Appendix: Classification Calibration Dimension for General Multiclass Losses

Calculation of Trigger Probability Sets for Figure 2
(@) 0-1loss %! (n = 3).

(1) (4 o 0)

Q' = {peA;:p'li<p'ly,p'l <p'es}
= {p€As:py+p3<pi+p3 p2+p3s <p+pa}
= {PpeAs:py<p1, p3s<pi}
= {p € As:p; > max(pa,ps3)}
By symmetry,

Qg-l _ {p € Az :py > maX(Pl,PB)}
Q%' = {pe€As:ps>max(p,pa)}

(b) Ordinal regression loss £ (n = 3).

(1) (1) o (1)

QY = {pels:p' i <p'ly, p b <pLs}
= {pP€As:py+2p3 <p1+p3, p2+2p3 < 2p1 +pa}
= {P€As:patps<pi,p3<m}
= {p€l3:1—-pi <pi}
= {peAs:p >3}

By symmetry,
oy = {pelA;:p;>1}
Finally,
O = (pelAs:p ly<p'f, pl<pLs}

{p € Az :p1+p3 < pa+2p3, p1+p3 < 2p1 + pa}
= {p€A3:pi <p2+ps3, p3 <pr+pa}
= {pelg:pi <1—p1, p3<1—p3}
= {p€A3¢P1§%7P3§%}

(c) ‘Abstain’ loss £? (n = 3).

0 1 1
£1:<1>;£2:<0>;£3:<1>;£4:
1 1 0

QY = {pels:p'li<ply,p'Li<p'ls;p' L <p L}

= {pPels:pa+ps<pir+ps, p2+p3 <p1+p2, p2+03 < 5(p1+p2+ps)}
{peAs:py<pi, ps<p1, p2+ps<3}
{peAz:pr > %}

SIS
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By symmetry,

QY = {p€lAs:ip>1}
QY = {pclAsz:ps>1}
Finally,
OV = {pels:p lyi<p'l,p Li<p by, p'li<p b}

= {pe€As:i(p1+p2+ps) <min(ps + ps,p1 + ps, p1 + p2)}
{p€As: 3 <1—max(pi,p2,p3)}
= {p e As:max(p1,p2,p3) < 3}

Proof of Theorem 6
Proof. Since 1) is classification calibrated w.r.t. £ over A,,, by Lemma 2, Jpred’ : S;,—[k] such that

VpeA,: inf Tz > inf p'Z. 9
P z’GSw:pred’(gl)gargmintpTltp z z’lél&/;p z ©)
Now suppose there is some z € Sy, such that N, (z) is not contained in Q! for any t € [k]. Then
vt € [k], 3q € Ns,(z) such that q ¢ Qf, i.e. such that ¢ ¢ argmin, q'#£y. In particular, for
t = pred’(z), 3q € N, (2) such that pred’(z) ¢ argmin, q ' £;.

Since q € N, (z), we have

q'z = inf q'Z. (10)
z' €Sy

. Vi .
Moreover, since pred’ (z) ¢ argmin, q' £, we have

inf q'z < q'z = inf q'7. (11)

z’ €8S, :pred’ (z’) ¢argmin, q T £,/ z' €Sy

This contradicts Eq. (9). Thus it must be the case that Vz € Sy, 3¢ € [k] with s, (z) € Qf. O

Proof of Theorem 7

The proof uses the following technical lemma:

Lemma 15. Let ¢ : [n] x 7\'—>R+. Suppose there exist v € N and z1,...,2z, € Ry such that
U;‘:1NS¢ (z;) = A,,. Then any element z € Sy, can be written as z = z' + 2z for some z' €
conv({z1,...,2,}) and z"" € RY}.

