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In this supplementary material, we provide proofs for several results in the main paper, and discuss
implementation issues.

We will use the following notation throughout this material. M ◦ N is the element-wise product
between the matrices M and N . 〈M,N〉 = Trace(MN) is the standard matrix inner product. ‖M‖
is the largest singular value of M and ‖M‖∞ = maxi,j |mij | is the matrix infinity norm.

1 Proof of Monotonicity Lemma (Lemma 1)

In this section, we prove Lemma 1 in the main paper.

Proof. Let Ωδ denote the entries that has been changed. Notice that since A and Ã are different, the
respective weight matrix C and C̃ are also different. In particular, they differ on Ωδ . Let Y ′ be an
arbitrary feasible solution, then we have by the optimality of Ŷ

‖Ŷ ‖∗ + ‖C ◦ (A− Ŷ )‖1 ≤ ‖Y ′‖∗ + ‖C ◦ (A− Y ′)‖1.

Next notice that from definition of Ã we have

‖Ŷ ‖∗ + ‖C̃ ◦ (Ã− Ŷ )‖1 = ‖Ŷ ‖∗ + ‖C ◦ (A− Ŷ )‖1 −
∑
i,j∈Ωδ

Cij ,

while on the other hand

‖Y ′‖∗ + ‖C ◦ (A− Y ′)‖1 − [‖Y ′‖∗ + ‖C̃ ◦ (Ã− Y ′)‖1]

=
∑
Ωδ

[Cij |(A− Y ′)ij | − C̃ij |Ã− Y ′|

≤
∑
Ωδ

Cij ,

where the last inequality we use ‖A − Y ′‖∞ ≤ 1, and ‖Ã − Y ′‖∞ ≤ 1. Combining all equations
together establishes that

‖Ŷ ‖∗ + ‖C̃ ◦ (Ã− Ŷ )‖1 ≤ ‖Y ′‖∗ + ‖C̃ ◦ (Ã− Y ′)‖1.

As Y ′ is arbitrary, the lemma follows.

1



2 Proof of New Dual Certificate Conditions for Clustering (Proposition 1)

In this section, we prove Proposition 1 in the main paper.Recall that PΩ(M) is the matrix where the
(i, j)th entry is mij if (i, j) ∈ Ω, and 0 else.

Proof. From the first condition we knowU0U
>
0 +PT⊥(W ) is a subgradient of ‖Y ‖∗ at Y ∗. Consider

any feasible solution (Y ∗ + ∆, S∗ − ∆) with ∆ ∈ D and ∆ 6= 0. For this ∆, we can choose
F ∈ Ωc, ‖F‖∞ ≤ 1 such that 〈C ◦ F,−∆〉 = ‖PΩc(C ◦∆)‖1 ; in this case C ◦ (S∗ + F ) =
C ◦(sign(S∗) + F ) is a subgradient of ‖C ◦ S‖1 at S∗. We have the following chain of inequalities.

‖Y ∗ + ∆‖∗ − ‖Y ‖∗ + ‖C ◦ (S∗ −∆)‖1 − ‖C ◦ S
∗‖1

= ‖Y ∗ + ∆‖∗ − ‖Y ‖∗ + ‖C ◦ (S∗ −∆)‖1 − ‖C ◦ S
∗‖1

(a)

≥
〈
U0U

>
0 + PT⊥(W ),∆

〉
+ 〈C ◦ S0 + C ◦ F,−∆〉

(b)
=

〈
U0U

>
0 +W,∆

〉
− 〈PTW,∆〉 − ‖PΩ (C ◦∆)‖1 + ‖PΩc(C ◦∆)‖1

=
〈
PΩ(U0U

>
0 +W ),∆

〉
+
〈
PΩc(U0U

>
0 +W ),∆

〉
− 〈PTW,∆〉 − ‖PΩ (C ◦∆)‖1 + ‖PΩc(C ◦∆)‖1

(c)

≥ (1 + ε) ‖PΩ (C ◦∆)‖1 − (1− ε) ‖PΩc(C ◦∆)‖1 − 〈PTW,∆〉 − ‖PΩ (C ◦∆)‖1 + ‖PΩc(C ◦∆)‖1
(d)

≥ ε ‖PΩ(C ◦∆)‖1 + ε ‖PΩc(C ◦∆)‖1 − ‖PTW‖∞ ‖∆‖1
(e)

≥ ε ‖C ◦∆‖1 −
ε

2
min {cAc , cA} ‖∆‖1

> 0.

