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Abstract

This paper sheds light on some fundamental connections of the diffusion decision
making model of neuroscience and cognitive psychology with k-nearest neighbor
classification. We show that conventional k-nearest neighbor classification can
be viewed as a special problem of the diffusion decision model in the asymptotic
situation. By applying the optimal strategy associated with the diffusion decision
model, an adaptive rule is developed for determining appropriate values of k in k-
nearest neighbor classification. Making use of the sequential probability ratio test
(SPRT) and Bayesian analysis, we propose five different criteria for adaptively
acquiring nearest neighbors. Experiments with both synthetic and real datasets
demonstrate the effectiveness of our classification criteria.

1 Introduction

The recent interest in understanding human perception and behavior from the perspective of neuro-
science and cognitive psychology has spurred a revival of interest in mathematical decision theory.
One of the standard interpretations of this theory is that when there is a continuous input of noisy
information, a decision becomes certain only after accumulating sufficient information. It is also
typically understood that early decisions save resources. Among the many theoretical explanations
for this phenomenon, the diffusion decision model offers a particularly appealing explanation of
how information is accumulated and how the time involved in making a decision affects overall ac-
curacy. The diffusion decision model considers the diffusion of accumulated evidence toward one
of the competing choices, and reaches a decision when the evidence meets a pre-defined confidence
level.

The diffusion decision model successfully explains the distribution of decision times for humans
[13, 14, 15]. More recently, this model offers a compelling explanation of the neuronal decision
making process in the lateral intraparietal (LIP) area of the brain for perceptual decision making
based on visual evidence [2, 11, 16]. The fundamental premise behind this model is that there is a
tradeoff between decision times and accuracy, and that both are controlled by the confidence level.
As described in Bogacz et al [3], the sequential probability ratio test (SPRT) is one mathematical
model that explains this tradeoff. More recent studies also demonstrate how SPRT can be used to
explain the evidence as emanated from Poisson processes [6, 21].

Now shifting our attention to machine learning, the well-known k-nearest neighbor classification
uses a simple majority voting strategy that, at least in the asymptotic case, implicitly involves a sim-
ilar tradeoff between time and accuracy. According to Cover and Hart [4], the expected accuracy of
k-nearest neighbor classification always increases with respect to k when there is sufficient data. At
the same time, there is a natural preference to use less resources, or equivalently, a fewer number of
nearest neighbors. If one seeks to maximize the accuracy for a given number of total nearest neigh-
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Figure 1: Diffusion decision model. The evidence of decision making is accumulated, and it diffuses
over time (to the right). Once the accumulated evidence reaches one of the confidence levels of either
choice, z or −z, the model stops collecting any more evidence and makes a decision.

bors, this naturally leads to the idea of using different ks for different data. At a certain level, this
adaptive idea can be anticipated, but methods described in the existing literature are almost exclu-
sively heuristic-based, without offering a thorough understanding of under what situations heuristics
are effective [1, 12, 19].

In this work, we present a set of simple, theoretically sound criteria for adaptive k-nearest neighbor
classification. We first show that the conventional majority voting rule is identical to the diffusion
decision model when applied to data from two different Poisson processes. Depending on how the
accumulating evidence is defined, it is possible to construct five different criteria based on different
statistical tests. First, we derive three different criteria using the SPRT statistical test. Second, using
standard Bayesian analysis, we derive two probabilities for the case where one density function
is greater than the other. Our five criteria are then used as diffusing evidence; once the evidence
exceeds a certain confidence level, collection of information can cease and a decision can be made
immediately. Despite the complexity of the derivations involved, the resulting five criteria have a
particularly simple and appealing form. This feature can be traced to the memoryless property of
Poisson processes. In particular, all criteria can be cast as a function of the information of only one
nearest neighbor in each class. Using our derivation, we consider this property to be the result of
the assumption that we have sufficient data; the criteria are not guaranteed to work in the event that
there is insufficient data. We present experimental results involving real and synthetic data to verify
this conjecture.

