
Supplementary Material to “On Multilabel
Classification and Ranking with Partial Feedback”

Claudio Gentile
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5 Appendix

This appendix contains the proofs of all lemmas and theorems presented in the main text.

Proof: [Lemma 1] First observe that, for any given size s, the sequence Y ∗s,t must contain the s
top-ranked classes in the sorted order of pi,t. This is because, for any candidate sequence Ys =

{j1, j2, . . . , js}, we have Et[`a,c(Y ∗t , Ys)] = (1 − a)
∑
i∈Ys

(
c(ji, s)−

(
a

1−a + c(ji, s)
)
pi,t

)
.

If there exists i ∈ Ys which is not among the s-top ranked ones, then we could replace class i in
position ji within Ys with class k /∈ Ys such that pk,t > pi,t obtaining a smaller loss.

Next, we show that the optimal ordering within Y ∗s,t is precisely ruled by the nonicreasing order of
pi,t. By the sake of contradiction, assume there are i and k in Y ∗s,t such that i preceeds k in Y ∗s,t but
pk,t > pi,t. Specifically, let i be in position j1 and k be in position j2 with j1 < j2 and such that
c(j1, s) > c(j2, s). Then, disregarding the common (1− a)-factor, switching the two classes within
Y ∗s,t yields an expected loss difference of

c(j1, s)−
(

a
1−a + c(j1, s)

)
pi,t + c(j2, s)−

(
a

1−a + c(j2, s)
)
pk,t

−
(
c(j1, s)−

(
a

1−a + c(j1, s)
)
pk,t

)
−
(
c(j2, s)−

(
a

1−a + c(j2, s)
)
pi,t

)
= (pk,t − pi,t) (c(j1, s)− c(j2, s)) > 0 ,

since pk,t > pi,t and c(j1, s) > c(j2, s). Hence switching would get a smaller loss which leads as a
consequence to Y ∗s,t = (j1, j2, . . . , js).

The algorithm in Figure 1 works by updating through the gradients∇i,t of a modular margin-based
loss function

∑K
i=1 L(w>i x) associated with the label generation model (2) so as to make the pa-

rameters (u1, . . . ,uK) ∈ RdK therein achieve the Bayes optimality condition

(u1, . . . ,uK) = arg min
w1,...,wK :w>i xt∈D

Et

[
K∑
i=1

L(si,tw
>
i xt)

]
, (4)

where Et[·] above is over the generation of Yt in producing the sign value si,t ∈ {−1, 0,+1},
conditioned on the past (in particular, conditioned on Ŷt). The requirement in (4) is akin to the
classical construction of proper scoring rules in the statistical literature (e.g., [9]).

The following lemma faces the problem of hand-crafting a convenient loss function L(·) such that
(4) holds.
Lemma 5. Let w1, . . . ,wK ∈ RdK be arbitrary weight vectors such that w>i xt ∈ D, i ∈ [K],
(u1, . . . ,uK) ∈ RdK be defined in (2), si,t be the updating signs computed by the algorithm at the
end (Step 5) of time t, L : D = [−R,R] ⊆ R → R+ be a convex and differentiable function of its
argument, with g(∆) = −L′(∆). Then for any t we have

Et

[
K∑
i=1

L(si,tw
>
i xt)

]
≥ Et

[
K∑
i=1

L(si,t u
>
i xt)

]
,
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i.e., (4) holds.

Proof: Let us introduce the shorthands ∆i = u>i xt, ∆̂i = w>i,txt, si = si,t, and pi = P(yi,t =

1 |xt) = L′(−∆i)
L′(∆i)+L′(−∆i)

. Moreover, let Pt(·) be an abbreviation for the conditional probability
P(· | (y1,x1), . . . , (yt−1,xt−1),xt). Recalling the way si,t is constructed (Figure 1), we can write

Et

[
K∑
i=1

L(si,t ∆̂i)

]
=
∑
i∈Ŷt

(
Pt(si,t = 1)L(∆̂i) + Pt(si,t = −1)L(−∆̂i)

)
+ (K − |Ŷt|)L(0)

=
∑
i∈Ŷt

(
pi L(∆̂i) + (1− pi)L(−∆̂i)

)
+ (K − |Ŷt|)L(0) ,

For similar reasons,

Et

[
K∑
i=1

L(si,t ∆i)

]
=
∑
i∈Ŷt

(pi L(∆i) + (1− pi)L(−∆i)) + (K − |Ŷt|)L(0) .

