
Supplementary material to “Fused sparsity and robust estimation for linear
models with unknown variance” submitted to NIPS 2012

This supplement contains the proofs of the theoretical results stated in the main paper.

A Proof of Theorem 2.1

Let us begin with some simple relations one can deduce from the definitions M = [M> N>]>,
M
−1

= [M† N†]:
M†M + N†N = Ip,

MM† = Iq, NN† = In−q, MN† = 0, NM† = 0.

We introduce the following vector:

β̄ = M†Mβ∗ + N†(N
>
† X>XN†)

−1N>† X>(Y −XM†Mβ∗),

which satisfies

Mβ̄ = Mβ∗, Nβ̄ = (N>† X>XN†)
−1N>† X>(Y −XM†Mβ∗),

and

Xβ̄ = XM†Mβ∗ + Π(Y −XM†Mβ∗)

= ΠY + (In −Π)XM†Mβ∗

= ΠY + (In −Π)X(I−N†N)β∗

= ΠY + (In −Π)Xβ∗

= Xβ∗ + σ∗Πξ. (14)

The main point in the present proof is the following: if we set

β̃ =

(
1 + σ∗

ξ>(In −Π)Xβ̄

‖Xβ̄‖22

)
β̄,

then, with high probability, for some σ̃ > 0, the pair (β̃, σ̃) is feasible (i.e., satisfies the constraint of
the optimization problem we are dealing with). In what follows, we will repeatedly use the following
property: form = Xβ̄

‖Xβ̄‖2
it holds that

Y −Xβ̃ = Y −Xβ̄ − σ∗mm>(In −Π)ξ

= σ∗(In −Π)ξ − σ∗mm>(In −Π)ξ

= σ∗(In −mm>)(In −Π)ξ. (15)

Most of subsequent arguments will be derived on an event B, having probability close to one, which
can be represented as B = A ∩B ∩ C, where:

A =
{
‖M>
† X>1 (In −mm>)(In −Π)ξ‖∞ ≤

√
2n log(q/δ)

}
,

B =
{
‖(In −Π)ξ‖22 ≥ n− r − 2

√
(n− r) log(1/δ)

}
,

C =
{
|m>(In −Π)ξ| ≤

√
2 log(1/δ)

}
,

for some δ ∈ (0, 1) close to zero. For the convenience of the reader, we recall that r = rank{Π} =
rank{XN†(N

>
† X>XN†)

−1N>† X>}.
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Step I: Evaluation of the probability of B Let us check that the conditions involved in the
definition of B are satisfied with probability at least 1 − 5δ. Since all the diagonal entries of
1
nM>

† X>XM† are equal to 1, we have ‖(XM†)j‖22 = n for all j = 1, ..., q. Then we have:

P(Ac) = P
(
‖M>
† X>(In −mm>)(In −Π)ξ‖∞ ≥

√
2n log(q/δ)

)
≤

q∑
j=1

P
(
|(XM†)

>
j (In −mm>)(In −Π)ξ| ≥

√
2n log(q/δ)

)
=

q∑
j=1

P
(
|η|‖(XM†)

>
j (In −mm>)(In −Π)‖2 ≥

√
2n log(q/δ)

)
where η ∼ N (0, 1). Using the inequality ‖(XM†)

>
j (In −mm>)(In −Π)‖2 ≤ ‖(XM†)j‖2 and

the well known bound on the tails of the Gaussian distribution, we get

P(Ac) ≤
q∑
j=1

P
(
|η|‖(XM†)

>
j ‖2 ≥

√
2n log(q/δ)

)
= q P

(
|η|
√
n ≥

√
2n log(q/δ)

)
= 2q P

(
η ≥

√
2 log(q/δ)

)
≤ 2q exp{−1

2
(
√

2 log(q/δ))2} = 2δ.