The remainder of the paper is organized as follows. In Section 2, a particular form of the diffu-
sion decision model is reviewed for Poisson processes, and two simple tests based on SPRT are
derived. The relationship between k-nearest neighbor classification and diffusion decision making
is explained in Section 3. In Section 4, we describe the adaptive k-nearest neighbor classification
procedure in terms of the diffusion decision model, and we introduce five different criteria within
this context. Experiments for synthetic and real datasets are presented in Section 5, and the main
conclusions are summarized in Section 6.

2 Diffusion Decision Model for Two Poisson Processes

The diffusion decision model is a stochastic model for decision making. The model considers the
diffusion of an evidence in favor of either of two possible choices by continuously accumulating the
information. After initial wavering between the two choices, the evidence finally reaches a level of
confidence where a decision is made as in Fig. 1.

In mathematical modeling of this diffusion process, Gaussian noise has been predominantly used as a
model for zigzagging upon a constant drift toward a choice [3, 13]. However, when we consider two
competing Poisson signals, a simpler statistical test can be used instead of estimating the direction of
the drift. In the studies of decision making in the lateral intraparietal (LIP) area of the brain [2, 11],
two Poisson processes are assumed to have rate parameters of either λ+ and λ− where we know
that λ+ > λ−, but exact values are unknown. When it should be determined which Poisson process
has the larger rate λ+, a sequential probability ratio test (SPRT) can be used to explain a diffusion
decision model [6, 21].
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The Poisson distribution we use has the form: p(N |λ, T ) = (λT )N

N ! exp(−λT ), and we consider two
Poisson distributions forN1 andN2 at time T1 and T2, respectively: p(N1|λ1, T1) and p(N2|λ2, T2).
Here, λ1 and λ2 are the rate parameters, and either of these parameters has λ+ where the other has
λ−. Now, we apply the statistical test of Wald [18] for a confidence α( > 1):

p(N1|λ1 = λ+)p(N2|λ2 = λ−)

p(N1|λ1 = λ−)p(N2|λ2 = λ+)
> α or <

1

α
(1)

for the situation where there is N1 number of signals at time T1 for the first Poisson process and N2

number of signals at time T2 for the second process. We can determine that λ1 has the λ+ once the
left term is greater than α, and λ2 has the λ+ once it is greater than 1

α , otherwise, we must collect
more information. According to Wald and Wolfowitz [18], this test is optimal in that the test requires
the fewest average observations with the same probability of error.

By taking the log on both sides, we can rewrite the test as

log

(
λ+

λ−

)
(N1 −N2)− (λ+ − λ−)(T1 − T2) > log a or (2)

< − log a.

Considering two special situations, this equation can be reduced into two different, simple tests.
First, we can consider observation of the numbers N1 and N2 at a certain time T = T1 = T2. Then
test in Eq. (2) is reduced into one test previously proposed in [21]:

|N1 −N2| > zN (3)

where zN is a constant satisfying zN = logα
log(λ+/λ−) . Another simple test can be made by using the

observation times T1 and T2 when we find the same number of signals N = N1 = N2:

|T1 − T2| > zT (4)

where zT satisfies zT = logα
λ+−λ−

.

Here, we can consider ∆N = N1 − N2 and ∆T = T1 − T2 as two different evidences in the
diffusion decision model. The evidence diffuses as we collect more information, and we come to
make a decision once the evidence reaches the confidence levels, ±zN for ∆N , and ±zT for ∆T .
In this work, we refer to the first model, using the criterion ∆N , as the ∆N rule and the second
model, using ∆T , as the ∆T rule.

Although the ∆N rule has been previously derived and used [21], we propse four more test criteria
in this paper including Eq. (4). Later, we show that the diffusion decision making with these five
criteria is related to different methods for k-nearest neighbor classification.

