
Appendix: Classification Calibration Dimension for General Multiclass Losses

Calculation of Trigger Probability Sets for Figure 2

(a) 0-1 loss `0-1 (n = 3).

`1 =

(
0
1
1

)
; `2 =

(
1
0
1

)
; `3 =

(
1
1
0

)
.

Q0-1
1 = {p ∈ ∆3 : p>`1 ≤ p>`2, p

>`1 ≤ p>`3}
= {p ∈ ∆3 : p2 + p3 ≤ p1 + p3, p2 + p3 ≤ p1 + p2}
= {p ∈ ∆3 : p2 ≤ p1, p3 ≤ p1}
= {p ∈ ∆3 : p1 ≥ max(p2, p3)}

By symmetry,

Q0-1
2 = {p ∈ ∆3 : p2 ≥ max(p1, p3)}
Q0-1

3 = {p ∈ ∆3 : p3 ≥ max(p1, p2)}

(b) Ordinal regression loss `ord (n = 3).

`1 =

(
0
1
2

)
; `2 =

(
1
0
1

)
; `3 =

(
2
1
0

)
.

Qord
1 = {p ∈ ∆3 : p>`1 ≤ p>`2, p

>`1 ≤ p>`3}
= {p ∈ ∆3 : p2 + 2p3 ≤ p1 + p3, p2 + 2p3 ≤ 2p1 + p2}
= {p ∈ ∆3 : p2 + p3 ≤ p1, p3 ≤ p1}
= {p ∈ ∆3 : 1− p1 ≤ p1}
= {p ∈ ∆3 : p1 ≥ 1

2}

By symmetry,

Qord
3 = {p ∈ ∆3 : p3 ≥ 1

2}

Finally,

Qord
2 = {p ∈ ∆3 : p>`2 ≤ p>`1, p

>`2 ≤ p>`3}
= {p ∈ ∆3 : p1 + p3 ≤ p2 + 2p3, p1 + p3 ≤ 2p1 + p2}
= {p ∈ ∆3 : p1 ≤ p2 + p3, p3 ≤ p1 + p2}
= {p ∈ ∆3 : p1 ≤ 1− p1, p3 ≤ 1− p3}
= {p ∈ ∆3 : p1 ≤ 1

2 , p3 ≤ 1
2}

(c) ‘Abstain’ loss `(?) (n = 3).

`1 =

(
0
1
1

)
; `2 =

(
1
0
1

)
; `3 =

(
1
1
0

)
; `4 =

 1
2
1
2
1
2

 .

Q(?)
1 = {p ∈ ∆3 : p>`1 ≤ p>`2, p

>`1 ≤ p>`3, p
>`1 ≤ p>`4}

= {p ∈ ∆3 : p2 + p3 ≤ p1 + p3, p2 + p3 ≤ p1 + p2, p2 + p3 ≤ 1
2 (p1 + p2 + p3)}

= {p ∈ ∆3 : p2 ≤ p1, p3 ≤ p1, p2 + p3 ≤ 1
2}

= {p ∈ ∆3 : p1 ≥ 1
2}
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By symmetry,

Q(?)
2 = {p ∈ ∆3 : p2 ≥ 1

2}
Q(?)

3 = {p ∈ ∆3 : p3 ≥ 1
2}

Finally,

Q(?)
4 = {p ∈ ∆3 : p>`4 ≤ p>`1, p

>`4 ≤ p>`2, p
>`4 ≤ p>`2}

= {p ∈ ∆3 : 1
2 (p1 + p2 + p3) ≤ min(p2 + p3, p1 + p3, p1 + p2)}

= {p ∈ ∆3 : 1
2 ≤ 1−max(p1, p2, p3)}

= {p ∈ ∆3 : max(p1, p2, p3) ≤ 1
2}

Proof of Theorem 6

Proof. Since ψ is classification calibrated w.r.t. ` over ∆n, by Lemma 2, ∃pred′ : Sψ→[k] such that

∀p ∈ ∆n : inf
z′∈Sψ:pred′(z′)/∈argmintp>`t

p>z′ > inf
z′∈Sψ

p>z′ . (9)

Now suppose there is some z ∈ Sψ such that NSψ (z) is not contained in Q`t for any t ∈ [k]. Then
∀t ∈ [k], ∃q ∈ NSψ (z) such that q /∈ Q`t , i.e. such that t /∈ argmint′q

>`t′ . In particular, for
t = pred′(z), ∃q ∈ NSψ (z) such that pred′(z) /∈ argmint′q

>`t′ .