Since L(·) is convex, so is Et
[∑K

i=1 L(si,t ∆̂i)
]

when viewed as a function of the ∆̂i. We have that
∂ Et[

∑K
i=1 L(si,t ∆̂i)]
∂∆̂i

= 0 if and only if for all i ∈ Ŷt we have that ∆̂i satisfies

pi =
L′(−∆̂i)

L′(∆̂i) + L′(−∆̂i)
.

Since pi = L′(−∆i)
L′(∆i)+L′(−∆i)

, we have that Et
[∑K

i=1 L(si,t ∆̂i)
]

is minimized when ∆̂i = ∆i for
all i ∈ [K]. The claimed result immediately follows.

Let now V art(·) be a shorthand for V ar(· | (y1,x1), . . . , (yt−1,xt−1),xt). The following lemma
shows that under additional assumptions on the loss L(·), we are afforded to bound the variance of
a difference of losses L(·) by the expectation of this difference. This will be key to proving the fast
rates of convergence contained in the subsequent Lemma 9.

Lemma 6. Let (w′1,t, . . . ,w
′
K,t) ∈ RdK be the weight vectors computed by the algorithm in Figure

1 at the beginning (Step 2) of time t, si,t be the updating signs computed at the end (Step 5) of time t,
and (u1, . . . ,uK) ∈ RdK be the comparison vectors defined through (2). Let L : D = [−R,R] ⊆
R → R+ be a C2(D) convex function of its argument, with g(∆) = −L′(∆) and such that there
are positive constants c′L and c′′L with (L′(∆))2 ≤ c′L and L′′(∆) ≥ c′′L for all ∆ ∈ D. Then for
any i ∈ Ŷt

0 ≤ V art
(
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

)
≤ 2c′L

c′′L
Et
[
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

]
.

Proof: Let us introduce the shorthands ∆i = x>t ui, ∆̂i = x>t w
′
i,t, si = si,t, and pi = P(yi,t =

1 |xt) = L′(−∆i)
L′(∆i)+L′(−∆i)

. Then, for any i ∈ [K],

V art
(
L(si,t x

>
t w
′
i,t)− L(si,t u

>
i xt)

)
≤ Et

((
L(si ∆̂i)− L(si ∆i)

)2
)
≤ c′L (∆̂i −∆i)

2 .

(5)
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Moreover, for any i ∈ Ŷt we can write

Et
[
L(si ∆̂i)− L(si ∆i)

]
= pi (L(∆̂i)− L(∆i)) + (1− pi) (L(−∆̂i)− L(−∆i))

≥ pi
(
L′(∆i)(∆̂i −∆i) +

c′′L
2

(∆̂i −∆i)
2

)
+ (1− pi)

(
L′(−∆i)(∆i − ∆̂) +

c′′L
2

(∆̂i −∆i)
2

)
= pi

c′′L
2

(∆̂i −∆i)
2 + (1− pi)

c′′L
2

(∆̂i −∆i)
2

=
c′′L
2

(∆̂i −∆i)
2, (6)

where the second equality uses the definition of pi. Combining (5) with (6) gives the desired bound.

We continue by showing a one-step regret bound for our original loss `a,c. The precise connection
to loss L(·) will be established with the help of a later lemma (Lemma 9).

Lemma 7. Let L : D = [−R,R] ⊆ R → R+ be a convex, twice differentiable, and nonincreasing
function of its argument. Let (u1, . . . ,uK) ∈ RdK be defined in (2) with g(∆) = −L′(∆) for all
∆ ∈ D. Let also cL be a positive constant such that

L′(∆)L′′(−∆) + L′′(∆)L′(−∆)

(L′(∆) + L′(−∆))2
≥ −cL

holds for all ∆ ∈ D. Finally, let ∆i,t denote u>i xt, and ∆̂′i,t denote x>t w
′
i,t, where w′i,t is the i-th

weight vector computed by the algorithm at the beginning (Step 2) of time t. If time t is such that
|∆i,t − ∆̂′i,t| ≤ εi,t for all i ∈ [K], then

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )] ≤ 2 (1− a) cL
∑
i∈Ŷt

εi,t .