Here (a) uses the definition of subgradients, (b) follows from (*) and our choice of F , (c) uses
conditions 3 and 4 in the proposition, (d) uses the duality between ‖·‖∞ and ‖·‖1, and (e) uses
condition 2. This proves that (Y ∗, S∗) is the unique optimal solution to the convex program (2).

3 Proof of Dual Certificate (Proposition 2)

In this section we prove Proposition 2 in the main paper.

3.1 Notation and Preliminaries

For clarity of the presentation, we first review some notation used in the main paper, and introduce
several new ones needed in the proof.

Let S∗ , A − Y ∗ be the true disagreement matrix. Recall that r , # of cluster, ki ,
size of the ith cluster, and K , mini ki. As standard, let Ω , support(S∗). In addition, we
denote the singular value decomposition of Y ∗ (notice Y ∗ is symmetric) be U0Σ0U

>
0 , and let

PT⊥(M) , (I − U0U
>
0 )M(I − U0U

>
0 ) be the projection of M onto the space of matrices whose

columns and rows are orthogonal to those of Y ∗, and PT (M) = M − PT⊥(M).

To exploit the special structure of the clustering setup, we introduce some new notations: Ri ,
{(l,m) : l,m ∈ cluster i}, R , ∪ri=1Ri = support(Y ∗). For an entry set Φ ⊆ [1 : n] × [1 : n],
we use 1Φ ∈ Rn×n to denote the matrix which is one on entries belonging to Φ and zero elsewhere.
Thus, we have Y ∗ =

∑r
i=1 1Ri and U0U

>
0 =

∑r
i=1

1
ki
1Ri . Also, recall that ∀(i, j) ∈ Ac we have

Cij = cAc , while ∀(i, j) ∈ A we have Cij = cA. Hence, we may write

C = cAc1Ac + cA1A = cAc1R∩Ω+Rc∩Ωc + cA1Rc∩Ω+R∩Ωc .

Notice that in the graph clustering setup, the sparse corruption matrix S∗ can not be arbitrary. In
particular, we have that (S∗)i,j =0 or -1 for (i, j) ∈ R, and (S∗)i,j =0 or 1 for (i, j) ∈ Rc, which
implies

S∗ = sign(S∗) = −1Ω∩R + 1Ω∩Rc .
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Let (Y ∗ + ∆, S∗ −∆) be a feasible solution to the convex program (2) in the main paper. Because
of the constraints (3) in the main paper, ∆ must belong to the set of possible deviations D, defined
as

D , {M ∈ Rn×n|∀(i, j) ∈ R : −1 ≤ mij ≤ 0; ∀(i, j) ∈ Rc : 1 ≥ mij ≥ 0}.
Observe that for any i, j, S∗ij and ∆ij either have same sign, or at least one of them is zero. Thus for
any ∆ ∈ D,

〈C ◦ S∗,∆〉 = ‖PΩ(C ◦∆)‖1 . (*)

3.2 Proof of the Proposition

Observe that, due to the randomness of Ω, W1 and W2 are symmetric random matrices with inde-
pendent zero-mean entries. Moreover, the magnitude and variance of the entries are bounded as in
the following lemma.
Lemma 3.3. Under the assumption of Theorem 1 in the main paper where c1 ≥ 16, the following
holds

1. ε ≤ 1
4 .

2. The magnitude of the entries of W1 and W2 is bounded by 1
16 log2 n

.

3. The variance of the entries of W1 and W2 is bounded by 1
256n logn .

Proof of Lemma 3.3. Note that p̄ − q̄ ≥ c1
log2 n

√
p̄n

K implies p̄ ≥ c21
n
K2 log4 n ≥ c21

log4 n
n , which

further implies K ≥ c1
√
n log2 n since p̄ ≤ 1. It follows that

ε =
2 log2 n

K

√
n

p̄
≤ 2 log2 n

K

K

c1 log2 n
≤ 1

4
.