3 Equivalence of Diffusion Decision Model and k-Nearest Neighbor
Classification

A conventional k-nearest neighbor (k-NN) classification takes a majority voting strategy using k
number of nearest neighbors. According to Cover and Hart [4], in the limit of infinite sampling,
this simple majority voting rule can produce a fairly low expected error and furthermore, this error
decreases even more as a bigger k is used. This theoretical result is obtained from the relationship
between the k-NN classification error and the optimal Bayes error: the expected error with one
nearest neighbor is always less than twice the Bayes error, and the error decreases with the number
of k asymptotically to the Bayes error [4].

In this situation, we can claim that the k-NN classification actually performs the aforementioned
diffusion decision making for Poisson processes. The identity comes from two equivalence re-
lationships: first, the logical equivalence between two decision rules; second, the equivalence of
distribution of nearest neighbors to the Poisson distribution in an asymptotic situation.

3.1 Equivalent Strategy of Majority Voting

Here, we first show an equivalence between the conventional k-NN classification and a novel com-
parison algorithm:
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Theorem: For two-class data, we consider the N -th nearest datum of each class from the testing
point. With an odd number k, majority voting rule in k-NN classification is equivalent to the rule
of picking up the class to which a datum with smaller distance to the testing point belongs, for
k = 2N − 1.

Proof: Among k-NNs of a test point, if there are more than or equal to N data having label C,
for C ∈ {1, 2}, the test point is classified as class C according to the majority voting because
N = (k + 1)/2 > k

2 . If we consider three distances dk to the k-th nearest neighbor among all data,
dN,C to the N -th nearest neighbor in class C, and dN,¬C to the N -th nearest neighbor in class non-
C, then both dN,C ≤ dk and dN,¬C > dk are satisfied in this case. This completes one direction of
proof that the selection of classC by majority voting implies dN,C < dN,¬C . The opposite direction
can be proved similarly.

Therefore, instead of counting the number of nearest neighbors, we can classify a test point us-
ing two separate N -th nearest neighbors of two classes and comparing the distances. This logical
equivalence applies regardless of the underlying density functions.

3.2 Nearest neighbors as Poisson processes

The random generation of data from a particular underlying density function induces a density func-
tion of distance to the nearest neighbors. When the density function is λ(x) for x ∈ RD and we
consider a D-dimensional hypersphere of volume V with N -th nearest neighbor on its surface, a
random variable u = MV , which is the volume of the sphere V multiplied by the number of data
M , asymptotically converges in distribution to the Erlang density function [10]:

p(u|λ) =
λN

Γ(N)
exp(−λu)uN−1 (5)

with a large amount of data. Here, the volume element is a function of distance d which can be
represented as V = γdD and γ = πD/2

Γ(D/2+1) , a proportionality constant for a hypersphere volume.
This Erlang function is a special case of the Gamma density function when the parameter N is an
integer.

We can also note that this Erlang density function implies the Poisson distribution with respect to N
[20], and we can write the distribution of N as follows:

p(N |λ) =
λN

Γ(N + 1)
exp(−λ). (6)

This equation shows that the appearance of nearest neighbors can be approximated with Poisson
processes. In other words, with a growing hypersphere at a constant rate in volume, the occurrence
of new points within a hypersphere will follow a Poisson distribution.

This Erlang function in Eq. (5) comes from the asymptotic convergence in distribution of the real
distribution, the binomial distribution with finite N number of samples [10]. Here, we note that,
with a finite number of samples, the memoryless property of the Poisson disappears. This results
in the breakdown of the independency assumption between posterior probabilities for classes which
Cover and Hart used implicitly when they derived the expected error of k-NN classification [4].

On the other hand, once we have enough data, and hence the density functions Eq. (5) and Eq. (6)
explain data correctly, we can expect the equivalence between the diffusion decision making and
k-NN classification. In this case, the nearest neighbors are the samples of a Poisson process, having
the rate parameter λ, which is the probability density at the test point.