Proof: Introduce the shorthand notation p(∆) = g(−∆)
g(∆)+g(−∆) . We can write

Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

= (1− a)
∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p(∆i,t)

)
− (1− a)

∑
i∈Y ∗t

(
c(j∗i , |Y ∗t |)−

(
a

1−a + c(j∗i , |Y ∗t |)
)
p(∆i,t)

)
,

where ĵi denotes the position of class i in Ŷt and j∗i is the position of class i in Y ∗t . Now,

p′(∆) =
−g′(−∆) g(∆)− g′(∆) g(−∆)

(g(∆) + g(−∆))2
=
−L′(∆)L′′(−∆)− L′(−∆)L′′(∆)

(L′(∆) + L′(−∆))2
≥ 0

since g(∆) = −L′(∆), and L(·) is convex and nonincreasing. Hence p(∆) is itself a nondecreasing
function of ∆. Moreover, the extra condition on L involving L′ and L′′ is a Lipschitz condition on
p(∆) via a uniform bound on p′(∆). Hence, from |∆i,t − ∆̂′i,t| ≤ εi,t and the definition of Ŷt we
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can write
Et[`a,c(Yt, Ŷt)]− Et[`a,c(Yt, Y ∗t )]

≤ (1− a)
∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t − εi,t]D)

)
− (1− a)

∑
i∈Y ∗t

(
c(j∗i , |Y ∗t |)−

(
a

1−a + c(j∗i , |Y ∗t |)
)
p([∆̂′i,t + εi,t]D)

)
≤ (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t − εi,t]D)

)
− (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)−

(
a

1−a + c(ĵi, |Ŷt|)
)
p([∆̂′i,t + εi,t]D)

)
= (1− a)

∑
i∈Ŷt

(
c(ĵi, |Ŷt|)

(
p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D)

))
≤ 2 (1− a) cL

∑
i∈Ŷt

εi,t ,

the last inequality deriving from c(i, s) ≤ 1 for all i ≤ s ≤ K, and

p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D) ≤ cL
(
[∆̂′i,t + εi,t]D − [∆̂′i,t − εi,t]D

)
≤ 2 cL εi,t.

Likewise, we provide a similar bound for the ranking loss.
Lemma 8. Under the same assumptions and notation as in Lemma 7, combined with the inde-
pendence assumption Pt(y1,t, ..., yK,t) =

∏
i∈[K] pi,t, let the Algorithm in Figure 1 be working

with a → 1 and strictly decreasing cost values c(i, s). Let w′i,t be the i-th weight vector com-
puted by this algorithm at the beginning (Step 2) of time t. If this algorithm ranks classes as
p̂j1,t ≥ . . . ≥ p̂jSt ,t

≥ 0, and time t is such that |∆i,t − ∆̂′i,t| ≤ εi,t for all i ∈ [K], then

Et[`rank,t(Yt, (p̂j1,t, . . . , p̂jSt ,t
, 0, . . . , 0))]− Et[`rank,t(Yt, (pi1,t , . . . , piSt ,t

, 0, . . . , 0))]

≤ 4St cL
∑
i∈Ŷt

εi,t ,

where the pi,t = Pt(yi,t = 1 |xt) are sorted as pi1,t ≥ . . . ≥ piSt ,t
≥ 0, and Ŷt = (j1, j2, . . . , jSt

).

Proof: Recall the notation Pt(·) = P(· |xt), and pi,t = p(∆i,t) =
g(−∆i,t)

g(∆i,t)+g(−∆i,t)
. For notational

convenience, in this proof we drop subscript t from pi,t, St, yi,t, and Ŷt. Consider Et[`rank,t(Yt, Ŷ )],
and introduce the shorthand

pi,j = pi pj = pi − Pt(yi > yj).