For the set B, we recall that ξ>(In −Π)ξ is a chi-squared random variable with n − r degrees of
freedom: ξ>(In −Π)ξ ∼ χ2(n− r). Therefore:

P(Bc) = P(χ2(n− r) ≤ n− r − 2
√

(n− r) log(1/δ)) ≤ e− log(1/δ) = δ

Finally, to bound the probability of Cc, we use thatm>(In−Π)ξ ∼ ‖(In−Π)m‖2N (0, 1). This
yields:

P(Cc) = P(|η|‖(In −Π)m‖2 ≥
√

2 log(1/δ))

≤ P(|η|‖m‖2 ≥
√

2 log(1/δ))

≤ 2P(η ≥
√

2 log(1/δ)) = 2δ.

Because of B = A ∩B ∩ C, we can conclude that:

P(Bc) ≤ P(Ac) + P(Bc) + P(Cc) ≤ 5δ

or, equivalently, P(B) ≥ 1− 5δ.

Step II: feasibility of β̃ The goal here is to check that if λ and µ satisfy the condition:

λ2

µ
≥ 2n2 log(q/δ)

n− r − 2
√

(n− r) log(1/δ)− 2 log(1/δ)
(16)

then, on the event B, there exists σ̃ ≤ σ∗/√µ such that the pair (β̃, σ̃) is feasible.

The matrix In −mm> is the orthogonal projector onto the (n − 1)-dimensional subspace of Rn
containing all the vectors orthogonal to Xβ̄. Therefore, using (14), we arrive at

Y >(Y −Xβ̃) = (Xβ∗)>(Y −Xβ̃) + σ∗ξ>(Y −Xβ̃)

= σ∗ξ>(In −Π)(In −mm>)Xβ∗ + (σ∗)2ξ>(In −mm>)(In −Π)ξ

= (σ∗)2ξ>(In −Π)(In −mm>)Πξ + (σ∗)2ξ>(In −mm>)(In −Π)ξ

= (σ∗)2ξ>(In −Π)(In −mm>)(In −Π)ξ

= (σ∗)2‖(In −Π)ξ‖22 − (σ∗)2[m>(In −Π)ξ]2.
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On the event B, we have:

‖(In −Π)ξ‖22 ≥ n− r − 2
√

(n− r) log(1/δ), [m>(In −Π)ξ]2 ≤ 2 log(1/δ).

So we know:

Y >(Y −Xβ̃) ≥ (σ∗)2
(
n− r − 2

√
(n− r) log(1/δ)− 2 log(1/δ)

)
≥ (σ∗)2nµ

Setting σ̃ = σ∗
(
n− r− 2

√
(n− r) log(1/δ)− 2 log(1/δ)

)1/2
(nµ)−1/2 we get that the pair (β̃, σ̃)

satisfies the third constraint and that σ̃ ≤ σ∗/√µ. It is obvious that the second constraint is satisfied
as well. To check the first constraint, we note that

M>
† X>(Y −Xβ̃) = σ∗M>

† X>1 (In −mm>)(In −Π)ξ,

and therefore

‖M>
† X>(Y −Xβ̃‖∞ = σ∗‖M>

† X>1 (In −mm>)(In −Π)ξ‖∞ ≤ σ∗
√

2n log(q/δ).

Under the condition stated in (16) above, the right-hand side of the last inequality is upper bounded
by λσ̃. This completes the proof of the fact that the pair (β̃, σ̃) is a feasible solution on the event B.

Step III: proof of (7) and (8) On the event B, the pair (β̃, σ̃) is feasible and therefore ‖Mβ̂‖1 ≤
‖Mβ̃‖1. Let ∆ = Mβ̂ −Mβ̃ and J be the set of indexes corresponding to the nonzero elements
of Mβ∗. We have |J | ≤ s. Note that J is also the set of indexes corresponding to nonzero elements
of Mβ̃ ∝Mβ̄ = Mβ∗. This entails that:

‖(In −Π)XM†∆‖22 = ∆>M>
† X>(In −Π)2XM†∆

= ∆>M>
† X>(In −Π)XM†∆

≤ ‖∆‖1‖M>
† X>(In −Π)XM†∆‖∞. (17)

Using the relations M†M = Ip −N†N and (In −Π)XN† = 0 yields

‖M>
† X>(In −Π)XM†∆‖∞ = ‖M>

† X>(In −Π)XM†M(β̃ − β̂)‖∞
= ‖M>

† X>(In −Π)(Xβ̃ −Xβ̂)‖∞.