Now, we can turn back to the conventional k-NN classification. By theorem 1 and the arguments in
this section, the k-NN classification strategy is the same as the strategy of comparing two Poisson
processes using N -th samples of each class. This connection naturally exploits the conventional
k-NN classification to the adaptive method of using different ks using the confidence level in the
diffusion decision model.
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4 Criteria for Adaptive k-NN Classification

Using the equivalence settings of the diffusion decision model and the k-NN classification, we can
extend the conventional majority voting strategy to more sophisticated adaptive strategies. First, the
SPRT criteria in the previous section, ∆N rule and ∆T rule can be used. For the ∆N rule in Eq. (3),
we can use the numbers of nearest neighbors N1 and N2 within a fixed distance d, then compare
|∆N | = |N1 − N2| with a pre-defined confidence level zN . Instead of making an immediate
decision, we can collect more nearst neighbors by increasing d until Eq. (3) is satisfied. This is the
“∆N rule” for adaptive k-NN classification.

In terms of the ∆T rule in Eq. (4), using the correspondence of time in the original SPRT to the vol-
ume within the hypersphere in k-NN classification, we can make two different criteria for adaptive
k-NN classification. First, we consider two volume elements, V1 and V2 of N -th nearest neighbors,
and the criterion can be rewritten as |V1 − V2| > zV . We refer to this rule as the “∆V rule”.

Additional criterion for the ∆T rule considers a more conservative rule using the volume of (N+1)-
th nearest neighbor hypersphere. Since a slightly smaller hypersphere than this hypersphere still
contains N number of nearest neighbors, we can make the same test more difficult to stop diffusing
by replacing the smaller volume in the ∆V rule with the volume of (N + 1)-th nearest neighbor
hypersphere of that class. We refer to this rule as the “Conservative ∆V rule” because it is more
cautious in making a decision with this strategy.

In addition to the SPRT method, with which we derive three different criteria, we can also derive
several stopping criteria using the Bayesian approach. If we consider λ as a random variable and
apply an appropriate prior, we can obtain a posterior distribution of λ as well as the probability
of P (λ1 > λ2) or P (λ1 < λ2). In the following section, we show how we can derive these
probabilities and how these probabilities can be used as evidence in the diffusion decision making
model.

4.1 Bayesian Criteria

For both Eq. (5) and Eq. (6), we consider λ as a random variable, and we can apply a conjugate prior
for λ:

p(λ) =
ba

Γ(a)
λa−1 exp(−λb) (7)

with constants a and b. The constant a is an integer satisfying a ≥ 1, and b is a real number. With
this prior Eq. (7), the posteriors for two likelihoods Eq. (5) and Eq. (6) are obtained easily:

p(λ|u) =
(u+ b)N+a

Γ(N + a)
λN+a−1 exp(−λ(u+ b)) (8)

p(λ|N) =
(b+ 1)N+a

Γ(N + a)
λN+a−1 exp(−λ(b+ 1)) (9)

First, we derive P (λ1 > λ2|u1, u2) for u1 and u2 obtained using theN -th nearest neighbors in class
1 and class 2. Because the posterior functions of different classes are independent from each other,
this probability of λ1 > λ2 is simply obtained by the double integration:

P (λ1 > λ2|u1, u2) =

∫ ∞
0

p(λ2|u2)

∫ λ2

0

p(λ1|u1) dλ1 dλ2. (10)

After some calculation, the integration result gives an extremely simple analytic solution:

P (λ1 > λ2|u1, u2) =
N+a−1∑
m=0

(
2N + 2a− 1

m

)
(u1 + b)m(u2 + b)2N+2a−1−m

(u1 + u2 + 2b)2N+2a−1
(11)

Here, we merely consider the case that a = 1, and it is interesting to note that this probability is
equivalent to the probability of flipping a biased coin 2N + 1 times and observing less than or equal
to N number of heads. This probability from the Bayesian approach can be efficiently computed
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(a) (b)

