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Abstract

This paper discusses the problem of calibrating posterior class probabilities from
partially labelled data. Each instance is assumed to be labelled as belonging to
one of several candidate categories, at most one of them being true. We generalize
the concept of proper loss to this scenario, we establish a necessary and sufficient
condition for a loss function to be proper, and we show a direct procedure to
construct a proper loss for partial labels from a conventional proper loss. The
problem can be characterized by the mixing probability matrix relating the true
class of the data and the observed labels. The full knowledge of this matrix is not
required, and losses can be constructed that are proper for a wide set of mixing
probability matrices.

1 Introduction

The problem of learning multiple classes from data with imprecise label information has attracted
a recent attention in the literature. It arises in many different applications: Cour [1] cites some of
them: picture collections containing several faces per image and a caption that only specifies who is
in the picture but not which name matches which face, or video collections with labels taken from
annotations.

In a partially labelled data set, each instance is assigned to a set of candidate categories, at most only
one of them true. The problem is closely related to learning from noisy labels, which is common
in human-labelled data bases with multiple annotators [2] [3] medical imaging, crowdsourcing, etc.
Other related problems can be interpreted as particular forms of partial labelling: semisupervised
learning, or hierarchical classification in databases where some instances could be labelled with
respect to parent categories only. It is also a particular case of the more general problems of learning
from soft labels [4] or learning from measurements [5].

Several algorithms have been proposed to deal with partial labelling [1] [2] [6] [7] [8]. Though
some theoretical work has been addressed in order to analyze the consistency of algorithms [1] or
the information provided by uncertain data [8], little effort has been done to analyze the conditions
under which the true class can be inferred from partial labels.

In this paper we address the problem of estimating posterior class probabilities from partially la-
belled data. In particular, we obtain general conditions under which the posterior probability of the
true class given the observation can be estimated from training data with ambiguous class labels. To
do so, we generalize the concept of proper losses to losses that are functions of ambiguous labels,
and show that the capability to estimate posterior class probabilities using a given loss depends on
the probability matrix relating the ambiguous labels with the true class of the data. Each general-
ized proper loss can be characterized by the set (a convex polytope) of all admissible probability
matrices. Analyzing the structure of these losses is one of the main goals of this paper. Up to our
knowledge, the design of proper losses for learning from imperfect labels has not been addressed in
the area of Statistical Learning.
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The paper is organized as follows: Sec. 2 formulates the problem discussed in the paper, Sec. 3
generalizes proper losses to scenarios with ambiguous labels, Sec. 4 proposes a procedure to design
proper losses for wide sets of mixing matrices, Sec. 5 discusses estimation errors and Sec. 6 states
some conclusions.

2 Formulation

2.1 Notation

Vectors are written in boldface, matrices in boldface capital and sets in calligraphic letters. For any
integer n, en

i is a n-dimensional unit vector with all zero components apart from the i-th component
which is equal to one, and 1n is a n-dimensional all-ones vector. Superindex T denotes transposition.
We will use `() to denote a loss based on partial labels, and ˜̀ to losses based on true labels. The
simplex of n-dimensional probability vectors is Pn = {p ∈ [0, 1]n :

∑n−1
i=0 pi = 1} and the set of

all left-stochastic matrices isM = {M ∈ [0, 1]d×c : MT1d = 1c}. The number of classes is c, and
the number of possible partial label vectors is d ≤ 2c.

2.2 Learning from partial labels

Let X be a sample set, Y = {ec
j , j = 0, 1, . . . , c − 1}, a set of labels, and Z ⊂ {0, 1}c a set of

partial labels. Sample (x, z) ∈ X × Z is drawn from an unknown distribution P .

Partial label vector z ∈ Z is a noisy version of the true label y ∈ Y . Several authors [1] [6] [7] [8]
assume that the true label is always present in z, i.e., zj = 1 when yj = 1, but this assumption is
not required in our setting, which admits noisy label scenarios (as, for instance, in [2]). Without loss
of generality, we assume that Z contains only partial labels with nonzero probability (i.e. P{z =
b} > 0 for any b ∈ Z).