Taking into account the fact that both β̂ and β̃ satisfy the second constraint, we get Π(Xβ̃−Xβ̂) =

Π(Xβ̃ − Y )−Π(Xβ̂ − Y ) = 0. From the first constraint, we deduce:

‖M>
† X>(In −Π)XM†∆‖∞ = ‖M>

† X>(Xβ̃ −Xβ̂)‖∞ ≤ λ(σ̂ + σ̃). (18)

To bound ‖∆‖1, we use a standard argument from [4]:

‖∆Jc‖1 = ‖Mβ̂Jc‖1 = ‖Mβ̂‖1 − ‖Mβ̂J‖1.

Since β̃ is a feasible solution while β̂ is an optimal one, ‖Mβ̂‖1 ≤ ‖Mβ̃‖1, and we have:

‖∆Jc‖1 ≤ ‖Mβ̃‖1 − ‖Mβ̂J‖1 = ‖Mβ̃J‖1 − ‖Mβ̂J‖1 ≤ ‖(Mβ̃ −Mβ̂)J‖1 = ‖∆J‖1.

This yields the bound
‖∆‖1 ≤ 2‖∆J‖1 ≤ 2s1/2‖∆J‖2

and also allows us to use the condition of RE(s, 1), which implies that:

‖∆J‖2 ≤
‖(In −Π)XM†∆‖2

κ
√
n

. (19)

Combining these estimates, we get

‖(In −Π)XM†∆‖22 ≤
2λ(σ̂ + σ∗)

√
s‖(In −Π)XM†∆‖2
κ
√
n

,
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and, after simplification

‖(In −Π)XM†∆‖2 ≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n
, ‖∆J‖2 ≤ 2λ(σ̂ + σ∗)

√
s

nκ2
. (20)

Furthermore:

‖∆‖1 = ‖∆J‖1 + ‖∆Jc‖1 ≤ 2‖∆‖1 ≤ 2
√
s‖∆‖2 ≤ 4λ(σ̂ + σ∗)

s

nκ2

So we have:

‖Mβ̂ −Mβ̃‖1 ≤ 4λ(σ̂ + σ∗)
s

nκ2
, ‖(In −Π)X(β̂ − β̃)‖2 ≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n

To complete this step, we decompose β̂ − β̃ into the sum of the terms β̂ − β∗ and β∗ − β̃ and
estimate the latter in prediction norm and in `1-norm. For the `1-norm, this gives

‖Mβ̃ −Mβ∗‖1 = σ∗
∥∥∥ξ>(In −Π)Xβ̄

‖Xβ̄‖22
Mβ∗

∥∥∥
1

= σ∗|m>(In −Π)ξ| ‖Mβ∗‖1
‖Xβ̄‖2

≤ σ∗
√

2 log(1/δ)
‖Mβ∗‖1

‖(In −Π)Xβ̄‖2
= σ∗

√
2 log(1/δ)

‖Mβ∗‖1
‖(In −Π)XM†Mβ∗‖2

≤ σ∗
√

2 log(1/δ)

√
s‖Mβ∗‖2

‖(In −Π)XM†Mβ∗‖2
≤ σ∗

√
2 log(1/δ)

√
s

κ
√
n

=
√

2 log(1/δ)
σ∗
√
s

κ
√
n
.

While for the prediction norm:

‖(In −Π)X(β̃ − β∗)‖2 = ‖(In −Π)XM†M(β̃ − β∗)‖2

= σ∗
∥∥∥(In −Π)XM†

ξ>(In −Π)Xβ̄

‖Xβ̄‖22
Mβ∗

∥∥∥
2

= σ∗|m>(In −Π)ξ| ‖(In −Π)XM†Mβ∗‖2
‖Xβ̄‖2

≤ σ∗|m>(In −Π)ξ| ‖(In −Π)XM†Mβ∗‖2
‖(In −Π)Xβ̄‖2

= σ∗|m>(In −Π)ξ| ‖(In −Π)XM†Mβ∗‖2
‖(In −Π)XM†Mβ∗‖2

≤ σ∗
√

2 log(1/δ).

