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Abstract

This is the supplementary material for the paper entitled “On-line Reinforcement
Learning Using Incremental Kernel-Based Stochastic Factorization” [2]. It con-
tains the details of our theoretical developments that could not be included in the
paper due to space constraints. This material should be read in conjunction with
the main paper.

1 Preliminaries

e Similarly to Ormoneit and Sen [3], we define a “mother kernel” ¢ (x) : R — R satisfying
(i) ¢(x) is continuous in R™,
(i) [y ¢(x)dx < Ly < oo,
(if) ¢(x) > 9(y) ifx <y,
(iv) 3Ay,Ap > 0,3 By > 0 such that Ayexp(—x) < ¢ (x) < ApApexp(—x) if x > By.
Remarks:
— Assumption (i) is implied by Ormoneit and Sen’s [3] assumption that ¢ is Lipschitz
continuous. Ormoneit and Sen also assume that fol ¢(z)dz =1 (see Appendix A.1
in [3]).
— Assumption (iv) implies that the kernel function ¢ will eventually decay exponentially
and also that ¢(z) > 0 for all z € R™.

e Let S [0,1]¢ and let || - || be a norm in R¥. Then, we define

by =0 (251,

where T > 0 is the “width” of the kernel k.

e Let M be a Markov decision process (MDP) with state space S and let $* = {(s{, r¢,50)|k =
1,2,...,n,} be a set of sample transitions associated with action a € A, where s¢,§7 € S and
r¢ € R. We define the normalized kernel function associated with action a as

kT(S,S?)

K4 (s, 50) = TS
< (s,57) Yt ke(s,5%)

o LetS= {51,52,...,5u} be a set of representative states in S. Define:

- §¢ = § with k = argmax; min; || §f —5; ||,



— 5% =5, where h = argmin; || §¢ —5; |,
- §, = §% where b = argmax, || § — 5% ||
- 5, =5 where b = argmax, || §¢ — 5% |,
v =55

We assume that

(v) §% and §¢ are unique for all a € A.

2 Data-independent definitions

Definition 1. For any o € (0,1], the o-radius of k¢ with respect to s and s’ is defined as
p(ke,s,5', ) = max {x cR"|¢ (%) - Ockf(s,s')} .

Remarks:

e The existence of p(K¢,s,s’, &) is guaranteed by properties (i), (ii) and (iii).
o plke,s,s’,a) > s—5 |

(kT,S7S/, a) S p(kT,S,S”, (X)

Property 1. If|| s—s

Proof. Let r = p(kq,s,s’,a). Then,
¢(;)am@g)a¢c| ”>za¢0“1f”)am@xy

If ¢ (r/7) = ake(s,s”), then p(ke,s,s” ) =r. If ¢ (r/7) > ak(s,s”), then from (iii) it must be
the case that r < p(kq,s,s”, a). O

Property 2. If a < o/, then p(kq,s,s’,a) > p(Ke,s,s', o).

Proof. Letr = p(Kke,s,s’,a). Then,
s o
) (%) =a'ke(s,s)=a'o (” S ”> > oo (” : TS ”) = akq(s,s").

From (iii) it must be the case that r < p(k¢,s,s’, o). O

Property 3. Forany o € (0,1) and any € > 0, there is a 6 > 0 such that p(kz,s,s’,0)— || s—5' ||[< €
if T <.

Proof. Letz=|| s—s"||. We will show that, for any € > 0, there is a > 0 such that ¢ ((z+€)/7) <
09 (z/7) if T < 8. We know that

oo < ale = m(TEUEAE ) <inaag)

= — <In(a/Ay) <= r<—m

(note that it must be the case that /Ay # 1). Thus, by taking § < min(—¢&/In(a/Ay),z/By) and
resorting to Assumption (iv), we can write:

exp(—(z+¢€)/8)  Agexp(—(z+¢€)/6)

Wr T T n(—2/8) - Avexn(—2/0)
S Apexp(—(z+€)/8) _ AgAgexp(—(z+€)/9)
- ¢(z/6) Ap9(z/6)
_ 0((z+2)/9)
T Ae9(2/0)
and therefore W <aif t<9. O



Remarks:

o p(ke,s,s’,a)— || s—s"||< €if T <min(—&/In(et/Ag),|| s—5" || /By), where A and B
depend on the particular choice of function ¢ (see Assumption (iv)).

e Givens,s', and s”, with || s —s (0,1), there
is a 6 > 0 such that k;(s,s”) < ake(s,s') if T < & (to see why this is so, it suffices to make
e=lls—s"—Ils—s"ID.

3 Data-dependent definitions

Definition 2. Given 8 > 0, the3-dissimilarity between s and s' with respect to K¢ is defined as

0, otherwise.

WKk, s,s', B) = {Z?Jﬂ@%) k(s sl if [l s—s' 1< B,

Remark: y(x2,s,s',) € [0,2].

Property 4. For any B > 0 and any € > 0, there is a 8 > 0 such that y(x%,s,s',B) < € if || s —
s ||< 6.