Disregarding the term S
∑
i∈[K] pi, which is independent of Ŷ , we can write

Et[`rank,t(Yt, Ŷ )] =
∑

i,j∈Ŷ , i<j

Pt(yi > yj)
(
{pi < pj}+ 1

2 {pi = pj}
)

+
∑

i,j∈Ŷ , i<j

Pt(yj > yi)
(
{pj < pi}+ 1

2 {pj = pi}
)
− S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(pi − pi,j){pi < pj}+ (pi − pi,j) 1
2 {pi = pj}

+
∑

i,j∈Ŷ , i<j

(pj − pi,j){pj < pi}+ (pj − pi,j) 1
2 {pj = pi} − S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(pi − pj){pi < pj}+ 1
2 (pi − pj) {pi = pj}+ pj − pi,j − S

∑
i∈Ŷ

pi

=
∑

i,j∈Ŷ , i<j

(min{pi, pj} − pipj)− S
∑
i∈Ŷ

pi
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which can be finally seen to be equal to

−
∑
i∈Ŷ

(S + 1− ĵi) pi −
∑

i,j∈Ŷ , i<j

pi pj , (7)

where ĵi is the position of class i within Ŷt in decreasing order of pi.

Denote by Y ∗t the sequences determined by f∗(xt;S), the optimal ranking operating on the pi’s,
and let ĵi and j∗i be the position of class i in decreasing order of pi within Ŷ and Y ∗t , respectively.

Proceeding as in Lemma 7 and recalling (7) we can write

Et[`rank,t(Yt, f̂(xt;S))]− Et[`rank,t(Yt, f∗(xt;S)]

=
∑
i∈Y ∗t

(S + 1− j∗i ) pi +
∑

i,j∈Y ∗t , i<j
pi pj −

∑
i∈Ŷ

(S + 1− ĵi) pi −
∑

i,j∈Ŷ , i<j

pi pj

≤
∑
i∈Y ∗t

(S + 1− j∗i ) p([∆̂′i,t + εi,t]D) +
∑

i,j∈Y ∗t , i<j
p([∆̂′i,t + εi,t]D) p([∆̂′j,t + εj,t]D)

−
∑
i∈Ŷ

(S + 1− ĵi) p([∆̂′i,t − εi,t]D)−
∑

i,j∈Ŷ , i<j

p([∆̂′i,t − εi,t]D) p([∆̂′j,t − εj,t]D)

≤
∑
i∈Ŷ

(S + 1− ĵi)
(
p([∆̂′i,t + εi,t]D)− p([∆̂′i,t − εi,t]D)

)
+

∑
i,j∈Ŷ , i<j

(
p([∆̂′i,t + εi,t]D) p([∆̂′j,t + εj,t]D)− p([∆̂′i,t − εi,t]D) p([∆̂′j,t − εj,t]D)

)
≤ 2ScL

∑
i∈Ŷ

εi,t +
∑

i,j∈Ŷ , i<j

2cL (εi,t + εj,t)

= 2S cL
∑
i∈Ŷ

εi,t + 2 (S − 1) cL
∑
i∈Ŷ

εi,t

< 4S cL
∑
i∈Ŷ

εi,t ,

as claimed.
Lemma 9. Let L : D = [−R,R] ⊆ R → R+ be a C2(D) convex and nonincreasing function of
its argument, (u1, . . . ,uK) ∈ RdK be defined in (2) with g(∆) = −L′(∆) for all ∆ ∈ D, and such
that ‖ui‖ ≤ U for all i ∈ [K]. Assume there are positive constants c′L and c′′L with (L′(∆))2 ≤ c′L
and L′′(∆) ≥ c′′L for all ∆ ∈ D. With the notation introduced in Figure 1, we have that

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1x

(
U2 +

d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
holds with probability at least 1 − δ for any δ < 1/e, uniformly over i ∈ [K], t = 1, 2, . . . , and
x ∈ Rd.