We conclude that:

‖Mβ̂ −Mβ∗‖1 ≤ 4λ(σ̂ + σ∗)
s

nκ2
+
√

2 log(1/δ)σ∗
√
s

κ
√
n

‖(In −Π)X(β̂ − β∗)‖2 ≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n

+ σ∗
√

2 log(1/δ).

To finish, we remark that

‖X(β̂ − β∗)‖2 ≤ ‖(In −Π)X(β̂ − β∗)‖2 + ‖Π(Xβ̂ − Y )‖2 + σ∗‖Πξ‖2
= ‖(In −Π)X(β̂ − β∗)‖2 + σ∗‖Πξ‖2 (in view of the second constraint)

≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n

+ σ∗(
√

2 log(1/δ) + r +
√

2 log(1/δ)),

the last inequality being true with a probability at least 1− 6δ.
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Step IV: Proof of (9) Here we define J0 a subset of {1, ..., q} corresponding to the s largest value
coordinates of ∆ outside of J , so J1 = J ∪J0. It is easy to see that the kth largest in absolute value
element of ∆Jc satisfies |∆Jc |(k) ≤ ‖∆Jc‖1/k. Thus,

‖∆Jc
1
‖22 ≤ ‖∆Jc‖21

∑
k≥s+1

1

k2
≤ 1

s
‖∆Jc‖21

On the event B, with c0 = 1 we get:

‖∆Jc
1
‖2 ≤

‖∆J‖1√
s
≤
√
s

s
‖∆J‖2 ≤ ‖∆J1‖2

Then, on B,
‖∆‖2 ≤ ‖∆Jc

1
‖2 + ‖∆J1‖2 ≤ 2‖∆J1‖2

On the other hand, from (20),

‖(In −Π)XM†∆‖22 ≤ 2λ(σ̂ + σ∗)
√
s‖∆J‖2 ≤ 2λ(σ̂ + σ∗)

√
s‖∆J1‖2

Combining this inequality with the Assumption RE(s, s, 1),

‖(In −Π)XM†∆‖2√
n‖∆J1‖2

≥ κ, κ
√
n‖∆J1‖2 ≤ ‖(In −Π)XM†∆‖2

we obtain on B,

‖∆J1‖2 ≤ 2
σ̂ + σ̃

κ2

√
sλ

n

with the condition ‖∆‖2 ≤ 2‖∆J1‖2, we get:

‖Mβ̂ −Mβ̃‖2 ≤ 4
σ̂ + σ̃

κ2

√
sλ

n
.

In addition, we have:

‖Mβ̃ −Mβ∗‖2 = σ∗
∥∥∥ξ>(In −Π)Xβ̄

‖Xβ̄‖22
Mβ∗

∥∥∥
2

= σ∗|m>(In −Π)ξ| ‖Mβ∗‖2
‖Xβ̄‖2

≤ σ∗
√

2 log(1/δ)
‖Mβ∗‖2

‖(In −Π)Xβ̄‖2
= σ∗

√
2 log(1/δ)

‖Mβ∗‖2
‖(In −Π)XM†Mβ∗‖2

≤ σ∗
√

2 log(1/δ)
1

κ
√
n

=
σ∗

κ
√
n

√
2 log(1/δ).

Putting these estimates together and using the obvious inequality

‖Mβ̂ −Mβ∗‖2 ≤ ‖Mβ̂ −Mβ̃‖2 + ‖Mβ̃ −Mβ∗‖2
we arrive at

‖Mβ̂ −Mβ∗‖2 ≤ 4
σ̂ + σ∗

κ2

√
sλ

n
+
σ∗

κ

√
2 log(1/δ)

n
.

Replacing λ =
√

2nγ log(p/δ), we get the inequality in (9).