(k4,s,s", ) = 0 and the result follows (see Definition 2). Otherwise:

(e, B) ”Z’ ke (s,s5) ke (s',57)
5,8, B) =y
’ =1 Zna ke (s, 51) 2?211(1(3/73?)

g | o ls—stln) o (s =/
S e (ls—sill/7) o (s —stll/T) |

From the definition of ¢, it is obvious that y7 B (s") is continuous in s’. The property follows from
the fact that limy_,, yg 5 (s)=0. O

Remarks:

o y(Kk4s,s',B) does not necessarily increase with || s —s ||.

e Given € > 0, § is data-dependent.

4 Main Results

Lemma 1. For any a € (0,1] and any t > m—1, let 0, = p(ke,$%,5%,a/t), let y§ =
max y(k¢,57,5;,8,) and let l//r‘l‘lax—max v (K¢, 8¢,5,00). Then,
ij
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Proof. Let P* = DK“. Recalling that (s, s 57) = «(5:55)
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Let H={k| || § — 5 ||< 8.} and let H = {1,27...,m}—H.
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From the definition of 8, we can write

o .
ke (85,81) < —ke (S5, 59 if | 8
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II<|| § — 57 ||, and thus, from Assump-

§%). This fact together with (3) imply that
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which allows us to write
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Plugging (4) back into (2), we can write:
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where in (5) and (6) we used the fact that the coefficients multiplying y§ and . define a convex
combination, and we are increasing the weight of the latter. Noticing that

okz(87,5,) okz (87, 5,) o«
Yienke($,5) + oke($,50) 7~ ka(§,50) + oke(§,50) 140
and applying the same reasoning to the coefﬁcients of y§ and yy,, in (7), we can finally write

VT W
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Remarks:

® Y5 — Y as o — 0.
e There is an o* € (0, 1] that minimizes the right-hand side of (1).

Let ¥ = 'DQ*, where I is the ‘max’ operator applied row wise, that is, ¥; = max, (DQ*),,. Recalling
that 9* is the maximum distance from a sampled state §} to the closest representative state and that
7T is the width of kernel kz, we present the following result:

Proposition 1. For any € > 0, there are 81,8, > 0 such that |¥* —¥||, < € if 0* < &; and T < ;.

Proof. We have previously showed that

o 1
19 =9l < < T
where |||, is the infinity norm, ¥* € R” is the optimal value function of KBRL’s MDP, C =
max,; 7 —ming; 7¢, C = max,; 7 —min,; 7', and K* is matrix K with all elements equal to zero ex-
cept for those corresponding to matrix K¢ (see [1, 2] for details). Let ¥ = [(r!)T, (¢*)T, ..., (rAD)T]7 €
R", where r* € R" is the vector composed of sample rewards 7. Then,
|84 —DF||,, = ||P“F — DK“r|| , = || P“¥ — DK“¥| _ = ||(B* —DK")¥||, < [|[P* - DK*|| _ |¥[l.., (9
where the equality #¢ = P“F is a consequence of the fact that KBRL’s reward function R“ (s,s") is inde-
pendent of the start state s (see (1) in the main paper [2]). Thus, plugging (9) back into (8), it is clear
that there is a 7 > O such that ||¥* —¥||, < € if max, HIA’“ —DK||_ <1 and max; (1 —max;d;;) < 1.
We start by showing that if 9* and 7 are small enough, then max, HIA’“ —DK* Hm < 1. From Lemma 1

we know that, for any set of m < n representative states, and for any o € (0, 1], the following must
hold:

1 - ¢ .
max |84 —Dr¢||, + (Cmax (1 —max d;j) + Y hax [P —DK|| ) , ®)
—Y a i J ’ 2 a i

1 o
P‘— DK < ——
max [ ||oc_1+ale+1+all’MAX7

where Ynmax = maxa”y/(kﬁsl, ,0) and Y = max, yg = max,; ; Y(x$,8¢,5;,p), with p? =
p(kz, 84,5, a/(n—1)). Note that yiax is independent of the representative states. Define o such
that &/ (1 + &) ymax < 1. We have to show that, if we define the representative states in such a way
that 9* is small enough, and set 7 accordingly, then we can make y, < (I —a)n —ayuax =1’
From Property 4 we know that there is a 8; > 0 such that y, < 1’ if p* < §; for all a € A. From
Property 1 we know that p? < p(kz,$x, 5, 0/(n—1)) for all a € A. From Property 3 we know that,
for any &' > 0, there is a 8’ > 0 such that p(kz, s, 5., a/(n—1)) < 9*+ €' if T < §'. Therefore, if
0* < 8y, we can take any € < §; — 0* to have an upper bound &' for 7. It remains to show that there
is a > 0 such that min;max;d;; > 1 —n if T < §. Recalling that d“ =kz(8¢,5) /X0 ke (85, 5%),

let w = argmax kz($¢,5;), and let y¢ = kz($f,5,) and J¥ = max 4, kr(s ,5;). Then, for any ,

i i
max d ! > ! .
5T O ke (8.5)) T OF 4 (m =15
From Assumption (v) and Property 3 we know that there is a 6 > 0 such that y¢ > (m —1)(1 —
n)y¢/n if T < 8. Thus, by making 6 = min,; &, we can guarantee that min;max;d;; > 1 —1.
Finally, if we take 8, = min(8,38’), the result follows. O

Remark: If we define a “net” over S using the representative states, then we know that 9* is smaller
than the resolution of the net.
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