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S Appendix

This appendix contains the proofs of all lemmas and theorems presented in the main text.

Proof: [Lemma 1] First observe that, for any given size s, the sequence Y., must contain the s
top-ranked classes in the sorted order of p; ;. This is because, for any candidate sequence Y, =

{j17j27 ) 7js}» we have Et[ga,c(yvt*7 }/S)] = (1 - a) Zieys (C(ji7 S) - (ﬁ + C(ji7 S)) pi,t)
If there exists ¢ € Y, which is not among the s-top ranked ones, then we could replace class ¢ in
position j; within Y; with class k ¢ Y; such that py ; > p;, obtaining a smaller loss.

Next, we show that the optimal ordering within Y, is precisely ruled by the nonicreasing order of
pit- By the sake of contradiction, assume there are i and k in Y, such that ¢ preceeds £ in Y., but
Dkt > Pi¢. Specifically, let ¢ be in position j; and £ be in position jo with j; < j2 and such that

¢(J1, 8) > ¢(ja, s). Then, disregarding the common (1 — a)-factor, switching the two classes within
Y, yields an expected loss difference of

(is) ( 9t e(G15)) pia+ clrs) = (725 + (2, 9)) Ph

( c(ji, s ( +c(j1, 8 ) pk,t) - (C(Jé,s) - (ﬁ +C(j278)) pi,t)

= (pk,t 7pi,t)( (jla ) - (JQ; )) > 07
since pg+ > pi+ and c(j1, s) > c(j2, s). Hence switching would get a smaller loss which leads as a
consequence to Y., = (j1,j2,- - -, Js)- O

The algorithm in Figure 1 works by updating through the gradients V; ; of a modular margin-based

T

loss function ZLK:1 L(w, x) associated with the label generation model (2) so as to make the pa-

rameters (w1, ..., ur) € R therein achieve the Bayes optimality condition
K
. T
(ug,...,ug) = arg min E, E L(s; w; )| 4)
wi,... WK W, Tt€D P

where E;[-] above is over the generation of Y; in producing the sign value s;; € {—1,0,+1},

conditioned on the past (in particular, conditioned on }A’t). The requirement in (4) is akin to the
classical construction of proper scoring rules in the statistical literature (e.g., [9]).

The following lemma faces the problem of hand-crafting a convenient loss function L(-) such that
(4) holds.

Lemma 5. Let wy,...,wx € R be arbitrary weight vectors such that w] x; € D, i € [K],
(w1, ...,ug) € R be defined in (2), s; ¢ be the updating signs computed by the algorithm at the
end (Step 5) of time t, L : D = [-R,R] C R — R be a convex and differentiable function of its
argument, with g(A) = —L'(A). Then for any t we have

K K
ZL(SM w?wt) ZL(Si,t ujwt)} ;
i=1

=1

> E,




i.e., (4) holds.

Proof: Let us introduce the shorthands A; = u, z, ﬁz = wItxt, si = s;p,and p; = Py, =

1|ax) = %. Moreover, let P;(-) be an abbreviation for the conditional probability

P(- | (y1,x1),- -, (Yt—1,xi—1), 2¢). Recalling the way s; ¢ is constructed (Figure 1), we can write

lZLs”A] > (Brlsie = D L(R) + Bilsiy = 1) LK) ) + (K — [¥1]) L(0)

=3~ (mLB) + (1= p) L(=B0) + (K ~ [%i)) L(0) ,
For similar reasons,

E¢

ZL(Sm Ai)] = Z (i L(A;) + (1 = pi) L(=Ay)) + (K — |Y3]) L(0) .

iEYt

Since L(-) is convex, so is E; {ZZK:l L(s;y 31)} when viewed as a function of the A;. We have that

OE; [211(:1 L(si¢ 81)}

R = 0 if and only if for all ¢ € Yt we have that Ai satisfies

L'(-A))
L’(&) + L’(—ﬁz’) .