In general, we model the relationship between z and y through an arbitrary d×c conditional mixing
probability matrix M(x) with components

mij(x) = P{z = bi|yj = 1,x} (1)

where bi ∈ Z is the i-th element of Z for some arbitrary ordering.

Note that, in general, the mixing matrix could depend on x, though a constant mixing matrix [2] [6]
[7] [8] is a common assumption, as well as the statistical independence of the incorrect labels [6] [7]
[8]. In this paper we do not impose these assumptions.

The goal is to infer y given x without knowing model P . To do so, a set of partially labelled samples,
S = {(xk, zk), k = 1, . . . ,K} is available. True labels yk are not observed.

We will illustrate different partial label scenarios with a 3-class problem. Consider that each column
of MT corresponds to a label pattern (z0, z1, z2) following the ordering (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1) (e.g. the first column contains P{z = (0, 0, 0)T|yj =
1), for j = 0, 1, 2).

A. Supervised learning: M =

(
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

)T

B. Single noisy labels: M =

(
0 1− α α/2 α/2 0 0 0 0
0 β/2 1− β β/2 0 0 0 0
0 γ/2 γ/2 1− γ 0 0 0 0

)T

C. Semisupervised learning: M =

(
α 1− α 0 0 0 0 0 0
β 0 1− β 0 0 0 0 0
γ 0 0 1− γ 0 0 0 0

)T

D. True label with independent noisy labels:

M =

(
0 1− α− α2 0 0 α/2 α/2 0 α2

0 0 1− β − β2 0 β/2 0 β/2 β2

0 0 0 1− γ − γ2 0 γ/2 γ/2 γ2

)T
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E. Two labels, one of them true: M =

(
0 1− α 0 0 α/2 α/2 0 0
0 0 1− β 0 β/2 0 β/2 0
0 0 0 1− γ 0 γ/2 γ/2 0

)T

The question that motivates our work is the following: knowing M (i.e. knowing the scenario and
the value of parameters α, β and γ), we can estimate accurate posterior class probabilities from
partially labelled data in all these cases, however, is it possible if α, β and γ are unknown? We will
see that the answer is negative for scenarios B,C,D, but it is positive for E. In the positive case, no
information is lost by the partial label process for infinite sample sizes. In the negative case, some
performance is lost as a consequence of the mixing process, that persists even for infinite sample
sizes 1

2.3 Inference through partial label probabilities

If the mixing matrix is known, a conceptually simple strategy to solve the partial label problem
consists of estimating posterior partial label probabilities, using them to estimate posterior class
probabilities and predict y. Since

P{z = bi|x} =
c−1∑
j=0

mij(x)P{yj = 1|x}, (2)

we can define vectors p(x) and η(x) with components pi = P{z = bi|x} and ηj = P{yj = 1|x},
to write (2) as p(x) = M(x)η(x) and, thus,

η(x) = M+(x)p(x) (3)

where M+(x) = (MT(x)M(x))−1MT(x) is the left inverse (pseudoinverse) of M(x).

Thus, a first condition to estimate η from p given M is that the conditional mixing matrix has a left
inverse (i.e., the columns of M(x) are linearly independent).

There are some trivial cases where the mixing matrix has no pseudoinverse (for instance, if
P{z|y,x} = P{z|x}, all rows in M(x) are equal, and MT(x)M(x) is a rank 1 matrix, which
has no inverse), but these are degenerate cases of no practical interest. From a practical point of
view, the application of (3) states two major problems: (1) when the model P is unknown, even
knowing M, estimating p from data may be infeasible for d close to 2c and a large number of
classes (furthermore, posterior probability estimates will not be accurate if the sample size is small),
and (2) M(x) is generally unknown, and cannot be estimated from the partially labelled set, S .

The solution adopted in this paper for the first problem consists of estimating η from data without
estimating p. This is discussed in the next section. The second problem is discussed in Section 4.

