Supplementary Material for paper
Adaptive Stratified Sampling for Monte-Carlo
integration of Differentiable functions

A Numerical Experiments

We provide some experiments illustrating how LMC-UCB works, and compare its efficiency to that
of crude Monte-Carlo and Uniform stratified Monte-Carlo.

We first illustrate on an example, in Figure 2, the sampling scheme. We have launched LMC-UCB on
the function displayed in Figure 2 (i.e. f(z) = sin(1/(x+0.1))+I{z > 0.9} sin(1/(z—0.7))). We
chose this function since its variations are quite heterogeneous in the domain [0, 1]. We considered
a budget of n = 100, and took as parameter A = 10. K, and .S are defined as in Figure 1.

Position of the samples collected by LMC-UCB (for n=100)
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Figure 2: Position of the samples collected by LMC-UCB.

We observe that, as expected, the algorithm allocates more points in parts of the domain where the
function has larger variations and, additional to that, it spreads the points on the domain so that every
region is covered (in a similar spirit to what low-discrepancy schemes would do).

We also compare, for this function, the mean squared error of crude Monte-Carlo, uniform stratified
Monte-Carlo and LMC-UCB, for different values of n. We average the mean squared error of the
estimate returned by each method on 10000 runs. We have the following performances for each
method (displayed in Figures 3 and 4).

As expected, the mean square error decreases faster than 1/n for uniform stratified Monte-Carlo and
LMC-UCB. These methods are also more efficient than crude Monte-Carlo (up to 100 times more
efficient on this function), which makes sense since the function that we integrate is differentiable
(and then the rate for LMC-UCB and Uniform stratified Monte-Carlo is of order O(n~'~2/%)). The
gain in efficiency when compared to crude Monte-Carlo however decreases with the dimension, as
explained in Subsection 5.3. We observe that LMC-UCB is more efficient than uniform stratified
Monte-Carlo, which is a minimax-optimal strategy in the class of non-adaptive strategies.

B Poof of Lemma 1

Step 0: Decomposition of the variance Let 2 = (Q7)o<n<4o00,k<n be a sequence of partitions
of [0,1]¢ in n hyper-cubic strata such that the maximum diameter of the strata in the partitions
converges to 0 when n goes to infinity. In each of those strata, there is a point.

Let n be the number of points, and £ < n be an index. Let a,,  be a point of the stratum Q7. Let
us assume that f is differentiable, that it’s derivative V f is continuous, and let us also assume that
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Figure 3: Mean squared error w.r.t. the integral of
[ of crude Monte-Carlo, uniform stratified Monte- Figure 4: Zoom on the mean squared error
Carlo and LMC-UCB, in function of the budget w.r.t. the integral of f of uniform stratified Monte-

n. Since crude Monte-Carlo is approximately 100 Carlo and LMC-UCB, in function of the budget
times less efficient than the two other strategies, n.

their curves are shrinked and not very visible.

V()2 =%, (857(?@ )2 is such that [ ||V f(z)||3dx is bounded. In that case, Vz € 7, there

eXiSts Un ko € 2} such that we have f(x) — f(ax) = (Vf(Un k), — an i) (intermediate values

theorem). Note also that we have in that case i, 1, = f(ani) + L an (Vf(un k), — ani)de
k

Wn, k
where a,, i, is the center of the stratum {2}. We thus have:
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Step 1: Convergence of o), when the size of the strata goesto 0 Let = € [0, 1]%. Note that as as
(%) k<n is a partition, there is a k,, , such that x € Qf .

Note first that V f is continuous. This means that Ve, 3n/Vy € Ba(z,n), ||V f(y) — Vf(z)||]2 < e
Let € > 0 and n sufficiently large (any n larger than some given horizon n’), the maximum diameter
of QZL is smaller than 7). Lety € Q. Asun, ,y € Q. , we know that |tn k0w — 2] <1

and that we thus have ||V f(uyk, ,.4) — Vf(2)||]2 < e. This means that V f(u, j, , ) converges
point-wise to V f ().