Since p; = %, we have that E, Zfil L(siy 3,)] is minimized when A; = A, for
all ¢ € [K]. The claimed result immediately follows. O

Let now Var(-) be a shorthand for Vaar(-| (y1, 1), ..., (Y1—1,%i—1), z¢). The following lemma
shows that under additional assumptions on the loss L(-), we are afforded to bound the variance of
a difference of losses L(-) by the expectation of this difference. This will be key to proving the fast
rates of convergence contained in the subsequent Lemma 9.

Lemma 6. Let (w) de 'wK .)€ R be the weight vectors computed by the algorithm in Figure
1 at the beginning ( Step 2 ) of time t, s;.¢ be the updating signs computed at the end (Step 5) of time t,
and (uy, ..., ur) € R be the comparison vectors defined through (2). Let L : D = [-R, R] C
R — RY bea C?(D) convex function of its argument, with g(A) = —L'(A) and such that there
are positive constants ¢y and ¢/} with (L'(A))? < ¢} and L"(A) > ¢ for all A € D. Then for

anyi € Yy

2c
T T T T
0 < Vary (L(sip ) wi,) — L(sipu @) < TIL Ei [L(sic ) wi,) — L(siu; )] .
L
Proof: Let us introduce the shorthands A; = @] u;, A; = x/w),, si = siand p; = Py =

L'(=A; ,
@) = WL,(ZA” Then, for any i € [K],

~ 2
Varg (L(siyt a:;rw’i7t) — L(siy u;rwt)) <E, <<L(51 A;) — L(s; Al)) > <d (A; — Ai)Q .



Moreover, for any ¢ € Y; we can write

L (A 2 R 2
=pi 5 (A — 4y) +(1—pi)?(Ai—Az‘)

I
Q
&
B
g

(6)

where the second equality uses the definition of p;. Combining (5) with (6) gives the desired bound.
O

We continue by showing a one-step regret bound for our original loss £, .. The precise connection
to loss L(-) will be established with the help of a later lemma (Lemma 9).

Lemma7. LetL : D=[-R,RJ]CR — R be a convex, twice differentiable, and nonincreasing
function of its argument. Let (w1, ..., ur) € RY¥ be defined in (2) with g(A) = —L'(A) for all
A € D. Let also cy, be a positive constant such that

LA LA + A D)
(L'(A) + L' (=A))? -

holds for all A € D. Finally, let A; 4 denote u x;, and A , denote :cf i, L, where W), it is the i-th
weight vector computed by the algorlthm at the beginning ( Step 2) of time t. If time t is such that

|A; ¢ — z)t| < et foralli € [K), then

Et[la,e(Ye, V2] = Eellao(Ye, V) <2(1—a)er Y s -
icY,

(=4)

Proof: Introduce the shorthand notation p(A) = m. We can write

Et [ga,c(}/h f/;f)} - Et[ga,c(Y;fa }/t*)}
= (=) 3 (clin94) = (5 + G 1F2D) p(A:))
S ¢
—(=a) 30 (el ) = (25 + e YD) p(A0))
ieyy

where j; denotes the position of class 7 in Y, and ji 1is the position of class 7 in Y,*. Now,

ioay_ —9(=8)g(A) —g'(A)g(=A) _ —L'(A)L"(-A) - L'(-A) L"(A)
P'(A) = (g(A) + g(—A))? = (L'(A) + L' (—A))2 >0

since g(A) = —L/(A), and L(-) is convex and nonincreasing. Hence p(A) is itself a nondecreasing
function of A. Moreover, the extra condition on L involving L’ and L” is a Lipschitz condition on

p(A) via a uniform bound on p’(A). Hence, from |A; ; — ﬁ;t\ < €+ and the definition of Y; we
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can write
Et [ga,c(}/ty Y;)] - ]Et [Za,c(na }/t*)]