3 Loss functions for posterior probability estimation

The estimation of posterior probabilities from labelled data is a well known problem in statistics and
machine learning, that has received some recent attention in the machine learning literature [9] [10].
In order to estimate posteriors from labelled data, a loss function ˜̀(y, η̂) is required such that η is
a member of argminη̂ Ey{˜̀(y, η̂)}. Losses satisfying this property are said to be Fisher consistent
and are known as proper scoring rules. A loss is strictly proper if η is the only member of this set.
A loss is regular if it is finite for any y, except possibly that ˜̀(y, η̂) =∞ if yj = 1 and η̂j = 0.

Proper scoring rules can be characterized by the Savage’s representation [11] [12]

Theorem 3.1 A regular scoring rule ˜̀ : Z × Pc → R is (strictly) proper if and only if
˜̀(y, η̂) = h(η̂) + g(η̂)(y − η̂) (4)

where h is a (strictly) concave function and g(η̂) is a supergradient of h at the point η̂, for all
η̂ ∈ Pc.

1If the sample size is large (in particular for scenarios C and D), one could think of simply ignoring samples
with imperfect labels, and training the classifier with the samples whose class is known. However, in general,
there is some bias in this process, which eventually can degrade performance.
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(Remind that g is a supergradient of h at η̂ if h(η) ≤ h(η̂) + gT(η − η̂)).

In order to deal with partial labels, we generalize proper losses as follows

Definition Let y and z be random vectors taking values in Y and Z , respectively. A scoring rule
`(z, η̂) is proper to estimate η (with components ηj = P{yj = 1}) from z if

η ∈ argmin
η̂

Ez{`(z, η̂)} (5)

It is strictly proper if η is the only member of this set.

This generalized family of proper scoring rules can be characterized by the following.

Theorem 3.2 Scoring rule `(z, η̂) is (strictly) proper to estimate η from z if and only if the equiva-
lent loss

˜̀(y, η̂) = yTMTl(η̂), (6)

where l(η̂) is a vector with components `i(η̂) = `(bi, η̂) and bi is the i-th element in Z (according
to some arbitrary ordering), is (strictly) proper.

Proof The proof is straightforward by noting that the expected loss can be expressed as

Ez{`(z, η̂)} =
d−1∑
i=0

P{z = bi}`i(η̂) =
d−1∑
i=0

c−1∑
j=0

mijηj`i(η̂)

= ηTMTl(η̂) = Ey{yTMTl(η̂)} = Ey{˜̀(y, η̂)} (7)

Therefore, argminη̂ Ez{`(z, η̂)} = argminη̂ Ey{˜̀(y, η̂)} and, thus, ` is (strictly) proper with
respect to y iff ˜̀ is (strictly) proper.

Note that, defining vector l̃(η̂) with components ˜̀
j(η̂) = ˜̀(ec

j , η̂), we can write

l̃(η̂) = MTl(η̂) (8)

We will use this vector representation of losses extensively in the following.

Th. 3.2 states that the proper character of a loss for estimating η from z depends on M. For this
reason, in the following we will say that `(z, η̂) is M-proper if it is proper to estimate η from z.

4 Proper losses for sets of mixing matrices

Eq. (8) may be useful to check if a given loss is M-proper. However, note that, since matrix MT is
d× c, it has no left inverse, and we cannot take MT out from the left side of (8) to compute ` from ˜̀.
For any given M and any given equivalent loss l̃(η̂), there is an uncountable number of losses l(η̂)
satisfying (8).

Example Let ˜̀be an arbitrary proper loss for a 3-class problem. The losses

`(z, η̂) = (z0 − z1z2)˜̀0(η̂) + (z1 − z0z2)˜̀1(η̂) + (z2 − z0z1)˜̀2(η̂) (9)

`′(z, η̂) = z0 ˜̀0(η̂) + z1 ˜̀1(η̂) + z2 ˜̀2(η̂) (10)

are M-proper for the mixing matrix M given by

mij =

[
1 if bi = ec

j

0 otherwise (11)

Note that M corresponds to a situation where labels are perfectly labelled, and z contains perfect
information about y (in fact, z = y with probability one).

Also, for any `(z, η̂), there are different mixing matrices such that the equivalent loss is the same.
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Example The loss given by (9) is M-proper for the mixing matrix M in (11) and it is also N-proper,
for N with components

nij =

[
1/2 if bi = ec

j + ec
k, for some k 6= j

0 otherwise (12)

Matrix N corresponds to a situation where label z contains the true class and another noisy compo-
nent taken at random from the other classes.