Figure 2: Decision making process for the nearest neighbor classification with (a) 80% and (b) 90%
confidence level. Sample data are generated from the probability densities λ1 = 0.8 and λ2 = 0.2.
For incrementing N -th nearest neighbors of different classes, the criterion probabilities P (λ1 >
λ2|u1, u2) and P (λ1 < λ2|u1, u2) are calculated and compared with the confidence level. Unless
the probability exceeds the confidence level, the next (N + 1)-th nearest neighbors are collected
and the criterion probabilities are calculated again. In this figure, the diffusion of the criterion
probability P (λ1 > λ2|u1, u2) is displayed for different realizations, where the evidence stops
diffusing once the criterion passes the threshold where enough evidence has accumulated. The
bars represent the number of points that are correctly (Red, upward bars) and incorrectly (Blue,
downward bars) classified at each stage of the computation. Using a larger confidence results in less
error, but with a concomitant increase in the number of nearest neighbors used.

in an incremental fashion, and the nearest neighbor computation can be adaptively stopped with
enough confidence of the evidence probability.

The second probability P (λ1 > λ2|N1, N2) for the number of nearest neighbors N1 and N2 within
a particular distance can be similarly derived. Using the double integration of Eq. (9), we can derive
the analytic result again as

P (λ1 > λ2|N1, N2) =
1

2N1+N2+2a−1

N1+a−1∑
m=0

(
N1 +N2 + 2a− 1

m

)
. (12)

Both the probabilities Eq. (11) and Eq. (12) can be used as evidence that diffuse along with incoming
information. Stopping criteria for diffusion can be derived using these probabilities.

4.2 Adaptive k-NN Classification

Of interest in the diffusion decision model is the relationship between the accuracy and the amount
of resources needed to obtain the accuracy. In a diffusion decision setting for k-NN classification,
we can control the amount of resources using the confidence level. For example, in Fig. 2, we
generated data from two uniform density functions, λ1 = 0.8 and λ2 = 0.2, for different classes,
and we applied different confidence levels, 0.8 and 0.9 in Fig. 2(a) and (b), respectively. Using
the P (λ1 > λ2|u1, u2) criterion in Eq. (11), we applied the adaptive k-NN classification with an
increasing N of two classes.

Fig. 2 shows the decision results of the classification with incrementing N for 1000 realizations,
and a few diffusion examples of the evidence probability in Eq. (11) are presented. According to
the confidence level, the average number of nearest neighbors used differs. For Fig. 2(a) when
the confidence level is lower than Fig. 2(b), the evidence reaches the confidence level at an earlier
stage than Fig. 2(b), while the decision in Fig. 2(b) tends to select the first class more often than
in Fig. 2(a). Considering that the optimal Bayes classification choosing class 1 for λ1 > λ2, the
decisions for class 2 can be considered as errors. In this sense, we can say with the higher confidence
level, decisions are made more correctly while using more resources. Therefore, the efficiencies
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Figure 3: Classification accuracy (vertical axis) versus the average number of nearest neighbors used
(horizontal axis) for adaptive k-NN classification. (a) Uniform probability densities for λ1 = 0.8
and λ2 = 0.2 in 100-dimensional space, (b) CIFAR-10, (c) 2× 105 data per class for 5-dimensional
Gaussians, and (d) 2× 106 data per class for the same Gaussians in (c) are used.

between strategies can be compared using the accuracies as well as the average number of nearest
neighbors used.

5 Experiments

In the experiments, we compare the accuracy of the algorithms to the number of nearest neighbors
used, for various confidence levels for criteria. We used the conventional k-NN classification as
well as the proposed adaptive methods. Adaptive classification includes the comparison rule of N -
th nearest neighbors using three criteria—the ∆V rule (DV), the Conservative ∆V rule (CDV), and
Bayesian probability in Eq. (11) (PV)—, as well as the comparison rule of N1-th and N2-th at a
given volume using two rules—the ∆N rule (DN) and Bayesian probability in Eq. (12) (PN). We
present the average accuracies resulting from the use of these k-NN classification and five adaptive
rules with respect to the average number of nearest neighbors used.