Proof: For any given class i, the time-t update rule w′i,t → wi,t+1 → w′i,t+1 in Figure 1 allows
us to start off from [7] (proof of Theorem 2 therein), from which one can extract the following
inequality

di,t−1(ui,w
′
i,t)

≤ U2 +
1

(c′′L)2

t−1∑
k=1

ri,k −
2

c′′L

t−1∑
k=1

(
∇>i,k(w′i,k − ui)−

c′′L
2

(
si,k x

>
k (w′i,k − ui)

)2)
, (8)

where we set ri,k = ∇>i,k A
−1
i,k ∇i,k. Using the lower bound on the second derivative of L we have

L(si,k x
>
k w
′
i,k)− L(si,k u

>
i xk)

≤ L′(si,k x>k w′i,k)(si,kx
>
k w
′
i,k − si,k u>i xk)− c′′L

2
(si,k x

>
k w
′
i,k − si,k u>i xk)2

= ∇>i,k(w′i,k − ui)−
c′′L
2

(
si,k x

>
k (w′i,k − ui)

)2
.
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Plugging back into (8) yields

di,t−1(ui,w
′
i,t) ≤ U2 +

1

(c′′L)2

t−1∑
k=1

ri,k −
2

c′′L

t−1∑
k=1

(
L(si,k x

>
k w
′
i,k)− L(si,k u

>
i xk)

)
(9)

We now borrow a proof technique from [4] (see also [1, 5] and references therein). Define Li,k =
L(si,k x

>
k w
′
i,k) − L(si,k u

>
i xk) and L′i,k = Ek[Li,k] − Li,k. Notice that the sequence of random

variables L′i,1, L′i,2, . . . , forms a martingale difference sequence such that, for any i ∈ Ŷk:

i. Ek[Li,k] ≥ 0, by Lemma 6;

ii. |L′i,k| ≤ 2L(−R), since L(·) is nonincreasing over D, and si,k x>k w
′
i,k, si,k u>i xk ∈ D;

iii. V ark(L′i,k) = V ark(Li,k) ≤ 2c′L
c′′L

Ek[Li,k] (again, because of Lemma 6).

On the other hand, when i /∈ Ŷk then si,k = 0, and the above three properties are trivally satisfied.
Under the above conditions, we are in a position to apply any fast concentration result for bounded
martingale difference sequences. For instance, setting for brevity B = B(t, δ) = 3 ln K(t+4)

δ , [8]
allows us derive the inequality

t−1∑
k=1

Ek[Li,k]−
t−1∑
k=1

Li,k ≥ max


√√√√8c′L

c′′L
B

t−1∑
k=1

Ek[Li,k], 6L(−R)B

 ,

that holds with probability at most δ
Kt(t+1) for any t ≥ 1. We use the inequality

√
cb ≤ 1

2 (c + b)

with c =
4c′L
c′′L

B, and b = 2
∑t−1
k=1 Ek[Li,k], and simplify. This gives

−
t−1∑
k=1

Li,k ≤
(

2c′L
c′′L

+ 6L(−R)

)
B

with probability at least 1− δ
Kt(t+1) . Using the Cauchy-Schwarz inequality

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1 x di,t−1(ui,w

′
i,t)

holding for any x ∈ Rd, and replacing back into (9) allows us to conclude that

(x>w′i,t − u>i x)2 ≤ x>A−1
i,t−1x

(
U2 +

1

(c′′L)2

t−1∑
k=1

ri,k +
12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
(10)

holds with probability at least 1− δ
Kt(t+1) , uniformly over x ∈ Rd.

The bounds on
∑t−1
k=1 ri,k can be obtained in a standard way. Applying known inequalities (e.g.,

[2, 3, 5, 7]), and using the fact that∇i,k = L′(si,k x
>
k w
′
i,k) si,kxk we have

t−1∑
k=1

ri,k =

t−1∑
k=1

|si,j | (L′(si,k x>k w′i,k))2 x>k A
−1
i,kxk

≤ c′L

t−1∑
k=1

|si,k|x>k A−1
i,kxk

≤ c′L

t−1∑
k=1

ln
|Ai,k|
|Ai,k−1|

= c′L ln
|Ai,t−1|
|Ai,0|

≤ d c′L ln

(
1 +

t− 1

d

)
.

Piecing together as in (10) and stratifying over t = 1, 2, . . ., and i ∈ [K] concludes the proof.