In general, if l(η̂) is M-proper and N-proper with equivalent loss l̃(η̂), then it is also Q-proper with
the same equivalent loss, for any Q in the form

Q = M(I−D) + ND (13)

where D is a diagonal nonnegative matrix (note that Q is a probability matrix, because QT1d = 1c).
This is because

QTl(η̂) = (I−D)MTl(η̂) + DNTl(η̂) = (I−D)̃l(η̂) + Dl̃(η̂) = l̃(η̂) (14)

More generally, for arbitrary non-diagonal matrices D, provided that Q is a probability matrix, l(η̂)
is Q-proper.

Example Assuming diagonal D, if M and N are the mixing matrices defined in (11) and (12),
respectively, the loss (9) is Q-proper for any mixing matrix Q in the form (13). This corresponds to
a matrix with components

qij =

 djj if bi = ec
j

(1− djj)/2 if bi = ec
j + ec

k, for some k 6= j
0 otherwise

(15)

That is, the loss in (9) is proper for any situation where the label z contains the true class and
possibly another class taken at random, and the probability that the true label is corrupted may be
class-dependent.

4.1 Building proper losses from ambiguity sets

The ambiguity on M for a given loss l(η̂) can be used to deal with the second problem mentioned
in Sec. 2.3: in general, the mixing matrix may be unknown, or, even if it is known, it may depend
on the observation, x. Thus, we need a procedure to design losses that are proper for a wide family
of mixing matrices. In general, given a set of mixing matrices, Q, we will say that ` is Q-proper if
it is M-proper for any M ∈ Q
The following result provides a way to construct a proper loss ` for partial labels from a given
conventional proper loss ˜̀.

Theorem 4.1 For 0 ≤ j ≤ c − 1, let Vj = {vj
i ∈ Pd, 1 ≤ i ≤ nj} be a set of nj > 0 probability

vectors with dimension d, such that
∑c−1

j=0 nj = d and span(∪c−1j=0Vj) = Rd and let Q = {M ∈
M : Mec

j ∈ span(Vj) ∩ Pd}.

Then, for any (strictly) proper loss ˜̀(y, η̂), there exists a loss `(z, η̂) which is (strictly) Q-proper.

Proof The proof is constructive. Let V be a d×dmatrix whose columns are the elements of∪c−1j=0Vj ,
which is invertible since span(∪c−1j=0Vj) = Rd. Let c(η̂) be a d × 1 vector such that ci(η̂) = ˜̀

j(η̂)

if Ved
i ∈ Vj .

Let `(z, η̂) be a loss defined by vector l(η̂) = (VT)−1c(η̂).

Consider the set R = {M ∈ M : Mec
j ∈ Vj for all j} (which is not empty because nj > 0).

Since the columns of any M ∈ R are also columns of V, then MTl(η̂) = l̃(η̂) and, thus, `(z, η̂) is
M-proper. Therefore, it is also proper for any affine combination of matrices in R inside Pd. But
span(R) ∩ Pd = Q. Thus, `(z, η̂) is M-proper for all M ∈ Q (i.e. it is Q-proper).
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Theorem 4.1 shows that we can construct proper losses for learning from partial labels by specifying
the points of sets Vj , j = 0, . . . , c− 1. Each of these sets defines an ambiguity set Aj = span(Vj)∩
Pd which represents all admissible conditional distributions for P (z|yj = 1). If the columns of the
true mixing matrix M are members of the ambiguity set, the resulting loss can be used to estimate
posterior class probabilities from the observed partial labels.

Thus, a general procedure to design a loss function for learning from partial labels is:

1. Select a proper loss, ˜̀(y, η̂)
2. Define the ambiguity sets by choosing, for each class j, a set Vj of nj linearly independent

basis vectors for each class. The whole set of d basis vectors must be linearly independent.
3. Construct matrix V whose columns comprise all basis vectors.
4. Construct binary matrix U with uji = 1 if the i-th column of V is in Vj , and uji = 0

otherwise.
5. Compute the desired proper loss vector as

l(η̂) = (VT)−1Ul̃(η̂) (16)

Since the ambiguity set Aj is the intersection of a nj-dimensional linear subspace with the d-
dimensional probability simplex, it is a nj − 1 dimensional convex polytope whose vertices lie
in distinct (nj − 1)-faces of Pd. These vertices must have a set of at least nj − 1 zero components
which cannot be a set of zeros in any other vertex.