Since q ∈ NSψ (z), we have

q>z = inf
z′∈Sψ

q>z′ . (10)

Moreover, since pred′(z) /∈ argmint′q
>`t′ , we have

inf
z′∈Sψ:pred′(z′)/∈argmint′q>`t′

q>z′ ≤ q>z = inf
z′∈Sψ

q>z′ . (11)

This contradicts Eq. (9). Thus it must be the case that ∀z ∈ Sψ , ∃t ∈ [k] with NSψ (z) ⊆ Q`t .

Proof of Theorem 7

The proof uses the following technical lemma:

Lemma 15. Let ψ : [n] × T̂ →R+. Suppose there exist r ∈ N and z1, . . . , zr ∈ Rψ such that⋃r
j=1NSψ (zj) = ∆n. Then any element z ∈ Sψ can be written as z = z′ + z′′ for some z′ ∈

conv({z1, . . . , zr}) and z′′ ∈ Rn+.

Proof. Let S ′ = {z′ + z′′ : z′ ∈ conv({z1, . . . , zr}), z′′ ∈ Rn+}, and suppose there exists a point
z ∈ Sψ which cannot be decomposed as claimed, i.e. such that z /∈ S ′. Then by the Hahn-Banach
theorem (e.g. see [19], corollary 3.10), there exists a hyperplane that strictly separates z from S ′,
i.e. ∃w ∈ Rn such that w>z < w>a ∀a ∈ S ′. It is easy to see that w ∈ Rn+ (since a negative
component in w would allow us to choose an element a from S ′ with arbitrarily small w>a).

Now consider the vector q = w/
∑n
i=1 wi ∈ ∆n. Since

⋃r
j=1NSψ (zj) = ∆n, ∃j ∈ [r] such that

q ∈ NSψ (zj). By definition of positive normals, this gives q>zj ≤ q>z, and therefore w>zj ≤
w>z. But this contradicts our construction of w (since zj ∈ S ′). Thus it must be the case that every
z ∈ Sψ is also an element of S ′.

Proof. (Proof of Theorem 7)

We will show classification calibration of ψ w.r.t. ` (over ∆n) via Lemma 2. For each j ∈ [r], let

Tj =
{
t ∈ [k] : NSψ (zj) ⊆ Q`t

}
;
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by assumption, Tj 6= ∅ ∀j ∈ [r]. By Lemma 15, for every z ∈ Sψ , ∃α ∈ ∆r,u ∈ Rn+ such that
z =

∑r
j=1 αjzj + u . For each z ∈ Sψ , arbitrarily fix a unique αz ∈ ∆r and uz ∈ Rn+ satisfying

the above, i.e. such that

z =

r∑
j=1

αz
jzj + uz .

Now define pred′ : Sψ→[k] as

pred′(z) = min
{
t ∈ [k] : ∃j ∈ [r] such that αz

j ≥ 1
r and t ∈ Tj

}
.

We will show pred′ satisfies the condition for classification calibration.

Fix any p ∈ ∆n. Let

Jp =
{
j ∈ [r] : p ∈ NSψ (zj)

}
;

since ∆n =
⋃r
j=1NSψ (zj), we have Jp 6= ∅. Clearly,

∀j ∈ Jp : p>zj = inf
z∈Sψ

p>z (12)

∀j /∈ Jp : p>zj > inf
z∈Sψ

p>z (13)

Moreover, from definition of Tj , we have

∀j ∈ Jp : t ∈ Tj =⇒ p ∈ Q`t =⇒ t ∈ argmint′p
>`t′ .