<(=a) Y (e [ = (25 + (s 192D)) P, = eialp))
i€y

—(=a) 3 (el D) = (525 + e 1D (AL, + €ialb))
€Yy

< (1—a) Y (el Vi) = (325 + cUis D) 2B, — €ialn))
ieY;

—(1=a) Y (el 9D = (125 +clGir 1)) pUAL, + i)
i€Y:

= (1=0) 3 (e D) (p(A% + €ialp) — (AL, — €ilp)))
ieY;

<2(l—-a)cg Zei7t ,

ieY;
the last inequality deriving from ¢(,s) < 1forall < s < K, and
p(A], +eiddp) — (A}, — €dp) < cr (Al + €idlp — (A}, —€idlp)< 2cp €. O

Likewise, we provide a similar bound for the ranking loss.

Lemma 8. Under the same assumptions and notation as in Lemma 7, combined with the inde-
pendence assumption Py(y1 ¢, ..., Yk 1) = HZE[K] Di, let the Algorithm in Figure 1 be working

with a — 1 and strictly decreasing cost values c(i,s). Let w), be the i-th weight vector com-
puted by this algorithm at the beginning (Step 2) of nme t. If this algorithm ranks classes as

Djijg = .. > pjst + >0, and time t is such that |A; s — M\ <€ foralli € [K], then
E; [grank,,t()/h (ﬁjl,ty cee )i)\jst,fn 0,... 70))} - E; [fmnk,t(yt, (pil,” <y Pig, s 0,... 70))}
<4S;cr Z €it s
ieY;
where the p; 4 = P (yi 1 = 1| x) are sorted as p;, + > ... > Pis, .t > 0, and Y, = (J1,d2y -5 78,)-

g(=Ai )
g(Ai)+9(=Aq0)"

convenience, in this proof we drop subscript ¢ from p; 4, S, y; ¢, and Y;. Consider E, [Crank,t(Ye, )A/)],
and introduce the shorthand

Proof: Recall the notation P;(-) = P(-| @), and p; ; = p(A;+) = For notational

pij =pipj = pi — Pulyi > yj)-

Disregarding the term .S > K] Pi> which is independent of f’, we can write

€]
B [Crank,e (Y, V)] = Z Pe(yi > v;) ({pi <p;} + 3 {pi =p;})
i,jeY,i<j
+ Y PRy >w) (o <pid+3{pi=p}) =S D _pi
i,jeY, i<y 2%
= Y (i pigpi <pi}+ i —pig) 3 {pi = s}
ijeY,i<j
+ Z — Pij {p] <pz}+( pz,]) {pj :pi}_S Zpi
1,jEY, i< iey
= > i—pipi<pi}+3@i—p){pi=pi}+pi—pi; =S pi
iGeV, i<y i€y
= Z (min{p;, p;} — pip;) — S Zpi
i,jeY,i<j i€y
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which can be finally seen to be equal to
—Z(S‘Fl—ji)lh— Z PiDyj (N
i€y i,5EY,i<j
where j’i is the position of class ¢ within }A/t in decreasing order of p;.
Denote by Y;* the sequences determined by f*(x;;.S), the optimal ranking operating on the p;’s,
and let j; and Ji be the position of class 7 in decreasing order of p; within Y and Y}*, respectively.

Proceeding as in Lemma 7 and recalling (7) we can write

~

Et [grank,t(}/ty f(mtv S))] - Et [erank,t (}/ta f*(mta S)]

=Y (S+1-ipi+ D>, pipi—Y (S+1-j)pi— Y. pip;