Proof. LetS" = {2’ +2" : 2 € conv({z1,...,2,}),2” € R’ }, and suppose there exists a point
z € S, which cannot be decomposed as claimed, i.e. such that z ¢ S’. Then by the Hahn-Banach
theorem (e.g. see [19], corollary 3.10), there exists a hyperplane that strictly separates z from S’,
ie. 3w € R"suchthatw'z < w'aVa € S’. Itis easy to see that w € R (since a negative

component in w would allow us to choose an element a from S’ with arbitrarily small w ' a).

Now consider the vector g = w/>2i", w; € A,,. Since Jj_, N5, (2;) = Ay, 3j € [r] such that
q € N, (z;). By definition of positive normals, this gives q' z; < q 'z, and therefore w'z; <
w " z. But this contradicts our construction of w (since z ; € 8'). Thus it must be the case that every
z € Sy, is also an element of S’. O

Proof. (Proof of Theorem 7)

We will show classification calibration of ¢ w.r.t. £ (over A,,) via Lemma 2. For each j € [r], let

7= {t € No,(z;) € Of}:
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by assumption, T; # () Vj € [r]. By Lemma 15, for every z € Sy, Ja € A,,u € R’} such that
z = Z;Zl a;z; + u. For each z € Sy, arbitrarily fix a unique o € A, and u* € R’} satisfying
the above, i.e. such that

r
— Z,, . z
Z = E ajzj—l—u .

j=1

Now define pred’ : Sy, —[k] as
pred’(z) = min {¢ € [k] : 3j € [r] such that &% > L and t € T} } .

We will show pred’ satisfies the condition for classification calibration.

Fixany p € A,,. Let
Jo={i €l ipeNs,(z)}:
since A, = J;_, Ns, (z;), we have Jp, # 0. Clearly,

Vi€ Jp:p'z;= inf p'z (12)
ZESw

Vi¢Jp:p' z; > inf p'z (13)
zZESy
Moreover, from definition of 7);, we have

VicJp: teT; = peQf = tcargmin,p & .

Thus we get
Viedp: T;C argmint,pTEt/ . (14)
Now, for any z € S, for which pred’(z) ¢ argminy p' £, we must have of > 1 for at least

one j ¢ Jp (otherwise, we would have pred’(z) € T for some j € Jp, giving pred’(z) €
arg ming p ' £, a contradiction). Thus we have

T

inf Tz = inf a?p'z; +p'u? 15
zESy, :pred’(z)éargmint,p‘rlt, P zE S,y :pred’ (z) ¢argmin,, p L, ng Jp ! P ( )
”
> inf ap'z; (16)
o aeAr:ajZ%forsome]&Jpjz:; P2
> min inf a;p'z +(1—a;) inf p'z (17)
i¢dpazeltay 00 ( j)zeSw
> inf p'z, (18)
ZESw

where the last inequality follows from Eq. (13). Since the above holds for all p € A,,, by Lemma 2,
we have that 1 is classification calibrated w.r.t. £ over A,,. O

Proof of Lemma 8

Recall that a convex function ¢ : R—R (where R = R U {—00,00}) attains its minimum at
ug € RY iff the subdifferential 0¢(uyp) contains 0 € R¢ (e.g. see [18]). Also, if ¢1, ¢ : RY—TR are
convex functions, then the subdifferential of their sum ¢; + ¢2 at ug is is equal to the Minkowski
sum of the subdifferentials of ¢; and ¢ at ug:

(1 + ¢2)(ug) = {w1+wa:wi € 9¢1(ug), wz € dp2(ug)} .

12



Proof. We have for all p € R"”,
pENs, (P(t) < peA, p'ylt)<p'zVvdes,
— PpE An? PT"M{?) < PTZI vz’ € Rw

< pcA,, and the convex function ¢(t') =

achieves its minimum at t' =t

= pEN, 0 p,dihy(t)

y=1

pTy(t) = X pytby(F)

n Sy
< pep, 0= Zpy Zv;’w? for some v¥ € A,
y=1 j=1

vt T €Ay, VY EA

Sy

n Sy
— pei,, 0= ZZ gjw¥ for some q¥ = p,v¥, v¥ € A,
y=1j=1
< peA,,Aq=0forsomeq= (pv!,...
<= p = Bqforsome q € Null(A)NA;.