Step V: proof of an upper bound on σ̂ To complete the proof, one needs to check that σ̂ is of the
order of σ∗. This is done by using the following chain of relations:

nµσ̂2 ≤ ‖Y ‖22 − Y
>Xβ̂ = Y >(Y −Xβ̂)

= (β∗)>X>(Y −Xβ̂) + σ∗ξ>(Y −Xβ̂)

= (β∗)>M>M>
† X>(Y −Xβ̂) + (β∗)>N>N>† X>(Y −Xβ̂) + σ∗ξ>(Y −Xβ̂).

The second term of the last expression vanishes since β̂ satisfies the second constraint. To bound the
first term, we will use the first constraint while for bounding the third term, we will use the relation
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Y −Xβ̂ = (In −Π)(Y −Xβ̂) = σ∗(In −Π)ξ+ (In −Π)X(β∗ − β̂) = σ∗(In −Π)ξ+ (In −
Π)XM†M(β∗ − β̂). This leads to

nµσ̂2 ≤ σ̂λ‖Mβ∗‖1 + σ∗ξ>(In −Π)XM†M(β∗ − β̂) + (σ∗)2ξ>(In −Π)ξ

On the event B, we have:

|ξ>(In −Π)XM†Mβ̂| ≤ ‖Mβ̂‖1‖M>
† X>(In −Π)ξ‖∞ ≤ ‖Mβ̂‖1

√
2n log(q/δ),

|ξ>(In −Π)XM†Mβ∗| ≤ ‖Mβ∗‖1‖M>
† X>(In −Π)ξ‖∞ ≤ ‖Mβ∗‖1

√
2n log(1/δ).

Also with a probability at least 1− δ:

ξ>(In −Π)ξ ≤ n− r + 2
√

(n− r) log(1/δ) + 2 log(1/δ) ≤ (
√
n− r +

√
2 log(1/δ))2.

So combining all these relations, we get with probability at least 1− 7δ:

σ̂2 ≤ σ̂ λ‖Mβ∗‖1
nµ

+
(σ∗)2(

√
n− r +

√
2 log(1/δ))2

nµ
+ (‖Mβ̂‖1 + ‖Mβ∗‖1)

σ∗

µ

√
2 log(q/δ)

n
.

All the subsequent relations, even if it is not explicitly mentioned, are true on an event of probability
at least 1− 7δ. Combining simple algebra and the condition RE(s), we get that:

‖Mβ̂‖1 ≤ ‖Mβ̃‖1 ≤ ‖Mβ∗‖1 + σ∗
|ξ>(In −Π)Xβ̄|

‖Xβ̄‖22
‖Mβ∗‖1

≤ ‖Mβ∗‖1 + σ∗|m>(In −Π)ξ| ‖Mβ∗‖1
‖(In −Π)XM†Mβ∗‖2

≤ ‖Mβ∗‖1 +
σ∗

κ

√
2s log(1/δ)

n
.

Then, (
σ̂ − λ‖Mβ∗‖1

2nµ

)2

≤
(λ‖Mβ∗‖1

2nµ

)2

+
(σ∗)2(

√
n+

√
2 log(1/δ))2

nµ

+
2s1/2(σ∗)2 log(q/δ)

nκµ
+ 2‖Mβ∗‖1

σ∗

µ

√
2 log(1/δ)

n

From the fact that
√
a2 + b2 + c ≤ a+ b+ c

2b , we have:

σ̂ ≤ λ‖Mβ∗‖1
nµ

+
σ∗
√
µ

(
1 +

√
2 log(1/δ)

n

)
+
s1/2σ∗ log(q/δ)

nκµ1/2
+ ‖Mβ∗‖1

√
2 log(1/δ)

nµ
.

This yields the desired result.

B Proof of Theorem 3.1

All the claims of this theorem, except the bound on ‖θ̂ − θ∗‖2 are direct consequences of the
corresponding claims in Theorem 2.1. Therefore, we focus here only on the proof of an upper
bound on ‖θ̂ − θ∗‖2 taking all the other claims of Theorem 3.1 as granted.