EYy 1,JEY, 1<y iey ijeY,i<j
<> (S+1-0p(A +edp)+ D p(A], +eddp) p([A), + €j4lp)
ieYy ,jEYy, i<
= (SH1=3)p(AL —eddp)— Y, p(AL —€iddp) p([A), — €4]p)
i€y i,j€Y,i<]
< Z(S +1-7j) (p([ﬁit + €it]D) _p([ﬁg,t - ei,t]D))
iey
b (o + ealo) pRhe + €56l DAL — esslp) (1R — 1110))
i,jE€Y,i<]
<28cp Y e+ Y. 2er(eir+ej)
i€y i,jEY, i<
=28c¢y, Zei’t +2(5-1)¢g ZGi,t
i€y i€y
<4Seyp Z €its
icy
as claimed. O
Lemma9. Let L : D = [-R,R] C R — R* be a C?(D) convex and nonincreasing function of

its argument, (uy, ..., ur) € R be defined in (2) with g(A) = —L'(A) for all A € D, and such
that ||u;|| < U forall i € [K]. Assume there are positive constants ¢, and ¢ with (L'(A))? < ¢},
and L"(A) > ¢ forall A € D. With the notation introduced in Figure 1, we have that

! -1 12 ! K 4
dey In 1—|—t7 + CfL+3L(—R) IHM
CAE i)t \g 5
holds with probability at least 1 — 6 for any 6 < 1/e, uniformly over i € [K], t = 1,2,..., and
x € R%

(x'w), —u/z)? <z A7} |x <U2 +

/L’

Proof: For any given class 4, the time-t update rule w; , — w; 41 — w; ., in Figure 1 allows
us to start off from [7] (proof of Theorem 2 therein), from which one can extract the following
inequality

di,tfl (uia w;yt)

t—1 t—1
1 2 c! 2
<U?+ 7(0%)2 Zm,k - g Z (ij(wgk —u;) — ?L (SM mZ(w;k - ul)) > , (8
k=1 k=1

where we set r; ,, = V;'—k A;,} Vi.k. Using the lower bound on the second derivative of L we have

L(sip @y wjy) — L(siku @)
c//
< L' (sip @, w) ) (si 0T Wy, — Sik U, Th) — 7L(Si,k Ty w)y — siku, o)’

/! 2

L (sipmy (why —us))

= v;,rk(w;,k —u;) — B
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Plugging back into (8) yields
= g =1
A (i, wy) U+ s D rie = 2 Y (Llsinwgwiy) — Lisipul zx)) - (9)
(r) k=1 ‘L b=
We now borrow a proof technique from [4] (see also [1, 5] and references therein). Define L; ;, =
L(si @y w)y) — L(sipw @) and L], = Ex[L;x] — L; 1. Notice that the sequence of random

variables L; 1, Lj o, ..., forms a martingale difference sequence such that, for any i € Yi:
i. Ex[L; ] > 0, by Lemma 6;
ii. |L] | <2L(—R), since L(-) is nonincreasing over D, and s; . &, w} ., 8; x u; @) € D;
iii. Varg(L; ) =Varg(L; ) < ZCNL E[L; k] (again, because of Lemma 6).
i\ o7

On the other hand, when i ¢ Y} then s;,kx = 0, and the above three properties are trivally satisfied.
Under the above conditions, we are in a position to apply any fast concentration result for bounded

martingale difference sequences. For instance, setting for brevity B = B(t,d) = 3 In K(t+4 , [8]
allows us derive the inequality

t—1

t—1 t—1
8

S ElLin] = Y Lix > max o g ZEk ik, 6L(-R)B p ,

k=1 k=1 ‘L

that holds with probability at most + t( Y for any ¢t > 1. We use the inequality v/cb < %(C +b)

with ¢ = 4CL B,and b =2 Zk 1 Ex[L; 1], and simplify. This gives

_ZLM<(CL (— R))B

Using the Cauchy-Schwarz inequality

with probability at least 1 — ( T

(Twi, —u @) <axT A} xdiyi(u,w],)

holding for any x € R<, and replacing back into (9) allows us to conclude that

t—1
1 12 /¢ K(t+4
(@ wj, —ulz) <aTA ]z (U+ 55 Y rix+— (= +3L(-R)) In K +4)
(c1) =1 L \¢L g
(10)

holds with probability at least 1 — , uniformly over € R%.