Proof of Lemma 10

t
10
pred(t) = min {t € [k] : pt e Q.

We will show that pred satisfies the condition of Definition 1.

Proof. Foreacht € T, define pf = (

Fix p € A,,. It can be seen that

n—1

Jj=1

Minimizing the above over t yields the unique minimizer t* = (p1,---

some calculation gives

teT
Now, for each t € [k], define

regretﬁ,(t) = p' e — trlréi[rkl] p by .

O

) € A,,. Define pred : T—[k] as

.2),

pT() = Y (pill — 12+ (1 -y

Pn_1) € T, which after

n—1
inf p' (k) = p'Pp(t) = Y p(1-p)).
j=1

Clearly, regretf)(t) — 0 <= p € Q% Note also that p** = p, and therefore regretf) (pred(t*)) = 0.

Let .
€ = min regret (t) > 0.
relilpgor o)
Then we have
- inf p'yt) =  inf p (t) (19)
teT pred(t) gargmin, p T £, fGT,regrelfJ(pred(f:))Zs
= inf p y(t).  (20)

teT regret?, (pred(t)) >regretf, (pred(t*))+e

. . n Z " . . n _ A* .
Now, we claim that the mapping t > regret;, (pred(t)) is continuous at t = t*. To see this, suppose

the sequence t,,, converges to t*. Then it is easy to see that pe’" converges to pE* = p, and therefore

13



for each ¢t € [k], (pf"")TZt converges to p ' £;. Since by definition of pred we have that for all m,
pred(t,,) € argmin, (ptm) T, this implies that for all large enough m, pred(t,,) € argmin,p ' £;.
Thus for all largeA enough m, regretf) (pred(ftn)) = 0; i.e. the sequence regretf) (pred(t,,,)) converges
to regretf; (pred(t*)), yielding continuity at t*. In particular, this implies 30 > 0 such that

It —t*|| <6 = regretf)(pred(f)) - regretf)(pred(f*)) <e€.

This gives
_ inf p ) > inf  ple) Q1)
teT regrett, (pred(£)) >regreté, (pred(t*))+€ teT lt—t|>6
> inf pTep(t), (22)
teT

where the last inequality holds since p "% (t) is a strictly convex function of t and t* is its unique
minimizer. The above sequence of inequalities give us that

~inf p Yt) > infple(t). (23)
teT ,pred(t)gargmin, p T £, teT
Since this holds for all p € A,,, we have that 1) is classification calibrated w.r.t. £ over A,,. ]

Proof of Theorem 13

The proof uses the following lemma:
Lemma 16. Let ( : [n] x [k]—=R". Let p € relint(A,,). Then for any ty,t> € argming p' £y (i.e.
such that p € Qf N Qf ),

ror (P) = 1oy (P)-

Proof. Lett;,to € argming p' £y (ie.p € Qfl N QfQ). Now
9l ={qeR":—q<0,e'q=1,(¢, —£) q<0Vte[kl]}.

Moreover, we have —p < 0, and (¢, — £,)'p = 0iff p € Qf. Let {t € [k] : p € Qf} =
{t1,...,1,} for some r € [k]. Then by Lemma 14, we have

pot = nullity(A;),

where A; € ROHDX" is a matrix containing r rows of the form (£;, — E{j)T,j € [r] and the all
ones row. Similarly, we get '
e = nullity(Az),

where Ay € R D" j5 a matrix containing r rows of the form (£, — E;gj)T, J € [r] and the all
ones row. It can be seen that the subspaces spanned by the first  rows of A; and A, are both equal
to the subspace parallel to the affine space containing £; , ..., #£; . Thus both A; and A, have the
same row space and hence the same null space and nullity, and therefore rot (p) = ot (p). O