This has two consequences: (1) we can define the ambiguity sets from these vertices, and (2), the
choice is not unique, because the number of vertices can be higher than nj − 1.

If proper loss ˜̀(y, η̂) is non degenerate, Q contains all mixing matrices for which a loss is proper:

Theorem 4.2 Let us assume that, if aT l̃(η̂) = 0 for any η̂, then a = 0. Under the conditions of
Theorem 4.1, for any M ∈M \Q, `(z, η̂) is not M-proper.

Proof Since the columns of V are in the ambiguity sets and form a basis of Rd, span(∪c−1j=0Aj) =

Rd. Thus, the n-th column of any arbitrary M can be represented as mn =
∑c

j=1 αn,jwj for some
wj ∈ Aj and some coefficients αnj . If M /∈ Q, αnj 6= 0 for some j 6= n and some n. Then
mT

nl(η̂) =
∑l

j=1 αnj
˜̀
j(η̂), which cannot be equal to `n(η̂) for all η̂. Therefore, `(z, η̂) is not

M-proper.

4.2 Virtual labels

The analysis above shows a procedure to construct proper losses from ambiguity sets. The main
result of this section is to show that (16) is actually a universal representation, in the sense that any
proper loss can be represented in this form, and we generalize the Savage’s representation providing
and explicit formula for Q-proper losses.

Theorem 4.3 Scoring rule `(z, η̂) is (strictly) Q-proper for some matrix set Q with equivalent loss
˜̀(y, η̂) if and only if

`(z, η̂) = h(η̂) + g(η̂)T(UTV−1z− η̂). (17)

where h is the (strictly) concave function from the Savage’s representation for ˜̀, g(η̂) is a super-
gradient of h, V is a d × d non-singular matrix and U is a binary matrix with only one unit value
at each row.

Moreover, the ambiguity set of class j is Aj = span(Vj), where Vj is the set of all columns in V
such that uji = 1.

Proof See the Appendix.

Comparing (4) with (17), the effect of imperfect labelling becomes clear: the unknown true label y
is replaced by a virtual label ỹ = UTV−1z, which is a linear combination of the partial labels.
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4.3 Admissible scenarios

The previous analysis shows that, in order to calibrate posterior probabilities from partial labels
in scenarios where the mixing matrix is known, two conditions are required: (1) the rows of any
admissible mixing matrix must be contained in the admissible sets, (2) the basis of all admissible
sets must be linearly independent. It is not difficult to see that the parametric matrices in scenarios B,
C and D defined in Section 2.2 cannot be generated using a set of basis satisfying these constraints.
On the contrary, scenario E is admissible, as we have shown in the example in Section 4.

5 Estimation Errors

If the true mixing matrix M is not in Q, a Q-proper loss may fail to estimate η. The consequences
of this can be analyzed using the expected loss, given by

L(η, η̂)
.
= E{`(z, η̂)} = ηTMTl(η̂) = ηTMT(VT)−1Ul̃(η̂) (18)

If M ∈ Q, then L(η, η̂) = ηT l̃(η̂). However, if M /∈ Q, then we can decompose M = MQ + N,
where MQ is the orthogonal projection of M in Q. Then

L(η, η̂) = ηTNT(VT)−1Ul̃(η̂) + ηT l̃(η̂) (19)

Example The effect of a bad choice of the ambiguity set can be illustrated using the loss in (9) in
two cases: l̃j(η̂) = ‖ec

j − η̂‖2 (the square error) and l̃j(η̂) = − ln(η̂j) (the cross entropy). As we
have discussed before, loss (9) is proper for any scenario where label z contains the true class and
possibly another class taken at random. Let us assume that the true mixing matrix is

M =

(
0.5 0 0 0.4 0.1 0
0 0.5 0 0.3 0 0.2
0 0 0.6 0 0.2 0.2

)T

(20)

(were each column of MT corresponds to a label vector (z0, z1, z2) following the ordering (1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1). Fig. 1 shows the expected loss in (19) for the square
error (left) and the cross entropy (right), as a function of η̂ over the probability simplex P3, for
η = (0.45, 0.15, 0.4)T. Since M /∈ Q, the estimated posterior minimizing expected loss, η̂∗ (which
is unique because both losses are strictly proper), does not coincide with the true posterior.