Kt(t+1

The bounds on 22;11 7; 1, can be obtained in a standard way. Applying known inequalities (e.g.,
[2, 3, 5, 7]), and using the fact that V,; ,, = L' (s; & :c;rw;k) S; kT) We have

t—1 t—1
Dok = Y lsigl (U (six @y w)y)* ®f A
k=1 k=1
t—1
< Z |Szk|$2Az_;1$k
< 4
L |A7,k 1|
Ay
= ( 1117‘ b
B Al
<

t—1
P In (14— .
dcy, n( + d)

Piecing together as in (10) and stratifying over t = 1,2, ..., and ¢ € [K] concludes the proof. O

We are now ready to put all pieces together.
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Proof: [Theorem 2] From Lemma 7 and Lemma 9, we see that with probability at least 1 — &,

T
Rr<2(l-a)eL ) ) et (11)

t=1 ;cy,

when 612,:5 is the one given in Figure 1. We continue by proving a pointwise upper bound on the
sum in the RHS. More in detail, we will find an upper bound on Zthl > ey, eit, and then derive a
resulting upper bound on the RHS of (11).

From Lemma 9 and the update rule (Step 5) of the algorithm we can write

2 T 4—1
€< Cwx, Ai,tqmt

x] (Air—1 + |sig] ma) )ty

=C
1= [siile] (Aig—1 + |sie] T )" ta,
a:tTAZtla;t

=C

1—[siile] (Aig1 + |sie] wex] )"ty

T 4—1
xz, Ai,t €

1= |siele] (Ao + |sii| e )ty

Hence, if we set r;; = x, AL t1$t and proceed as in the proof of Lemma 9, we end up with the
upper bound Y7, €7, <2CdIn(1+ %), holding for all i € [K]. Denoting by M the quantity
2Cd In(1+ %), we conclude from (11) that

Rr <2(1—a)cp max ZZGM Ze?’th, i€Klp=21—-a)cs KVT M,

T
i€[K] t=1 t=1

as claimed. O

Proof: [Theorem 3] As we said, we change the definition of eit in the Algorithm in Figure 1 to

2 _
€t —

max{ @' A7} @ <2c/i/c§ In (1 + H) + 17? <Cﬁ +3L(R)> In KM) JAR? Y
’ (e1) d L \¢ Y

T T

First, notice that the 4R? cap seamlessly applies, since (x wg)t — u/ )% in Lemma 9 is

bounded by 4 R? anyway. With this modification, we have that Theorem 2 only holds for ¢
’ 11\2 172

such that 2L In (1+ %) > U?, ie., fort > d (exp (M) - 1) + 1, while for ¢t <

(CAH L

11\2 2
d (exp ((CLP ) dU ) - 1) + 1 we have in the worst-case scenario the maximum amount of regret at
7 d

each step. From Lemma 7 we see that this maximum amount (the cap on 612,15 is needed here) can be
bounded by 4 (1 — a) ¢z, |V;| R<4(1 —a)ecr K R. O

14



Proof: [Theorem 4] We start from the one step-regret delivered by Lemma 8, and proceed as in the
proof of Theorem 2. This yields

Rr <4c¢p, Zst Zezt

zEYt

T
<4Scy Zzei,t

t=1 iEYt

<4SCLZ Z €t

t= 1z€[K

=4S¢y, Z Zezta

1€[K] t=1

with probability at least 1 — &, where ef’t is the one given in Figure 1. Let M be as in the proof of
Theorem 2. If N; 7 denotes the total number of times class ¢ occurs in Y;, we have that ZtT:l efﬁt <
M, implying Zthl €t < \/N;r M forall i € [K]. Moreover, Zie[K] N; 7 < ST. Hence

Rr<4Secp Y /NigM<4c, VMSKT,

1€K)

as claimed. O
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