Thus we get

∀j ∈ Jp : Tj ⊆ argmint′p
>`t′ . (14)

Now, for any z ∈ Sψ for which pred′(z) /∈ arg mint′ p
>`t′ , we must have αz

j ≥ 1
r for at least

one j /∈ Jp (otherwise, we would have pred′(z) ∈ Tj for some j ∈ Jp, giving pred′(z) ∈
arg mint′ p

>`t′ , a contradiction). Thus we have

inf
z∈Sψ:pred′(z)/∈argmint′p>`t′

p>z = inf
z∈Sψ:pred′(z)/∈argmint′p>`t′

r∑
j=1

αz
jp
>zj + p>uz (15)

≥ inf
α∈∆r:αj≥ 1

r for some j /∈Jp

r∑
j=1

αjp
>zj (16)

≥ min
j /∈Jp

inf
αj∈[ 1r ,1]

αjp
>zj + (1− αj) inf

z∈Sψ
p>z (17)

> inf
z∈Sψ

p>z , (18)

where the last inequality follows from Eq. (13). Since the above holds for all p ∈ ∆n, by Lemma 2,
we have that ψ is classification calibrated w.r.t. ` over ∆n.

Proof of Lemma 8

Recall that a convex function φ : Rd→R̄ (where R̄ = R ∪ {−∞,∞}) attains its minimum at
u0 ∈ Rd iff the subdifferential ∂φ(u0) contains 0 ∈ Rd (e.g. see [18]). Also, if φ1, φ2 : Rd→R̄ are
convex functions, then the subdifferential of their sum φ1 + φ2 at u0 is is equal to the Minkowski
sum of the subdifferentials of φ1 and φ2 at u0:

∂(φ1 + φ2)(u0) =
{
w1 + w2 : w1 ∈ ∂φ1(u0),w2 ∈ ∂φ2(u0)

}
.
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Proof. We have for all p ∈ Rn,

p ∈ NSψ (ψ(t̂)) ⇐⇒ p ∈ ∆n, p
>ψ(t̂) ≤ p>z′ ∀z′ ∈ Sψ

⇐⇒ p ∈ ∆n, p
>ψ(t̂) ≤ p>z′ ∀z′ ∈ Rψ

⇐⇒ p ∈ ∆n, and the convex function φ(t̂′) = p>ψ(t̂′) =
∑n
y=1 pyψy(t̂′)

achieves its minimum at t̂′ = t̂

⇐⇒ p ∈ ∆n, 0 ∈
n∑
y=1

py∂ψy(t̂)

⇐⇒ p ∈ ∆n, 0 =

n∑
y=1

py

sy∑
j=1

vyjw
y
j for some vy ∈ ∆sy

⇐⇒ p ∈ ∆n, 0 =

n∑
y=1

sy∑
j=1

qyjw
y
j for some qy = pyv

y , vy ∈ ∆sy

⇐⇒ p ∈ ∆n,Aq = 0 for some q = (p1v
1, . . . , pnv

n)> ∈ ∆s, vy ∈ ∆sy

⇐⇒ p = Bq for some q ∈ Null(A) ∩∆s .

Proof of Lemma 10

Proof. For each t̂ ∈ T̂ , define pt̂ =

(
t̂

1−
∑n−1
j=1 t̂j

)
∈ ∆n. Define pred : T̂ →[k] as

pred(t̂) = min
{
t ∈ [k] : pt̂ ∈ Q`t

}
.

We will show that pred satisfies the condition of Definition 1.

Fix p ∈ ∆n. It can be seen that

p>ψ(t̂) =

n−1∑
j=1

(
pj(t̂j − 1)2 + (1− pj) t̂j2

)
.

Minimizing the above over t̂ yields the unique minimizer t̂∗ = (p1, . . . , pn−1)> ∈ T̂ , which after
some calculation gives

inf
t̂∈T̂

p>ψ(t̂) = p>ψ(t̂∗) =

n−1∑
j=1

pj(1− pj) .

Now, for each t ∈ [k], define

regret`p(t)
4
= p>`t − min

t′∈[k]
p>`t′ .

Clearly, regret`p(t) = 0⇐⇒ p ∈ Q`t . Note also that pt̂∗ = p, and therefore regret`p(pred(t̂∗)) = 0.
Let

ε = min
t∈[k]:p/∈Q`t

regret`p(t) > 0 .

