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1 Proof of Convergence Rate of ORDA

Theorem 1. For ORDA, if we require ¢ > 0 and ¢ > 0 when i = 0, then for any t > 0:
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is a convex combination of y; and z; and zy = z; when . = 0. Taking the expectation on both sides
of Eq.(1):
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We first state a basic property for Bregman distance functions in the following Proposition. This
proposition generalizes Lemma 1 in [4] by extending one distance function to a sequence of func-
tions.

Proposition 1. Given any proper Isc convex function () and a sequence of {z; }!_, with each
zi € X, if 2z = argmingcy {w(z) + ZZ:O 0V (x, z,)}, where {n; > 0}._, is a sequence of
parameters, thenVr € X:
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Proof of Proposition 1. For a Bregman distance function V' (x, y), let V1V (z, y) denote the gradient
of V (-, y) at the point x. It is easy to show that:

Viz,y) =V(z,y) + (ViV(z,y),2 —2) + V(z,2), Va,yz€X,
which further implies that:

YonVie,z) =Y miV (e, z) + Y ndlViV(zg, z) @ — 24) + (Z 7771) Viz,z4).  (5)
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Since 2, is the minimizer of the convex function v (x) 4+ S'_ m;V (x, 2;), it is known that there
exists a subgradient g of ¢ at z (g € 9¢(z4)) such that:
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Using the above two relations and the definition of subgradient (¢)(z) > ¥(z4) + (g, @ — 24 ) for
all z € X'), we conclude that:
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To better present the proof of Theorem 1, we denote G(y:, &) by G(y:) and define:
A= Gy) — f'(ye) = Glye, &) — f'(we) (7)

We first show some basic properties A;. Let & denote the collection of i.i.d. random vectors

{&}!_. Since both random vectors y; and z; are functions of {;_1j and are independent of {&;} 7,
we have that for any ¢ > 1 and any «, 3

EA; = Eg[t—l] [E&(At‘g[tfl])] = Eﬁ[t 1]0 =0; ®)
E[[Ad2 = Ee,,_, [Be, (1 AlI2I€1—1))] < B, 0° = 0% )
Eay; + Bzi, Ar) = B, [(aye + Bz, Be, Ar) |- 1] = Eepp—ny[{aye + Bz, 0)[€—1y] = 0, (10)

Proof of Theorem 1. With our choice of 6, 1, 74, it is easy to show (see [5]) that:
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We further define 9,11y,1 = 0. We first bound the objective value ¢(x¢11) by:
P(@er1) = f(@er) + h(zer) < Fye) + (@1 —ye, [ ()
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We bound the terms C; and C5 respectively. Let ;11 be the convex combination of x; and z;11:
it—i—l = (1 — Qt)l‘t + (9,52,5+1.
Then we have Ty 11 — ¥+ = 0¢(2¢:41 — 2t), Where
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which is a convex combination of y, and z;. By the fact that x; 1 is the minimizer of C; and utilizing
and Et—&-l — Yt = Gt(zt+1 — gt):
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C, < f(yt) + <517f,+1 — Yt f,(yt» + 9t<2t+1 — Zt, At> + (H%t) Hzt—s—l - Zt||2 + h(l”t—&-l)- (13)
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By the convexity of || - |2 and the fact that ||z — y||? < V(z,y) forany z,y € X:
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We plug Eq.(14) back into RHS of Eq.(13) and substitute Z;1 1 with (1 — 6;)x; + 6;2411. By the
convexity of h(+):

Ci < (1=02) (flye) + (e —ye, [ (ye)) + h(ze))
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Now we bound Cj5 using Proposition 1. Utilizing the first equality in Eq. (11), we can re-write z; as
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Furthermore, we define v (x) := Ef;é f<yi)+<$_y7"G(y;‘j)/>+h(x)+“v($’y1‘) and apply Proposition 1
withz = 2z441:
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We can bound the last term in C'5 by Eq.(17). In particular, according to Eq.(11):
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With the above inequality, we immediately obtain an upper bound for C5. Therefore, by the defini-
tion of ¢ (-), we bound the term C by:

C1 < (1=0)d(xt) +0:vs (Veg1(2e41) — Ye(2t) + eV (2641, o) — 7V (2¢, @0)) +04 (Y — 22, ﬁt8>)

To bound C’, since the parameter ¢ > 0 whenever . = 0, we always have THT,? + 1 — L > 0. Using
a simple inequality: —$x? + Bk < % (v > 0), with o« = T‘ng + 2 — L, B = [|[A¢« + M and
Kk = ||zty1 — y¢||, we have:
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By summing up the upper bound for C; in Eq.(18) and the bound for C5 in Eq.(19), we obtain an
upper bound for ¢(z;41) according to Eq.(12). Utilizing the second relation in Eq. (11), we build
up the following recursive inequality:
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the fact that 2,1y = argmin, c y {¥441(x) + 741V (2, 20)} and ¢ < 7441, Eq.(20) further implies
that:

where the last inequality is obtained by the fact that ;- L
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Multiplying by 6,14 on both sides of Eq.(21), we obtain the result in Eq.(1). From the properties of
A; in Eq.(8)—(10), we conclude that for all i, E{z* —Z;, A;) = 0 and E(||A; ||« +M)? < 202 +2M2.
By taking the expectation on both sides of Eq.(1) and using the aforementioned properties for A;,
we obtain the result in Eq.(3). O
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Corollary 1. For convex f(x) with i = 0 (or equivalently n = 0), by setting ¢ = 2V (0] and