Note also that we have by Cauchy-Schwartz that

1 2 1
—s7— (V) 0 = e, ) T, | < =71V (e ) Blly = e, ABL{ 2, }
wnakn,m wn,k;n’w

< d||V f(unp,.y)3 < dL?
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As V f(Un,k, ,,y) converges point-wise with n to Vf(z), and as 2/+ ((Vf(unyknmy), (y —

n,kn, x

2
A ko )>) < dL?, we have by the Theorem of Dominated convergence, that

. 1 2 (o
i, /[0 (97 ) = o ) T{0R,

. 1 2 .
I /[0 » (i, VS )= an, ) T{2E,

n,kn,
. 1 2 {om
ngriloo wTkQ/d /[0 l]d (<vf(x)7 (y - a‘nykn,m)>) ]I {an,m } dy
NyKn x ’
1+2/d
BV W 1.4 Ol T
T e “}f/d 12
_ V@3
12 '
In the same way, we have that
. 1 N 2
i, e (f,,, (s =m0 {0, } )
. 1 . 2
N VR R )

(91000 yn{en, Y

- 1 142/d
= im 1+2/dwn En (an,kn,z - an,kn,z)

n—-+4oo
Wi ko
=0.
k Th ke . ..
Let us call g, (z) = > r_; {}Qd]I{Q”} (x) = —t=*=. The last two inequalities prove, Vz,
wnvkn,m

L v
point-wise convergence of g, o(x) to %:

Step 2: Optimal allocation and minimum for the asymptotic variance There is one point pulled
at random per stratum. The variance of the estimate given by such an allocation is

0_2

1+2/d n,k

E wnkank—g W e X W, X —7q-
w

n,k

Define s,,.0(z) = Y p_, #M]I {Qn} (). Note first that

and that

sp.o(z) > 0.

One has also for the variance of the estimate that

1 1 d
Z wn KO n k= n1+2/d [0.1]4 gn,Q(x)W X.
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By using the result of the previous step, one has (for every sequence {2 where the diameter of the

2
strata converge uniformly to 0), point-wise convergence of g, o(x) to % when n goes to
infinity.
This leads to, by using Fatou’s Lemma

dx

lim inf

[ sl —0
() —————57=

n—+oo [o,l]dg < 8, () 1H2/d

1
S L
> /[071](1 lim ni?—{oo (gn,ﬂ(ﬂb’)‘sn’ﬂ(x)wwd)dx
2

SYRE T —

[0,1]

d s:8>0, [ s=1 12 3(£)1+2/d :

One thus wants then to find the function s(z) that minimizes this limit. One thus wants to solve in

each point x the program inf val(;)llg s(w)ll+2/d such that s > 0 and [, 4 s(z)dz = 1.
The solution (by just writing Lagragian) is

d

(||V f(z)]|2) 7T .
f[o,1]d(||vf(u)||2)ﬁdldu

s*(x) =

By plugging it in the bound, one obtains

1
li inf : ——d
1mnl>nJroo /[071][1 gn,Q(Jﬁ) Sn7Q<$)1+2/d x

d 24D
(f[0,1]d(|‘vf($)\|2)mdx>
- 12

Note that the previous result holds for any sequence of partitions (€2, ),, where the diameter of each
stratum converges uniformly to 0. One finally has, using that, that the minimum possible asymptotic
variance is bounded by

(d+1)
2 d

(Sogol I F@)[2) )
> b
B 12

n
s e 142/d 2 2
ngr-lr—lool?zfn g Wy, k0
k=1

and we thus obtain the desired result.

C Proof of Lemmas 3

Upper bound on the standard deviation: The upper confidence bounds By, ; used in the MC-
UCB algorithm is an elaboration in the specific case of Lipschitz function on Theorem 10 in [8] (a
variant of this result is also reported in [1]). We state here a main Lemma.

Lemma 4 Assume that the function f from which the data is collected is differentiable, and that
[|V f(2)|]2 is bounded by L, and n > 2. Define the following event

S S

§=Ekn(0) = ﬂ ‘ ﬁZ(Xk,i_%ZXk,j)2_Uk

< 2LV/d( Sk 1/ log(2K/6)
1<k<K, ] = 2

S
©))

The probability of & is bounded by 1 — 4.
Note that the first term in the absolute value in Equation 9 is the empirical standard deviation of arm

k computed as in Equation 8 for ¢t samples. The event ¢ plays an important role in the proofs of this
section and a number of statements will be proved on this event.
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We now provide the proof of Lemma 4.

