∑
t

L(i,βt),(j,ρt)
GMM (69)

=
∑
i

ẑijNi

S∑
β=1

ν̂i,j(ρ, β)L(i,β),(j,ρ)
GMM (70)

∝
∑
i

ẑijNi

S∑
β=1

ν̂i,j(ρ, β)

M∑
m=1

c
(b),i
β,m η̂

(i,β),(j,ρ)
`|m

[
log c

(r),j
ρ,` + EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

]
(71)

= Ωj,ρ

(
η̂
(i,β),(j,ρ)
`|m

[
log c

(r),j
ρ,` + EM(b)

i,β,m

[log p(y|M(r)
j,ρ,`)]

])
, (72)
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where in (72) we use the weighted-sum operator defined in (52), which is over all base model GMMs
{M(b)

i,β,m}. The GMM mixture weights are subject to the constraints
∑M
`=1 c

(r),j
ρ,` = 1, ∀j, ρ. Taking

the derivative with respect to each parameter and setting it to zero2, gives the GMM update equations
(50) and (51).

Appendix C. Useful optimization problems

Appendix C.1

The optimization problem

max
α`

L∑
`=1

β` logα`

s.t.
L∑
`=1

α` = 1

α` ≥ 0, ∀`

(73)

is optimized by

α∗` =
β`∑L
`′=1 β

′
`

. (74)

Appendix C.2

The optimization problem

max
α`

L∑
`=1

α` (β` − logα`)

s.t.
L∑
`=1

α` = 1

α` ≥ 0, ∀`

(75)

is optimized by

α∗` =
expβ`∑L
`′=1 expβ′`

. (76)
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