Since (β̂, ω̂, σ̂) is a feasible solution to (SRDS), it satisfies the second constraint:

A>(Aθ̂ +
√
n ω̂ −Aθ∗ −

√
nω∗ − σ∗ξ) = 0,

which implies that

‖A>A(θ̂ − θ∗)‖2 ≤
√
n‖A>(ω∗ − ω̂)‖2 + σ∗‖A>ξ‖2.

Recall that ν∗ stands for the smallest eigenvalue of ( 1
nA>A)1/2. This yields

ν2
∗‖θ̂ − θ

∗‖2 ≤
1

n
‖A>A(θ̂ − θ∗)‖2 ≤

1√
n
‖A>(ω∗ − ω̂)‖2 +

σ∗

n
‖A>ξ‖2.
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Since ν∗ is the largest eigenvalue of ( 1
nA>A)1/2, we have

1√
n
‖A>(ω∗ − ω̂)‖2 ≤ ν∗‖ω∗ − ω̂‖2 ≤

4ν∗(σ̂ + σ∗)

κ2

√
2s log(n/δ)

n
+
ν∗σ∗

κ

√
2 log(1/δ)

n
.

To bound σ∗

n ‖A
>ξ‖2 = ‖ 1√

n
(A>A)1/2ξ‖2 we denote by {νi} the eigenvalues of 1√

n
(A>A)1/2

and use the singular value decomposition of A>:

A> = U∆V>

where U is a k× k orthogonal matrix, V is a n×n orthogonal matrix and ∆ is a k×n matrix with
(assume n > k):

∆ = [diag{ν1, . . . , νk}, 0k×(n−k)].

Setting η = V>ξ, we get

‖A>ξ‖22 = ‖U∆V>ξ‖22 = ‖∆V>ξ‖22 = ‖∆η‖22 ≤ ν∗(η2
1 + ...+ η2

k) , ν∗‖η1:k‖22.

Using the well-known inequality on the tails of chi-squared distribution:

P(‖η1:k‖22 ≥ k + 2
√
kx+ 2x) ≤ e−x

with x = log(1/δ), we obtain that with a probability at least 1− δ:

‖η1:k‖22 ≤ k + 2
√
k log(1/δ) + 2 log(1/δ) ≤ (

√
k +

√
2 log(1/δ))2.

Combined with the previous estimates, this leads to the desired result.

C Proof of Lemma 3.2

Let J be a subset of {1, . . . , n} of cardinality s and let δ be a vector of Rn satisfying ‖δJc‖1 ≤
‖δJ‖1. Let us denote by δ1 the projection of δ onto the image of A and by δ2 the projection onto
the orthogonal complement. We are interested in lower bounding the quotient

‖δ2‖2√
‖δ1‖22 + ‖δ2‖22

=
‖δ2‖2/‖δ1‖2√

1 + (‖δ2‖2/‖δ1‖2)2
. (21)

To this end, we use the following sequence of inequalities:

‖δ1‖1 = ‖(δ1)Jc‖1 + ‖(δ1)J‖1
≤ ‖δJc‖1 + ‖(δ2)Jc‖1 + s‖δ1‖∞
≤ ‖δJ‖1 + ‖(δ2)Jc‖1 + s‖δ1‖∞
≤ ‖(δ1)J‖1 + ‖δ2‖1 + s‖δ1‖∞
≤
√
n‖δ2‖2 + 2s‖δ1‖∞

This entails that

‖δ2‖2 ≥
‖δ1‖1 − 2s‖δ‖∞√

n
≥ ‖δ1‖2 inf

w∈Im(A)

‖w‖1 − 2s‖w‖∞√
n‖w‖2

Let v ∈ Rk be a vector such that Av = w. We have ‖w‖∞ = ‖Av‖∞ ≤ ‖A‖2,∞‖v‖2. Further-
more, ‖w‖2 = ‖Av‖2 ≤

√
nν∗‖v‖2. Thus

‖δ2‖2
‖δ2‖2

≥ inf
v

1

nν∗
‖Av‖1
‖v‖2

− 2s‖A‖2,∞
ν∗
√
n
≥ ζs(A)

ν∗
.

Injecting this bound in (21), the assertion of the lemma follows.
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