Let us assume that f is such that ||V f||2 < L. Let us consider a small box §2,, of size w and such
1/d

that Q, = [T, [ — 25, a; + 25" 1. As ||V /]2 < L, we know that | f(x) — L [;, f(u)du] <

L dw'/?.
If U is a random variable on €, and X = f(U), then

|X - ILL| < L\/gwl/d7

where p1 = & [, f(u)du.

Note first that for algorithm LMC-UCB, the S first samples are each sampled in an hypercube of
measure “Z, and all of those hypercubes form a partition of the domain.
Using a large deviation bound on the variance, e.g. the one in [8], we can deduce that with probability

1-26

1 & 1S5 ) T oa/5)
NEEPC S LR e

i=1
where b is a bound on the random variables X; — u1;. One gets because | X, ; — g 4| < \/EL(“%)l/d
(where i, ; is the mean of the function on the hypercube where point X, ; is sampled and because
t>2

S

S
| ! : we 1 ja. [108(1/3)
S (Kpi— =3 X)) —onl < 2Lvad(“Ly vy [P0
| S—1¢—1< B Sj:l k,j) ol < f(S) S

Then by doing a simple union bound on (%, t), we obtain the result.

The following Corollary holds.

Corollary 1 On the event &, Vk < K,

1/d

64105 — ok < 2LVd 10g(2K/6)%

By concavity, we also have the following Corollary.

Corollary 2 On the event &, there is Vk < K that

_d_ _d wl:%
60 s —op | < A—,
’ S2(d+1)
where A = (2L\/a log(QK/é))Til_
The number of sub-strata Let %&£ be an index. Let us call Cy =
_d_ wr 1 T
v 1(&1“=K§+A(Tk) /d\/%) n_KS)

a+T

d
T w (&i,mw(%)l/d 3
Stratum €, is subdivided in S}, = max {5’ , LC;/ dj d} substrata, composing the sub-partition Ny.

Note first that Zle Sk <nas Z/fle Cr = n—KS. As the samples are always picked in sub-strata
that have the less points, it ensures that there is at least one point per sub-stratum.
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On &, we have because of Corollary 2 that

T THT
Ci > Dk ——(n - K8)
i W (aﬁil oA )
i=1 "1 7 —_dt2
S2(d+1)
T T )
Z St Y
K S'Q(ddt?l)
= 2A
Y i SE@FD
- 2A
> A (n - K= 1)
P EICESY]

_ e d 4 .
I>8> ((K) T _ 1) > (%) T _ d(£) i in the last Equation,

Using the fact that () ?

_d_ 2An K _d+2 K 1
C >\ ( K d 1 d+1 2(d+1) 1 d(— 2(d+1))
k= AKE(T — ZK ( " ) ( + ( " ) )
2An2+<d+11>2 d(d+2) K 1 _ar2
- K2@+n2(] d(—)a+1 |20+ )
Mk (n— K 5 (L+ () 7))
A K _d+2 _ 1
ZAKk(n_(1+27+d(7)z(dif)2 )Kmnﬁil>7 (10)
’ EK n

where the last line comes from the fact that n > K.

We also have

Cr— GV <O — () 1) =Cr(1— (1 — —3

From the last Equation, the definition of .Sj and Equation 10 we deduce that (rounding issues)

: d
S = max |, Ci (1 - W)]
k

= max {5*’ C’“(l (S;ll/d)}
R R L
= max {5’ )‘K,k(n -2+ 2% + d)Kﬁnﬁl)

Wecal N = n — (2 + 2% + d)K 7 na+7 in the sequel. Note that Vk, we have S, >
max[S', )\K,kN]-

Note also that for < 1, we have

= (2LVd\/1og(2K/5)) 7T
< A(L + 1)Vd+\/log(K/5).