We first show the results on synthetic datasets. In Fig. 3(a), we used two uniform probability den-
sities λ1 = 0.8 and λ2 = 0.2 in 100-dimensional space, and we classified a test point based on the
nearest neighbors. In this figure, all algorithms are expected to approach the Bayes performance
based on Cover and Hart’s approach when the average number of nearest neighbors increase. In
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this experiment, we can observe that all five proposed adaptive algorithms approach the Bayes error
quicker than other methods showing similar rates with each other.

Here, we also present the results of other adaptive algorithms CNN [12], Race, minRace, Min-
MaxRatio, and Jigang [19]. They perform majority voting with increasing k; CNN stops collecting
more nearest neighbors once more than a certain amount of consecutive neighbors are found with
the same labels; Race stops when the total amount of neighbors of one class exceeds a certain
level; minRace stops when all classes have at least a predefined amount of neighbors; MinMaxRa-
tio considers the ratio between numbers of nearest neighbors in different classes; lastly, Jigang is a
probability criterion slightly different from Eq. (12). Except for Jigang’s method, all algorithms per-
form poorly, while our five algorithms perform equally well though they use different information,
probably because the performance produced by diffusion decision making algorithms is optimal.

Fig. 3(b) shows the experiments for a CIFAR-10 subset of the tiny images dataset [17]. The CIFAR-
10 set has 10-class 32 × 32 color images. Each class has 6000 images, and they are separated into
one testing set and five training sets. With this 10-class data, we first performed Fisher Discriminant
Analysis to obtain a 9-dimensional subspace, then all different adaptive algorithms are applied on
this subspace. The result is the average accuracy for five different training sets and for all possible
pairs of 10 classes. Because the underlying density is non-uniform here, the result shows the perfor-
mance decrease when algorithms use non-close nearest neighbors. Except for DV and PV criteria,
all of our adaptive algorithms outperform all other methods. The k-NN classification in the original
data space shows the maximal average performance of 0.721 at k = 3, which is far less than the
overall accuracies in the figure, because the distance information is poor in the high dimensional
space.

Fig. 3(c) and (d) clearly show that our algorithms are not guaranteed to work with insufficient data.
We generated data from two different Gaussian functions and tried to classify a datum located at
one of the modes to figure out the label of this datum. The number of generated data is 2× 105 per
class for (c), and 2 × 106 per class for (d) in 5-dimensional space. We presented the average result
of 5000 realizations, and the comparison of two figures show that our adaptive algorithms work as
expected when Cover and Hart’s asymptotic data condition holds. The Poisson process assumption
also holds when this condition is satisfied.

6 Conclusions

In this work, we showed that k-NN classification in the asymptotic limit is equivalent to the diffusion
decision model for decision making. Nearest neighbor classification and the diffusion decision
model are both very well known models in machine learning and cognitive science respectively,
but the intimate connection between them has not been studied before. Using analysis of Poisson
processes, we showed how classification using incrementally increasing nearest neighbors can be
mapped to a simple threshold based decision model.

In the diffusion decision model, the confidence level plays a key role in determining the tradeoff
between speed and accuracy. The notion of confidence can also be applied to nearest neighbor
classification to adapt the number of nearest neighbors used in making the classification decision.
We presented several different criteria for choosing the appropriate number of nearest neighbors
based on the sequential probability ratio test in addition to Bayesian inference. We demonstrated
the utility of these methods in modulating speed versus accuracy on both simulated and benchmark
datasets.

It is straightforward to extend these methods to other datasets and algorithms that utilize neighbor-
hood information. Future work will investigate how our results would scale with dataset size and
feature representations. Potential benefits of this work include a well-grounded approach to speeding
up classification using parallel computation on very large datasets.
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