Figure 1: Square loss (left) and cross entropy (right) in the probability simplex, as a function of η̂
for η = (0.45, 0.15, 0.4)T

It is important to note that the minimum η̂∗ does not depend on the choice of the cost and, thus,
the estimation error is invariant to the choice of the strict proper loss (though this could be not true
when η is estimated from an empirical distribution). This is because, using (19) and noting that the
expected proper loss is

L̃(η, η̂)
.
= Ey

˜̀(y, η̂) = ηT l̃(η̂) (21)
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we have
L(η, η̂) = L(UTV−1Mη, η̂) (22)

Since (22) is minimum for η̂∗ = UTV−1Mη, the estimation error is
‖η − η̂∗‖2 = ‖(I−UTV−1M)η‖2 (23)

which is independent on the particular choice of the equivalent loss.

If ˜̀ is proper but not strictly proper, the minimum may be not unique. For instance, for the 0 − 1
loss, any η̂ providing the same decisions than η is a minimum of L̃(η, η̂). Therefore, those values
of η with η and UTV−1Mη in the same decision region are not influenced by a bad choice of the
ambiguity set. Unfortunately, since the set of boundary decision points is not linear (but piecewise
linear) one can always find points η that are affected by this choice. Therefore, a wrong choice
of the ambiguity set always changes the boundary decision. Summarizing, the ambiguity set for
probability estimation is not larger than that for classification.

6 Conclusions

In this paper we have generalized proper losses to deal with scenarios with partial labels. Proper
losses based on partial labels can be designed to cope with different mixing matrices. We have also
generalized the Savage’s representation of proper losses to obtain an explicit expression for proper
losses as a function of a concave generator.

Appendix: Proof of Theorem 4.3

Let us assume that `(z, η̂) is (strictly) Q-proper for some matrix set Q with equivalent loss ˜̀(y, η̂).
Let Qj be the set of the j-th rows of all matrices in Q, and take Aj = span(Qj) ∩ Pd. Then any
vector m ∈ Aj is affine combination of vectors in Qj and, thus, mTl(η̂) = l̃(η̂). Therefore, if
span(Qi) has dimension ni, we can take a basis Vi ∈ Qi of ni linearly independent vectors such
that Ai = span(Qi) ∩ Pd.

By construction l(η̂) = (VT)−1Ul̃(η̂). Combining this equation with the Savage’s representation
in (4), we get

`(z, η̂) = zTl(η̂) = zT(VT)−1U(h(η̂)1c + (I− η̂1T
c )

Tg(η̂)

= h(η̂)zT1d + zT(VT)−1(U− 1dη̂
T)g(η̂)

= h(η̂) + g(η̂)T(UTV−1z− η̂) (24)
which is the desired result.

Now, let us assume that (17) is true. Then

l(η̂) = h(η̂)1d + ((VT)−1U− 1dη̂
T)g(η̂). (25)

For any matrix M ∈M such that MTec
j ∈ Aj , we have

MTl(η̂) = h(η̂)MT1d + (MT(VT)−1U−M1dη̂
T)g(η̂) (26)

If M ∈ Q, then we can express each column, j, of M as a convex combination of the columns in
V with uji = 1, thus M = VΛ for some matrix Λ with the coefficients of the convex combination
at the corresponding positions of unit values in U. Then MT(VT)−1U = ΛU = I. Using this in
(26), we get

MTl(η̂) = h(η̂)1c + (Ic − 1cη̂
T)g(η̂) = l̃(η̂). (27)

Applying Theorem 3.2, the proof is complete.
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