‘We thus have that

d

1 1
nZNzn—7(L+1)d3/2\/log(K/6)(1+E—)Kmnm. (11)
K
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D Proof of Theorem 1

Step 1: Notations Let ((QZ) k< K")n be a sequence of partitions in hyper-cubic strata of same

measure. Let us also assume that the number of strata [, in partition (2})z is such that
d+2 d+3
lim, 4o K, = 400 and lim,,_, K"nl(;ii(ln) = 0. On each of those partitions, MC — UCB

is launched with respectively n samples and parameter §,, = n%
The number of hyper-cubic sub-strata built by the algorithm in stratum Q7 is S, . Let us write

(((QZ’S)Sg Sn. k) < Kn) . the partition in hyper-cubic strata formed with those sub-strata. By con-

struction of the algorithm, there is at least one point per sub-stratum. The estimate of the mean of
the function is built with the first point in each of those sub-strata.
S /

Letuswrltegn ( ) = Zk YD e "k UY“/@‘;H{Q }( ) = Zk 125"1k Unks ’{/’;dﬂ{ﬂ’és}(x)-

nks

From step 1 of the proof of Lemma 1, it converges with n (because K,, — +o00 when n — oo and

thus the diameter of each stratum goes to 0) point-wise to %.

Let us write g’ ( ) = Ek 1 {”/Z’“d]I{Q } (x). From step 1 of the proof of Lemma 1, it con-

||Vf(37)||2
12

verges with n point-wise to . This convergence implies, as ||V f||3 is bounded and thus

as [||Vf ||d+1 is bounded, by the Theorem of Dominated convergence that lim, o Yk, =
d T d
im0 f[O,l]d(gT(LQ) ()2 do = f[O,l]d(W) @Ddr > 0.
d
Kn Ak, n1 _ Kn (Wn x0n,k) @1 n1 _ (gn(x))20@+D
Define A, (z) = >5p0 S k’“H{Q P= > 1%]1{9 } = %. We thus
know, as the limit of (X, ),, exists and is bigger than 0, that \,,(x) converges pointwise to s(x) =
_d_
V£ (@)lI5

—
JSioya IV F@)15FD da

Let us also define s, (z) = Zk 1 na I{Q}} (o).

Step 1: Majoration of of % Let us consider only functions f that are not everywhere constant

on the domain, as otherwise the bound on the pseudo-risk is trivial®. Then 3X € [0,1]¢ such
that X’ is measurable and such that [,,1 > 0, and such that Vz € X, ||V f(2)|]z > 0. Then

f()l llvf(mHQ)(dil)dl‘>O.

Let N,, be defined as in the proof of Lemma 3, ie. N, as in Equation 11. As
d

lim, 400 Xk, = f[o 1] (val%) @+1) dz, we know that for any n sufficiently large, lim,, X g, >

5 fo 1a( (VL@ z)||2)<dil>dx. We thus have

n> N, >n—T7L+1)d%?\/log(K,/6,)(1 + —)K #ina

_1
>n— Cy/log(K,n?)K;* nasT,
with C' < 400 as f 0, 1]4 M) @D i > 0. As by definition of the sequence of partitions,
lim,,— 4 oo \/log (K, n2)< ) T = 0, we know that lim,,_, | , % =1.

By Lemma 3, with probability 1 — §,,, Vk, S, . > Ak, xNp. We thus have

n

1 1 1
F (sn<x> Th@ @ N, ”) < oy

81f the function is everywhere constant, the samples are always equal to the integral, and the pseudo-risk of
the estimate is zero.
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which leads to

P (o 2 ) <o

Let Xt = {z € [0,1]¢ : ||[Vf]||]2 > 0}. By the last Equation, Ye > 0, Vz € X7, for n sufficiently

large (3n’ such that ¥Vn > n/), P(#(x) - ﬁ(aj) > €) < §,. Note that 37> 5, = S+ L < +oo.
We can thus use Borel-Cantelli’s Theorem and this gives us that on X, lim sup,, %(m) — %(ac) <0
a.s..

We thus deduce (i) by the definition of A, and the fact that it converges almost surely to s and (ii) by
the fact that lim,, % = 1, that lim sup,, ﬁ(l) < ﬁ a.s. (since, by definition, s, (x) > nui —~ >
0).

1

From that we deduce that Vo € X, lim sup,, o S L j as.. Ason [0,1]¢ — X, s(x) = 0, we

s(z

have Vz € [0,1]%, that limsup,, s~y < {7y as--

Step 2: Convergence rate of the pseudo-risk. The pseudo-risk of the estimate fi,, is

Kn Sn,k' w & 9 1
n, 2 _ 1+2/d/ 1) d
O s =n w(x) ———~dz.
; ézzl (Sn,k> s [0,1]¢ gn°( )Sn(ﬂf)HQ/d

2
On [0, 1]¢, gﬁbl) converges pointwise to %

finally have by Fatou’s Lemma that

1 1
(1) 4 </ li D (g)—————)d
/[0,1](19” <x)sn(x)1+2/d = oW (g" (x)sn(x)1+2/d) v

1
. (1) .
< /[071]01 lim sup gy, (z) lim sup de

n n

. 1 1
, and limsup,, , (@) < s(ayiTera AS. We

IVAIE 1
< da.
<y T

By plugging in the last Equation the Definition of s, we conclude the proof.