Proof. (Proof of Theorem 13 for p € relint(A,,) such that inf,¢cs, p 'z is achieved in S;)

Let d € N be such that there exists a convex surrogate target space T C R? and a convex surrogate
loss 1 : ’?’—)Rﬁ that is classification calibrated with respect to £ over A,,. As noted previously,
we can equivalently view 1 as being defined as 1) : Rd—ﬂRﬁ, with wy(f) = oo for t ¢ T (and all
y € [n]). If d > n — 1, we are done. Therefore in the following, we assume d < n — 1.

Let p € relint(A,,). Note that inf,cs, p | z always exists (since both p and ¢ are non-negative). It
can be shown that this infimum is attained in cl(Sy), i.e. 3z* € cl(Sy) such that inf,cs, p'z =

p'z*. In the following, we give a proof for the case when this infimum is attained within Sy; the
proof for the general case where the infimum is attained in cl(Sy) is similar but more technical,
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requiring extensions of the positive normals and the necessary condition of Theorem 6 to sequences
of points in Sy, (complete details will be provided in a longer version of the paper).

For the rest of the proof, we assume p is such that the infimum inf,cs, p 'z is achieved in Sy
In this case, it is easy to see that the infimum must then be achieved in R, (e.g. see [18]). Thus

3z* = 9 (t*) for some t* € T such that inf,cs, p'z = p' z*, and therefore p € Ns,, (z*). This
gives (e.g. see discussion before proof of Lemma 8)

0 € ap () =) p0v,(t).

Thus for each y € [n], 3w, € 9ib,(t*) such that > y=1PyWy = 0. Now let A = [Wi...w,] €
R, and let
H = {a€A,:Aq=0} = {qeR":Aq=0,e'q=1,-q <0},

where e is the n x 1 all ones vector. We have p € H, and moreover, —p < 0. Therefore, by
Lemma 14, we have

. A
pn(p) = nulhty([e—rD > n—(d+1).
Now,
qeEH — Aq=0 — OEqu&/}y(f*) = q'z" = 1ensf q'z = qe€Ns,(z"),
y=1 zEow

which gives H C N, (z*). Moreover, by Theorem 6, we have that 3t, € [k] such that N5, (z*) C
Qf . This gives H C Qf , and therefore

pot (P) 2 pu(p) 2 n—d—1.
By Lemma 16, we then have that for all ¢ such that p € Qf s
poi(p) = poy (p) 2 n—d—1,
which gives
d > n—pge(p)—1.
This completes the proof for the case when inf,cs, p 'z is achieved in Sy. As noted above, the

proof for the case when this infimum is attained in cl(S,;) but not in Sy, requires more technical
details which will be provided in a longer version of the paper. O

Proof of Lemma 14

1
Proof. We will show that F¢(p) N (—Fe(p)) = Nuu( [ig} ) from which the lemma follows.

1
First, let v € Null( [ig] ) Then for € > 0, we have

A'lp+ev) = A'p+eAlv = Alp4+0 = b!
A%(p+ev) < b? forsmall enough ¢, since A*p < b?
A3(p+ev) = A’p+eAdv = A’p+0 = b?.

Thus v € F¢(p). Similarly, we can show —v € Fe(p). Thus v € Fe(p) N (—Fe(p)), giving
Al
Null([‘45]) € Fe(p) N (~Fe(m)).

Now let v € Fe(p) N (—Fc(p)). Then for small enough € > 0, we have both Al(p + ev) < b!
and A! (p—ev) < bl. Since Alp = bl, this gives Alv =0. Similarly, for small enough ¢ > 0,

1
we have A3(p + ev) = b?; since A®p = b?, this gives A3v = 0. Thus [23}

Felp)n (-Fe(p) < Nul([43]) -

v = 0, giving
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