The entries of W1 are either − 1
km

or 1−p
p

1
km

. Note that 1
km
≤ 1

K ≤
1

c1
√
n log2 n

, and 1−p
p

1
km
≤

1
p̄K ≤

K
c1n log4 n

≤ 1
c2 log4 n

. So the entries of W1 are bounded by 1
16 log2 n

.

The entries of W2 are (1 + ε)cA, −(1 + ε)cAc , (1 + ε) 1−p
p cAc , or −(1 +

ε) q
1−q cA. The magnitude of them is bounded by max

{
2
p̄cAc , 2cA

}
=

max
{

1
8 min

(√
1

(1−p̄)n logn ,
√

1
p̄n logn

)
, 1

8 min
(√

1−q̄
q̄n logn ,

√
1

log5 n

)}
≤ 1

16 log2 n
.

The variance of the entries of W1 is (1 − p)/(pk2
m). Since km ≥ K and p ≥ p̄ ≥ c1n log4 n/K2,

the variance is upper bounded by 1
16n log4 n

, and further upper bounded by 1/256n as n ≥ 4.

The variance of the entries of W2 are either 1−p
p c2Ac or q

1−q c
2
A. Note that 1−p

p c2Ac ≤
1−p̄
p̄ ·

1
162

p̄
1−p̄

1
n logn = 1

256n logn and q
1−q c

2
A ≤

q̄
1−q̄

1
162

1−q̄
q̄

1
n logn = 1

256n logn . This completes the
proof of the lemma.

We also need the following simple lemma.
Lemma 3.4. Under the assumption of Theorem 1 in the main paper where c1 ≥ 16, we have

(1 + ε)
cAc(1− p)

p
≤ (1− 2ε)cA,

(1 + ε)
cAq

1− q
≤ (1− ε)cAc .

Proof of Lemma 3.4. If q̄
1−q̄ ≤

log4 n
n , then cA = 1

16
√
n logn

√
n

log4 n
. In this case, (1+ε) cA

c (1−p)
p ≤

2 1
16
√
n logn

√
1−p̄
p̄ ≤ 1

2
1

16
√
n logn

√
n

log4 ≤ (1 − 2ε)cA since p̄ ≥ c21
log4 n
n . Similarly, we have

(1 + ε) cAq1−q ≤ 2 1
16
√
n logn

√
log4 n
n ≤ 1

2
1

16
√
n logn

≤ (1− 2ε)cA. since q̄ ≤ 1
4 .
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If p̄
1−p̄ ≥ 1, then cAc = 1

16
√
n logn

; we also have ε ≤ 4 log2 n
√
n

K ≤ 1
8 since K ≥ c1

√
n log2 n. In

this case, (1 + ε) cA
c (1−p)
p ≤ 9

8
1

16
√
n logn

≤ 6
8cA since q̄ ≤ 1

4 . Similarly, we have (1 + ε) cAq1−q ≤
9
8

1
16
√
n logn

√
q̄

1−q̄ ≤
6
8

1
16
√
n logn

≤ (1− 2ε)cAc since q̄ ≤ 1
4 .

If q̄
1−q̄ ≤

log4 n
n and p̄

1−p̄ ≥ 1, it is easy to verify that both inequalities in the lemma are implied by

(1 + 2ε)

√
q̄

1− q̄
≤ (1− 2ε)

√
p̄

1− p̄
. (**)

By assumption of Theorem 1 in the main paper, we have p̄− q̄ ≥ c1
√
p̄n log2 n
K ≥ 8p̄ε when c1 ≥ 16.

Notice that we have 4ε ≥ 4ε/(1 + 4ε2) by ε > 0, and because p̄ ≥ q̄, we have 2p̄ ≥ (p̄ + q̄).
Multiplying the two inequalities, we have

p̄− q̄ ≥ 8p̄ε ≥ 4ε

1 + 4ε2
(p̄+ q̄),

which implies (1 − 2ε)2p̄ − (1 + 2ε)2q̄ ≥ 0 ≥ (1 − 2ε)2p̄q̄ − (1 + 2ε)2p̄q̄. Notice that ε ≤ 1
4 by

Lemma 3.3. The desired inequality (**) follows easily.

Now we are ready to proceed with the proof of the proposition, which can be divided into four steps,
corresponding to checking each of the four dual certificate conditions in Proposition 1 in the main
paper.