E Proof of Theorems 2

Step 0: Some inequalities when the second derivative of f is bounded Let a be a point in 2.

f admits a Taylor expansion in any point. For any € Q have |f(z) — f(a) + Vf(a).(z — a)| <
M||z — al|3 with 2M a bound of the second derivative of f.
Note also that ||V f(z) — V f(a)|]2 < M|z — all2.

Note also that

IVF@IE ~ IV @IB] < [(IVF@)ll2)* = IV £ @) 3
< | (195 @1z + Ml - allz)* = IV £(a)
< IV £@I3 +2M[Vf (@)lallz — alla + M2|lz = al 3~ |V £(a)] 3
< 2M|[Vf(@)lell — all2 + M| al3.

This means that

IV £@)ll2 = IV f(@)][2| < Mz~ alle. (12)
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Step 1: Variance on a small box Let us place us on one small box of size w and such that the
corresponding domain is ., = [[[a; — Ud, a; + % ] We can do a Taylor expansion in a and

have
f(z) = fa) + Vf(a)(z - a)| < M||z - al|3,
with 2M a bound of the second derivative of f.

Note that because of the previous equation

%/ﬂ (f(u)—f(a)+Vf(a)(U—a))du| < %/ |f(u) — fla) + Vf(a)(u— a)|du

Qqp
< M|z — a3 (13)
@ +w1/d
This implies because a; = f o o udu that
|—/ f(w)du — f(a)] < MlJz — al 3. (14)

Finally, by combining Equations 13 and 14, we get

@)= 5 [ f@du+ @) = o) < 201 - alf
Triangle inequality on the last Equua)ltion leads to

@)= [ fwdad < |V Fa)(w - a)| + 2}z — al

This means by integrating that

L@ -5 [ i) ar< [ (1956 - ol + 20 - o) dr

2
<[ (Vi@)(@-a) d (15)
Qu
voM [ (Vi@ —a))lle—alfdz a6
Qy
—|—4M2/ |z — al|5dx. (17)

w

a;+*5—

Note first that because a; = f 1 / B udu we have for the term in Equation 15
a;—

/Qw (Vi) - a))de = /Qw (ZVf(a)i(xi _ ai))de

wlt2/d
= va
1+2/d
= ———IVF I (18)

Now note that for the term in Equation 17

d 2
/Qw ||z — al|3dx = /Qw (;(xl - ai)g) dx

< Pt (19)
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Now note that because of Cauchy-Schwartz and by using Equations 18 and 19, we have for the term
in Equation 16

| (Fr@@ - o)l ~ ol < \/ | (Vf(a)(ff—a)l)2dw\/ | e —aligie

< ||Vf(a)”2w1/2+1/d1/d2w1+4/d

< d||V f(a)||zw' 3/, (20)

We thus have by combining Equations 15, 16, 17, 18, 20 and 19
/ ff/ flu dg:< ”Vf( i w' T L M|V f(a)||aw! T+ AMP P T
This leads to using Step 0 in Proof B

2
2 ¢ val(za)'bw“?/d—k2Md\|Vf(a)||2w2+3/d+4M2d2w2+4/d

— 2t2/d M 1/d\2
w ( WA + 2Mdw ) . Q1

In the same way, one can prove

w2o? > w2+2/d(|v2f\(%)|2 _ 2de1/d)2. (22)

Step 2: Majoration on the strata Lemma 3 tells us that with probability 1 — ¢ (i.e. on the event
£), each stratum €y, is partitioned in Sj > max l)\% x N, S| hyper-cubic substrata 2 ; of same

measure, and that that there is at least one sample per stratum.The measure of those sub-strata is

thus wy, ; = g—:

We have for stratum €, ; by using Equation 21

A Y R

N

where ay, ; is the center of stratum €y ;.