I' = L, we obtain:
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Proof. When p = 0, the expected gap in the objective function in Eq.(3) for the last iterate becomes:
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With choice of Oy = N+2, UN = Niﬂ and Yy 41 = c(N + 2)3/2 + 7L, the first term in Eq.(23) is
bounded by:
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By summing the above two inequalities, we obtain that:
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We minimize the RHS of Eq.(26) with respect to ¢ and obtain the convergence rate result in Corollary
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Corollary 2. For strongly convex f(x) with i > 0, we set ¢ = 0 and T' = L and obtain that:
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Proof. When p > 0, we set ¢ = 0 and v, = 7L and then Eq.(3) becomes:
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This gives the result in Eq.(27) in Corollary 1. O

2 High Probability Bounds for ORDA

Theorem 2. We assume that (1) E (exp {||G(z, &) — f'(2)||2/0?}) < exp{l}, Vz € X (ie,
“light-tail” assumption) and (2) there exists a constant D such that ||z* — Z;|| < D for all t. By
setting T' = L in ORDA, for any iteration t and § € (0, 1), we have, with probability at least 1 — §:

P(41) — d(z7)) < €(t, ) (29)
with
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where 1; = (ﬁ + ”1 — 0; L)

For convex f(x) with p = 0, by setting ¢ = VTOEM)  0d T = L, we have
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For convex f(x) with it > 0 (or equivalently 1 > 0), by setting c = 0 and T’ = L, , we have
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We prove Theorem 2 using the following two lemmas.

Lemma 1 (Lemma 6 in [2]). Let &y, &1, ... be a sequence of ii.d. random variables and ¢; =
©i(&[q) be deterministic Borel functions of £; such that:
E(%K[iq]) =0;



2. There exists a positive deterministic sequence {o;}: E (exp {¢?/0?} |€;_1]) < exp{1}.

Then for any 6 € (0,1), Prob (Zf:o w; > 31“(1/5)(21 00; )1/2) <.

Lemma 2 (Lemma 5 in [1]). Under the assumptions in Theorem 2, for any positive and nondecreas-
ing sequence 1);, we have

t t
AP E|A;? 2In(1/6
SIME | §SEIAE 8 R0)
p i — i Mo

holds with probability at most 6 € (0, 1).

We note that although Lemma 5 in [1] assumes that 7; = n+/7 + 1, its proof and conclusion remain
valid for any positive nondecreasing sequence {7); }.

Proof of Theorem 2. To simply notations, let 7; = (ﬁ + 977 - GiL>. For both convex and

strongly convex f(z), according to our setting of parameters, it is easy to verifty that {7;} is a
positive monotonically increasing sequence. According to Theorem 1:
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Firstly, we analyze the last term C3 using Lemma 1. Let ;(&[;)) := WQA and hence C5 =
O Zf:o ;. Itis easy to verify that E(¢;|{[;_1]) = 0 and there exists a sequence o; = 2% such

that:
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where the last inequality holds because ||z* — Z;|| < D and our “light-tail” assumption. By Lemma
1, we conclude that for any § € (0,1),
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Secondly, we bound the term C> using Lemma 2. Since v; is decreasing in i, we have
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Since 7); is increasing in ¢ when I' = L, we can directly apply Lemma 2 as follows:
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where the first inequality is from Eq. (34), a + b > max{a,b} and the fact E||A;|? <

o?In (IE exp (M)) < 0?In(e) = o2 and the second inequality is due to Lemma 2.

Combining Eq.(35) and Eq. (33), by the union bound:
PI‘ (¢($t+1) — ¢($*) Z Cl —+ D2 —+ Dg) S Pr (Cl —+ CQ —+ Cg Z Cl —+ DQ —+ D3)
6 90
< Pr(Cy= Do) +Pr(Cy>Dy) < S+5 =4, (35)

we immediately obtain Eq.(30). The bounds in Eq. (31) and Eq. (32) can be derived by plugging all
the parameters into Eq. (30).

O

3 Proof of Convergence Rate for Multi-stage ORDA

Theorem 3. If we run multi-stage ORDA for K stages with K = log % for any given €, we have
E(p(Zk)) — ¢(x*) < € and the total number of iterations is upper bounded by:

K
L 1024(02 + M?
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To prove theorem 3, we first state a corollary of Theorem 1.
Corollary 3. For strongly convex f(x), by setting c = 0 and T = A 4+ L in ORDA, we obtain that:

Bo(ans) - oa") < TATLIE 0] (N2 H L),

(37

The proof technique follows the proof in [3]. The main idea is to show that E(¢(Zx)) — ¢(z*) <
Vo2*k, where 7y, is the solution from the k-th stage.

Proof. We show by induction that

E(¢(Tk)) — ¢(x") < Vo2, (38)
By the definition of Vy (Vo > ¢(Zo) — ¢(x*)), this inequality holds for & = 0.
Assuming Eq.(38) holds for the (k — 1)-th stage, by the strong convexity of f(z), we have
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According to Corollary 3 and the setting of Ny and I',, we have
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Therefore, we prove that E[¢(Z,) — ¢(z*)] < Vo2~ F for k > 1.



After running K stages of multi-stage ORDA with K = log, (X2), we have E[¢(Z;) — ¢(z*)] <
V27K = . The total number of iterations from these K stages is upper bounded by:
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