We are now ready to put all pieces together.
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Proof: [Theorem 2] From Lemma 7 and Lemma 9, we see that with probability at least 1− δ,

RT ≤ 2 (1− a) cL

T∑
t=1

∑
i∈Ŷt

εi,t, (11)

when ε2i,t is the one given in Figure 1. We continue by proving a pointwise upper bound on the
sum in the RHS. More in detail, we will find an upper bound on

∑T
t=1

∑
i∈Ŷt

ε2i,t, and then derive a
resulting upper bound on the RHS of (11).

From Lemma 9 and the update rule (Step 5) of the algorithm we can write

ε2i,t ≤ C x>t A
−1
i,t−1xt

= C
x>t (Ai,t−1 + |si,t|xtx>t )−1xt

1− |si,t|x>t (Ai,t−1 + |si,t|xtx>t )−1xt

= C
x>t A

−1
i,t xt

1− |si,t|x>t (Ai,t−1 + |si,t|xtx>t )−1xt

≤ C
x>t A

−1
i,t xt

1− |si,t|x>t (A0 + |si,t|xtx>t )−1xt

= C
x>t A

−1
i,t xt

1− 1
2

= 2C x>t A
−1
i,t xt .

Hence, if we set ri,t = x>t A
−1
i,t xt and proceed as in the proof of Lemma 9, we end up with the

upper bound
∑T
t=1 ε

2
i,t ≤ 2C d ln

(
1 + T

d

)
, holding for all i ∈ [K]. Denoting by M the quantity

2C d ln
(
1 + T

d

)
, we conclude from (11) that

RT ≤ 2 (1− a) cL max

∑
i∈[K]

T∑
t=1

εi,t

∣∣∣ T∑
t=1

ε2i,t ≤M, i ∈ [K]

 = 2 (1− a) cLK
√
T M ,

as claimed.

Proof: [Theorem 3] As we said, we change the definition of ε2i,t in the Algorithm in Figure 1 to

ε2i,t =

max

{
x>A−1

i,t−1x

(
2 d c′L
(c′′L)2

ln

(
1 +

t− 1

d

)
+

12

c′′L

(
c′L
c′′L

+ 3L(−R)

)
ln
K(t+ 4)

δ

)
, 4R2

}
.

First, notice that the 4R2 cap seamlessly applies, since (x>w′i,t − u>i x)2 in Lemma 9 is
bounded by 4R2 anyway. With this modification, we have that Theorem 2 only holds for t
such that d c′L

(c′′L)2 ln
(
1 + t−1

d

)
≥ U2, i.e., for t ≥ d

(
exp

(
(c′′L)2 U2

c′L d

)
− 1
)

+ 1, while for t <

d
(

exp
(

(c′′L)2 U2

c′L d

)
− 1
)

+ 1 we have in the worst-case scenario the maximum amount of regret at

each step. From Lemma 7 we see that this maximum amount (the cap on ε2i,t is needed here) can be
bounded by 4 (1− a) cL |Ŷt|R ≤ 4 (1− a) cLKR.

14



Proof: [Theorem 4] We start from the one step-regret delivered by Lemma 8, and proceed as in the
proof of Theorem 2. This yields

RT ≤ 4 cL

T∑
t=1

St
∑
i∈Ŷt

εi,t

≤ 4S cL

T∑
t=1

∑
i∈Ŷt

εi,t

≤ 4S cL

T∑
t=1

∑
i∈[K]

εi,t

= 4S cL
∑
i∈[K]

T∑
t=1

εi,t,

with probability at least 1 − δ, where ε2i,t is the one given in Figure 1. Let M be as in the proof of
Theorem 2. If Ni,T denotes the total number of times class i occurs in Ŷt, we have that

∑T
t=1 ε

2
i,t ≤

M , implying
∑T
t=1 εi,t ≤

√
Ni,T M for all i ∈ [K]. Moreover,

∑
i∈[K]Ni,T ≤ ST . Hence

RT ≤ 4S cL
∑
i∈K]

√
Ni,T M ≤ 4 cL

√
M SK T ,

as claimed.
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