Let ¢ ; be a point in €, ; such that ¢ ; = argmin.cq, , ||V f(c)||2. By using that and Equation 12,

we get that the variance on strata k that is bounded by

Zwklakﬁz 2ia/a((INT0eDN gy gt/ d)?

2V/3
242/d IV f(cri)ll2 1/d
< 7+3Md
Z e 7
Sk
wy, a2 ||V f(crq)ll2 1/d
<—= w4 (——72— +3Mdw, .
Sk ; ki ( 2\/3 )

Let us call g(x) = % + 3de,1/d. As wy, > wy 4, and ||V f||2 is positive, we have

Zwkzakz—s Zwk Ckz . (23)
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Step 3: Minoration of the number of sub-strata in each stratum By setting Equation 21 to the
power ﬁ, we get on stratum €2, that

(||Vf(ak)”2
2V/3

Let ¢ be a point in € such that c}” = argmineeq, ||Vf(c)||2. Note that this implies that
Zszl Wk(% + ?)de,i/d)dTl < f[o’l]d (va(u)”z + 3de1/d) 7 du. By using that

(wkak)% < wg + 2Mdw 1/d)

2v/3
and Equation 12, we get that X x = >, (wio) 47 is bounded as

Tk <Zw Nf ||2+2Md Ydyair

<Zwk ||Vf\jk—)||2 +3Md 1/d)d+1

\% _d_
[0,1] 2\/5
g/ g(u) 7 du. (24)
[0,1]¢
In the same way, we can deduce
d
Sk 2/ (Lf(“)‘|2 — 3Mdw,/") ™ du. (25)
[0,1]¢ 2v/3
Let ¢} be a point in €, such that ¢/ = argmaxceq, ||V f(c)|]2. For a stratum k, by using

Equations 22 and 12
axz 252 ||V f(ar)ll2
(wropR) 1 > w (T 2V3
%(IIW(C;@M)HQ
k 2\/§

As forany u > 0 and o > 0 one has (1 — u)~® > 1 + au, the last Equation leads to

1 1
< dt2

dy2 = " df2 T+
(wka'k) d+1 w, @ (% + 3de11€/d — 3Md( i/d)) ot

1
dr2
w, ™ (g(eM) — 6dei/d) o+
1
MYz (1 - ij(dzgj)
d+ 2, 6Mdw,
LS

gleg

d+2
— 2Mduw,/*) T

> w 3Mdw,’?) =g

IN

IN

1/d _ d+2
) a+1

1/d

IN

o @

1 9OMdw,/*
+3 )

wt (o) (g}

IN

As wy, ; = ‘&= this leads with the last Equation and Equation 24
; Sk

B a+T % 1/d
(wr) 5 < (f[o’” ) ) ), (26)
(g(ch)) =t (g(cih)) =+
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Step 4: Bound on the pseudo-risk As c) = max.cq,||Vf(c)|lz and cx; =
minceq, , [|Vf(c)|l2, and as g(z) = % + 3de,1/d, we have for any (a,b) > 0 that
“;((i’z;})): < minceq, , 9(c)*~°. By using that and Equations 23 and 26

f[o 14 (g(w)) T du £52 St

Sk
w
> utot, <5 (L) T Y o
i=1
_d
f[o 1]d (9(“))d Pduy 52y, S 1 9de,i/d 9
S( N ) 572( dat2 M 243 )g( k,z)
Fami (g(ed)) ™ (g(gh)) o
d
f[o,l]'i (g(u))ﬁdu 2w S . _d_ ) 9de,1€/d
() T 5 L (i e@F - min 2T,

Note also that by definition, g(z) > 3M dw;/ 4 From that and the previous Equation, we deduce

Sk Ty d+2 Sk 1/d
Zwi,iai)i S(I[O,l]d (gj(\ifl)) U) " Wy Z( min g(c)wdl + M)

