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Appendix: Parameter Sensitivity

Each of our non-linear extensions adds one additional hyper parameter to the LMNN problem. In
section 6, we set these parameters by evaluation on a hold-out set. Here we explicitly examine their
effect on the learned metric. For GB-LMNN, the new hyper-parameter is the regression tree depth.
Figure 3(left) compares depths 4−7 for several of the datasets evaluated in section 6. The figure
depicts the ratio of kNN classification error for each depth setting to the kNN error of linear LMNN.
GB-LMNN appears to be largely insensitive to tree depth within range.
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Figure 3: Parameter sensitivity measurements. Left: Varying tree depth for GB-LMNN. The mea-
surement is the ratio between GB-LMNN error and LMNN error (lower is better). Right: Varying
the large margin ` for χ2-LMNN. The measurement is the ratio between χ2-LMNN error and the
χ2 baseline error (lower is better).

For χ2-LMNN, the additional hyper-parameter is the size of the large margin. Figure 3(right) ex-
amines several margin values: 0.01, 0.05, 0.10, 0.15 and 0.20. The figure depicts the ratio of kNN
classification error for each margin setting to the kNN error of the χ2 distance baseline. For all
but two settings, the transformation learned by χ2-LMNN improves over the χ2 baseline, generally
by a large extent. However, the margin size parameter is clearly important to achieving the best
performance. Fortunately, the parameter seems to be well-behaved and easily set by evaluation on a
hold-out set.
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