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Proposition 1 The path (V, L, W) returned by algorithm 1 corresponds to a sample from the semi-
Markov process parametrized by (7o, A).
Proof. Without any loss of generality, assume that the system has just entered state s € S at time 0.

Suppose that ¢ is the time of nth candidate jump, so that there were n — 1 rejected transitions on
the interval [0, ¢]. Let these occur at times (wy, wa, ..., ws_1), with ¢ = w,,. Recalling that these
were generated from the hazard function Bs(t), and letting [n — 1] represent the set of integers
{1,--- ,n — 1}, we have:
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Integrating out w; to w,,—1 (and thus [; to l,,_1), we have
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The expression above gives the probability of transitioning from state s to s’ after a wait of ¢ time
units, with n — 1 rejected candidate jumps. Summing out n — 1, we get the transition probability.
Thus,
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This is the desired result. O

Proposition 2 Conditioned on a trajectory (.S, T') of the sMIP, the thinned events W are distributed
as a Poisson process with intensity B(t) — A(t).

Proof. We will consider the interval of time [¢;,¢;41], so that the SMJP entered state s; at time ¢;,
and remained there until time ¢;4,, when it transitioned to state s; ;. Exploiting the independence
properties of the sMJP and the Poisson process, we only need to consider resampling thinned events
on this interval. Call this set of thinned events W = {wl, W 1} € [ti,ti+1], and call the
corresponding set of labels V = {1, ,0p—1} and L = {ll, -+« ,lp,—1} (to avoid notational
clutter, we do not indicate that W and L are actually restrictions to [tz, ti+1]). Observe that each
element of #; € V equals s;, while each element [; € L equals w; — t;. We write this as V = s;

and L = W — t;. Then, by Bayes rule, we have
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This is just the density of a Poisson process on (t;, ¢;4+1) with intensity (B(t) — A(t)), which is what
we set out to prove. O