Then we have

inf
t̂∈T̂ ,pred(t̂)/∈argmintp>`t

p>ψ(t̂) = inf
t̂∈T̂ ,regret`p(pred(t̂))≥ε

p>ψ(t̂) (19)

= inf
t̂∈T̂ ,regret`p(pred(t̂))≥regret`p(pred(t̂∗))+ε

p>ψ(t̂) . (20)

Now, we claim that the mapping t̂ 7→ regret`p(pred(t̂)) is continuous at t̂ = t̂∗. To see this, suppose
the sequence t̂m converges to t̂∗. Then it is easy to see that pt̂m converges to pt̂∗ = p, and therefore
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for each t ∈ [k], (pt̂m)>`t converges to p>`t. Since by definition of pred we have that for all m,
pred(t̂m) ∈ argmint(p

t̂m)>`t, this implies that for all large enough m, pred(t̂m) ∈ argmintp
>`t.

Thus for all large enough m, regret`p(pred(t̂m)) = 0; i.e. the sequence regret`p(pred(t̂m)) converges
to regret`p(pred(t̂∗)), yielding continuity at t̂∗. In particular, this implies ∃δ > 0 such that

‖t̂− t̂∗‖ < δ =⇒ regret`p(pred(t̂))− regret`p(pred(t̂∗)) < ε .

This gives

inf
t̂∈T̂ ,regret`p(pred(t̂))≥regret`p(pred(t̂∗))+ε

p>ψ(t̂) ≥ inf
t̂∈T̂ ,‖t̂−t̂∗‖≥δ

p>ψ(t̂) (21)

> inf
t̂∈T̂

p>ψ(t̂) , (22)

where the last inequality holds since p>ψ(t̂) is a strictly convex function of t̂ and t̂∗ is its unique
minimizer. The above sequence of inequalities give us that

inf
t̂∈T̂ ,pred(t̂)/∈argmintp>`t

p>ψ(t̂) > inf
t̂∈T̂

p>ψ(t̂) . (23)

Since this holds for all p ∈ ∆n, we have that ψ is classification calibrated w.r.t. ` over ∆n.

Proof of Theorem 13

The proof uses the following lemma:

Lemma 16. Let ` : [n]× [k]→Rn+. Let p ∈ relint(∆n). Then for any t1, t2 ∈ arg mint′ p
>`t′ (i.e.

such that p ∈ Q`t1 ∩Q
`
t2 ),

µQ`t1
(p) = µQ`t2

(p) .

Proof. Let t1, t2 ∈ arg mint′ p
>`t′ (i.e. p ∈ Q`t1 ∩Q

`
t2 ). Now

Q`t1 =
{
q ∈ Rn : −q ≤ 0, e>q = 1, (`t1 − `t)>q ≤ 0 ∀t ∈ [k]

}
.

Moreover, we have −p < 0, and (`t1 − `t)>p = 0 iff p ∈ Q`t . Let
{
t ∈ [k] : p ∈ Q`t

}
={

t̃1, . . . , t̃r
}

for some r ∈ [k]. Then by Lemma 14, we have

µQ`t1
= nullity(A1) ,

where A1 ∈ R(r+1)×n is a matrix containing r rows of the form (`t1 − `t̃j )
>, j ∈ [r] and the all

ones row. Similarly, we get
µQ`t2

= nullity(A2) ,

where A2 ∈ R(r+1)×n is a matrix containing r rows of the form (`t2 − `t̃j )
>, j ∈ [r] and the all

ones row. It can be seen that the subspaces spanned by the first r rows of A1 and A2 are both equal
to the subspace parallel to the affine space containing `t̃1 , . . . , `t̃r . Thus both A1 and A2 have the
same row space and hence the same null space and nullity, and therefore µQ`t1 (p) = µQ`t2

(p).

Proof. (Proof of Theorem 13 for p ∈ relint(∆n) such that infz∈Sψ p>z is achieved in Sψ)

Let d ∈ N be such that there exists a convex surrogate target space T̂ ⊆ Rd and a convex surrogate
loss ψ : T̂ →Rn+ that is classification calibrated with respect to ` over ∆n. As noted previously,
we can equivalently view ψ as being defined as ψ : Rd→R̄n+, with ψy(t̂) = ∞ for t̂ /∈ T̂ (and all
y ∈ [n]). If d ≥ n− 1, we are done. Therefore in the following, we assume d < n− 1.