Sk = " o€, (Sde,lc/d) T
d
f[Ol ( )ﬁdu didz 1 d L
— T+ IM dw, ).
( N ) wk(wk /ng(u) u+ OMduw™")
Finally, by summing over all strata and because all strata have same measure wy, = %
d
K Sk ﬁdu arz K L
Zzwizaiz _(f[(n ( N ) ) ‘ Z(/ g(u)d%ldu—kwk X IMdw;’ 1)
i=1i=1 k=1 Y%
d
f[o 1)¢ (9(w)) ™ du 42 .
<(+ ) / 9(u) T du + OMd(—) ™
N . ™)
< ( (Wrrdu) 7+ 9Md( () 7 ) T () 7).
=" di2 9 g K
N™a [0,1]¢ [0,1]¢ o
Step 5: Bound on f[o 14 g(u)fildu Note that because ﬁ'll < 1, we have
2 (Vi@ vy o
w) T ( +3Mdw, )
g9(u) 3
IV S (W)ll2\ 4 pea
< (——="2) T + 3M dw
< (D) :
We thus have
4 [V f (u)|]2 o
g(u) @+ duS/ Ydu + 3Mdw,,] + . (28)
/[o 1 [0 11d( 2V3 )

Note also that for x > 0, and as Q(dfjl) < 4, we have

2(d+1)

(1+x)"a <(1+2)* <1+ 2%max(z, 2?23 2%).
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_d_
Let us call ¥ = [ 0,14 (M) “+1 du. Then by applying the previous result to Equation 28, we

" 23
ge
2(d+1) L 204D
(/ g(u)Tildu) T < / (M) T du + 3Mdw," ) ‘
[0,1]4 [0,1] 2V/3
_ E2(d+1) (1 n BJEWd ]j%) 2(d+1)
< E2<dd+1 2(d+1) ( 3Md) ]:% (29)

Note also that by Equation 12, we know that ||V f(u)|| < ||V f(0)||2+M+/d. From that we deduce
that

/ g(u )d+1du<E+3]\4dw”’+1
[0,1]4

< ¥ + 3Md. (30)

Step 6: Final bound on the pseudo-risk From Equations 27, 29 and 30, we deduce

K Sk

1 . 2(d+1) ] at2 ] 1
ZZwma,” _7<(/ g(u)d%ldu) E —|—9Md( g(u)d%rldu) d (—)d 1)
i=1 i=1 T [0,1]¢ [0,1]d K
1 2(d+1) 2(d+1) 3Md\4 L.
_W |:E d -+ 16X~ 4 (1 + T) ’LU]:_H

d+2

+9Md(S +3Md) T (%)#}

< [22“?” +25Md(E + 1) T (1 n W)“(i)#l}

N ) K
2(d+1) 1.1
<y BT o))

where C' = 25 Md(X + 1) (g4r) (1 + SMd) .

Note that N = n — (2+2%+d)Kﬁndfil = n— BKT#TnatT, where B = 2—}—2% +d. From
plugging that in the last Equation, we get

K Sk

1 2(d+1) 1,1
DD wiiois < M{E ’ +C(})d1}
. - 1 d d
i=114=1 (n — BKmndTl>
1 2(d+1) 1,1
< a2 + o)™
n (1fBKﬁnfﬁ) ‘

a
— g‘_“_
N

P ,
<~z [H(d; )BKmn—d%} [22“73”+C(
n

1
S
n-d

N\H

i
+‘

_

2(d+1)

2(d+1) 1
(257 4 5n ™ T 4 0(2 )7 4 3pon- =),

where we use for passing from the second to the third line of the Equation that (1 —u)~* < 14 au.

(d+1) .
4 and this leads to

K Sx 2(d+1) 14
3OS Wl obs _j[z T4 6BCK T TT 4 O() ™ } 31)
i=1 1=1
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Note first that by Equation 25 and because ||V f||2 < L we have

[V f(u)l]2 1/dy b
5 2/ IVIN2 gy g/ @Y 755 gy
K [0 1]d( 2v/3 )

>% — 3LMdw".
From that we deduce that

A(L + 1)Vd\/1og(K/0)
B<oqoitt )Vdy/log(K/9)

S~ 3LMdw™

(L + 1)Vdy/log(K L+1 log(K
<ottt f BEO) | oppaw EF )@2 aB/0) 4 g
<1OL+1\f\/logK/5 1+—

By plugging in Equation 31 the definition of C' and the bound on B computed above, we obtain

K Sk

3Mdy4
SN Wil < pe [22“?” +650M(L+1)d3/2<1+T) VIog(K/O) K Tin~ 7

=1 1=1
e 3) (m)

+250Md(S + 1)

This concludes the proof.
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