(1) Bounding ‖PT⊥W‖.
Recall that W1 and W2 are random matrices with i.i.d. entries having bounded magnitude and vari-
ance. We apply standard results on the spectral norm of random matrices (Lemma A.1 in Appendix)
to obtain

‖PT⊥(W )‖ ≤ ‖W1‖+ ‖W2‖ ≤ 12 max

{
1

16 log2 n
log2 n,

1

16
√
n log n

√
n log n

}
≤ 1.

(2) Bounding ‖PTW‖∞.

Recall that PTWi = U0U
>
0 Wi +WiU0U

>
0 − U0U

>
0 WiU0U

>
0 , we bound each of the three terms.

Since Wi is a random matrix and U0U
>
0 Wi = (

∑
m

1
km

1Rm)Wi, then each entry of U0U
>
0 Wi

equals 1
km

times the sum of km independent zero-mean random variables, whose magnitude and
variance are bounded as previously discussed, for some m. Standard Bernstein inequality (e.g.,
Lemma B.1 in the Appendix) yields w.h.p.∥∥(U0U

>
0 Wi)

∥∥
∞ ≤ 1

K
c3 max

{
1

16 log2 n
log n,

1

16
√
n

√
K log n

}
≤ c3 max

{
1

16K log2 n
,

√
log n

16
√
Kn

}
≤ log n

96K
,

where the last inequality holds for n large enough.

By an almost identical argument, we have
∥∥(WiU0U

>
0 )
∥∥
∞ ≤

log n
96K . Furthermore,

U0U
>
0 WiU0U

>
0 = (

∑
m

1

km
1Rm)[WiU0U

>
0 ],

implies that

‖U0U
>
0 WiU0U

>
0 ‖∞ ≤ ‖WiU0U

>
0 ‖∞ ≤

log n

96K
.

Thus, we have

‖PTW‖∞ ≤ ‖PTW1‖∞ + ‖PTW2‖∞ ≤
log n

16K
.
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On the other hand, we have cAε ≥ 1
16
√
n logn

· 2
K

√
n
p̄ log2 n ≥ log n

8K and cAcε = 1
16

√
p̄

1−p̄
1√

n logn
·

2
K

√
n
p̄ log2 n ≥ log n

8K , so 1
2εmin {cA, cAc} ≥ log n

16K . We conclude that ‖PTW‖∞ ≤
1
2εmin {cA, cAc} .
(3) Computing 〈PΩ(U0U0 +W ),∆〉.
From Equation (*) we have 〈C ◦ S∗,∆〉 = ‖C ◦∆‖1. Using the definition of W , we obtain〈

PΩ(U0U
>
0 ) + PΩ(W ), PΩ∆

〉
= 〈(1 + ε)C ◦ S∗, PΩ∆〉 = (1 + ε) ‖PΩ(C ◦∆)‖1 .

(4) Bounding〈PΩc(U0U0 +W ),∆〉.
Observe that〈
PR∩Ωc(U0U

>
0 +W ),∆

〉
=

〈
r∑

m=1

1

km
1Rm∩Ωc +

r∑
m=1

(1− p)
p

1

km
1Rm∩Ωc + (1 + ε)

cAc(1− p)
p

1R∩Ωc ,∆

〉

≥ −
(

1

pK
+ (1 + ε)

cAc(1− p)
p

)
‖PR∩Ωc(∆)‖1

(a)

≥ −
(
εcA + (1 + ε)

cAc(1− p)
p

)
‖PR∩Ωc(∆)‖1

(b)

≥ − (εcA + (1− 2ε)cA) ‖PR∩Ωc(∆)‖1
(c)
= −(1− ε) ‖PR∩Ωc(C ◦∆)‖1 ,

where in (a) we use the fact that when n large enough and p̄ ≥ q̄, p̄ ≥ c21
log4 n
n , we have

εcA =
2 log2 n

K

√
n

p̄
· 1

16
√
n log n

min

{√
1− q̄
q̄

,

√
n

log4 n

}
≥ 1

pK
·
√
p̄ log3/2 n

8
min

{√
1− q̄
q̄

,

√
n

log4 n

}
≥ 1

pK
;

also (b) follows from Lemma 3.4, and (c) holds since Cij = cA for (i, j) ∈ R ∩ Ωc. Similarly, we
have