Let p ∈ relint(∆n). Note that infz∈Sψ p>z always exists (since both p and ψ are non-negative). It
can be shown that this infimum is attained in cl(Sψ), i.e. ∃z∗ ∈ cl(Sψ) such that infz∈Sψ p>z =

p>z∗. In the following, we give a proof for the case when this infimum is attained within Sψ; the
proof for the general case where the infimum is attained in cl(Sψ) is similar but more technical,
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requiring extensions of the positive normals and the necessary condition ofTheorem 6 to sequences
of points in Sψ (complete details will be provided in a longer version of the paper).

For the rest of the proof, we assume p is such that the infimum infz∈Sψ p>z is achieved in Sψ .
In this case, it is easy to see that the infimum must then be achieved in Rψ (e.g. see [18]). Thus
∃z∗ = ψ(t̂∗) for some t̂∗ ∈ T̂ such that infz∈Sψ p>z = p>z∗, and therefore p ∈ NSψ (z∗). This
gives (e.g. see discussion before proof of Lemma 8)

0 ∈ ∂(p>ψ(t̂∗)) =

n∑
y=1

py∂ψy(t̂∗) .

Thus for each y ∈ [n], ∃wy ∈ ∂ψy(t̂∗) such that
∑n
y=1 pywy = 0. Now let A =

[
w1 . . .wn

]
∈

Rd×n, and let
H =

{
q ∈ ∆n : Aq = 0

}
=
{
q ∈ Rn : Aq = 0, e>q = 1,−q ≤ 0

}
,

where e is the n × 1 all ones vector. We have p ∈ H, and moreover, −p < 0. Therefore, by
Lemma 14, we have

µH(p) = nullity
([A

e>

])
≥ n− (d+ 1) .

Now,

q ∈ H =⇒ Aq = 0 =⇒ 0 ∈
n∑
y=1

qy∂ψy(t̂∗) =⇒ q>z∗ = inf
z∈Sψ

q>z =⇒ q ∈ NSψ (z∗) ,

which gives H ⊆ NSψ (z∗). Moreover, by Theorem 6, we have that ∃t0 ∈ [k] such that NSψ (z∗) ⊆
Q`t0 . This givesH ⊆ Q`t0 , and therefore

µQ`t0
(p) ≥ µH(p) ≥ n− d− 1 .

By Lemma 16, we then have that for all t such that p ∈ Q`t ,
µQ`t (p) = µQ`t0

(p) ≥ n− d− 1 ,

which gives
d ≥ n− µQ`t (p)− 1 .

This completes the proof for the case when infz∈Sψ p>z is achieved in Sψ . As noted above, the
proof for the case when this infimum is attained in cl(Sψ) but not in Sψ requires more technical
details which will be provided in a longer version of the paper.

Proof of Lemma 14

Proof. We will show that FC(p) ∩ (−FC(p)) = Null
([

A1

A3

])
, from which the lemma follows.

First, let v ∈ Null
([

A1

A3

])
. Then for ε > 0, we have

A1(p + εv) = A1p + εA1v = A1p + 0 = b1

A2(p + εv) < b2 for small enough ε, since A2p < b2

A3(p + εv) = A3p + εA3v = A3p + 0 = b3 .

Thus v ∈ FC(p). Similarly, we can show −v ∈ FC(p). Thus v ∈ FC(p) ∩ (−FC(p)), giving

Null
([

A1

A3

])
⊆ FC(p) ∩ (−FC(p)).

Now let v ∈ FC(p) ∩ (−FC(p)). Then for small enough ε > 0, we have both A1(p + εv) ≤ b1

and A1(p − εv) ≤ b1. Since A1p = b1, this gives A1v = 0. Similarly, for small enough ε > 0,

we have A3(p + εv) = b3; since A3p = b3, this gives A3v = 0. Thus
[
A1

A3

]
v = 0, giving

FC(p) ∩ (−FC(p)) ⊆ Null
([

A1

A3

])
.
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