〈PRc∩ΩcW,∆〉 =

〈
−(1 + ε)

cAq

1− q
1Rc∩Ωc ,∆

〉
= −(1 + ε)

cAq

1− q
‖PRc∩Ωc(∆)‖1

≥ −(1− ε)cAc ‖PRc∩Ωc(∆)‖1
= −(1− ε) ‖PRc∩Ωc(C ◦∆)‖1

where we use the Lemma 3.4 in the last inequality. Combining pieces, we conclude that〈
PΩc(U0U

>
0 +W ),∆

〉
≥ −(1− ε) ‖PΩc(C ◦∆)‖1 .

This completes the proof of the proposition.

4 Implementation Issues

The convex program (2) in the main paper can be solved using a general purpose SDP solver, but
this method does not scale well to problems with more than 100 nodes. To facilitate fast and efficient
solution, we propose to use a family of algorithms called Augmented Lagrange Multiplier (ALM)
methods (see e.g. [1]). We adapt the ALM method to our problem, given as Algorithm 1. Here
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Algorithm 1 ALM for Minimizing Nuclear Norm plus Weighted `1 norm
Input: A,C ∈ Rn×n.
Initialize: M (0) = 0; Y (0) = 0;S(0) = 0; µ0 > 0; α > 1; k = 0.
while not converge do

(U,Σ, V ) = svd(A− S(k) + µ−1
k M (k)).

Ȳ (k+1) = USµ−1
k

(Σ)V .

For all (i, j), Y (k+1)
ij = max

{
min

{
Ȳ

(k+1)
ij , 1

}
, 0
}

.

S(k+1) = Sµ−2
k C(A− Y (k+1) + µ−1

k M (k)).

M (k+1) = M (k) + µk(A− Y (k+1) − S(k+1)).
k = k + 1.

end while
Return Y (k+1), S(k+1).

SεC(·) : Rn×n 7→ Rn×n is the element-wise weighted soft-thresholding operator, defined as

(SεC(X))ij =


Xij − εCij , if Xij > εCij
Xij + εCij , if Xij < −εCij
0, otherwise.

In other words, it shrinks each entry ofX towards zero by ε. The unweighted version Sε(·) , SεI(·)
is also used. The stopping criteria and parameters of the algorithm is chosen similarly to [1].

Appendix

A The spectral norm of random matrices

It is well-known that the spectral norm λ1(A) of a zero-mean random matrix A is bounded above
w.h.p. by C

√
n, where C is a constant that might depend on the variance and magnitude of the

entries of A. Here we state and (re-)prove an upper bound of λ1(A) with an explicit estimate of the
constant C, which is needed in the proof of the main theorem.
Lemma A.1. Let Aij , 1 ≤ i, j ≤ n be independent random variables, each of which has mean
0 and variance at most σ2 and is bounded in absolute value by B. Then with probability at least
1− 2n−2

λ1(A) ≤ 6 max
{
σ
√
n log n,B log2 n

}
Proof. Let ei be the i-th standard basis in Rn. Let Zij = Aijeie

>
j . Then Zij’s are zero-

mean random matrices independent of each other, and A =
∑
i,j Zij . We have ‖Zij‖ ≤ B

almost surely. We also have ‖
∑
i,j E(ZijZ

>
ij )‖ = ‖

∑
i eie

>
i

∑
j E(A2

ij)‖ ≤ nσ2. Similarly
‖
∑
i,j E(Z>ijZij)‖ ≤ nσ2.. Applying the Non-commutative Bernstein Inequality (Theorem 1.6

in [2]) with t = 6 max
{
σ
√
n log n,B log2 n

}
yields the desired bound.

B Standard Bernstein Inequalities for Sum of Independent Variables

Lemma B.1. ([3], Proposition 5.16) Let Y1, . . . , YN be independent random variables, each of
which has variance bounded by σ2 and is bounded in absolute value by B a.s. Then we have∣∣∣∣∣

N∑
i=1

Yi − E

[
N∑
i=1

Yi

]∣∣∣∣∣ ≤ c0 max
{
σ
√
N log n,B log n

}
with probability at least 1− c1n−c2 where the positive constants c0, c1, c2 are independent of σ, B,
N and n.
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