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A Properties of the generalized gamma process

Process λ(w) ψ(t) κ(n, z)

Generalized gamma α
Γ(1−σ)w

−σ−1e−wτ α
σ ((t+ τ)σ − τσ) α

(z+τ)n−σ
Γ(n−σ)
Γ(1−σ)

Gamma (σ = 0) αw−1e−wτ α log(1 + t
τ ) α

(z+τ)nΓ(n)

Inverse Gaussian (σ = 1
2 ) α√

π
w−

3
2 e−wτ 2α(

√
t+ τ −

√
τ) α

(z+τ)n−1/2

Γ(n−1/2)√
π

Stable (τ = 0) α
Γ(1−σ)w

−σ−1 αtσ

σ
α

zn−σ
Γ(n−σ)
Γ(1−σ)

Table 1: Expressions of λ(w), ψ(t) and κ(n, z) for the generalized gamma, gamma, inverse Gaus-
sian and stable processes.

B Proof of Proposition 1

Zi is clearly a Poisson process, as obtained from transformations of Poisson processes. From Camp-
bell theorem [3], as the Lévy intensity λ verifies conditions (2), Zi(Θ) is finite with probability one.
Moreover, we have

E[Zi(Θ)] = E

 ∞∑
j=1

zij

 = E

 ∞∑
j=1

E [zij |wj ]


= E

 ∞∑
j=1

(1− exp(−γiwj))

 =

∫ ∞
0

(1− exp(−γiw))λ(w)dw

C Proof of Proposition 2

The proof is the same as that of Theorem 1 in [1] and is included here for completeness.

The marginal probability (11) is obtained by taking the expectation of (10) with respect to G. Note
however that (10) is a density, so to be totally precise here we need to work with the probability of
infinitesimal neighborhoods around the observations instead, which introduces significant notational
complexity. To keep the notation simple, we will work with densities, leaving it to the careful reader
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to verify that the calculations indeed carry over to the case of probabilities.

P (U1, . . . , Un) =E [P (U1, . . . , Un|G)]

=

(
n∏
i=1

γKii

)
E

 K∏
j=1

w
mj
j exp

(
−wj

n∑
i=1

γi(uij − 1)

) exp

(
−

(
n∑
i=1

γi

)
G(Θ)

)
The gamma prior on G =

∑∞
j=1 wjδθj is equivalent to a Poisson process prior on N =∑∞

j=1 δ(wj ,θj) defined over the space R+ × Θ with mean intensity λ(w)h(θ). Then, dividing by

the constant term
(∏n

i=1 γ
Ki
i

)

∝E

e− ∫ wN(dw,dθ)(
∑n
i=1 γi)

K∏
k=1

∞∑
j=1

wmkj 1θj=θke
−wj

∑n
i=1 γi(uij−1)


Applying the Palm formula for Poisson processes to pull the k = 1 term out of the expectation,

=

∫
E

e− ∫ w(N+δw1,x1
)(dw,dθ)(

∑n
i=1 γi)

K∏
k=2

∞∑
j=1

wmkj 1θj=θke
−wj

∑n
i=1 γi(uij−1)


× (w1)m1h(θ1)e−w1

∑n
i=1 γi(ui1−1)λ(w1)dw1

=E

e− ∫ wN(dw,dθ)(
∑n
i=1 γi)

K∏
k=2

∞∑
j=1

wmkj 1θj=θke
−wj

∑n
i=1 γi(uij−1)


× h(θ1)

∫
(w1)m1e−w1

∑n
i=1 γiui1λ(w1)dw1

Now iteratively pull out terms k = 2, . . . ,K using the same idea, and we get:

=E
[
e−G(Θ)(

∑n
i=1 γi)

] K∏
k=1

h(θk)

∫
(wk)mke−wk

∑n
i=1 γiuikλ(wk)dwk

=e−ψ(
∑n
i=1 γi)

K∏
k=1

h(θk)κ

(
mk,

n∑
i=1

γiuik

)
This completes the proof of Proposition 2.

D Proof of Proposition 3

The proof is the same as that of Theorem 2 in [1] and is included here for completeness. Let
f : X → R be measurable with respect to H . Then the characteristic functional of the posterior G
is given by:

E[e−
∫
f(θ)G(dθ)|U1, . . . , Un] =

E[e−
∫
f(θ)G(dθ)P (U1, . . . , Un|G)]

E[P (U1, . . . , Un|G)]

The denominator is as given in Proposition 2, while the numerator is obtained using the same Palm
formula technique as Proposition 2, with the inclusion of the term e−

∫
f(θ)G(dθ). Some algebra

shows that the resulting characteristic functional of the posterior G coincides with that of (12).

E Conditional distribution of u for the GGP

For the generalized gamma process, we have

p(un+1,j |other) =
1

C

1

(un+1,jγn+1 +
∑n
i=1 γiuij + τ)mj+1−σ (1)
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where we can compute the normalizing constant, which is given by

C =


(
∑n
i=1 γiuij+τ)

−mj+σ−(
∑n
i=1 γiuij+τ+γn+1)

−mj+σ

γn+1(mj−σ) if mj − σ 6= 0

1
γn+1

log
(

1 + γn+1

τ+
∑n
i=1 γiuij

)
if mj − σ = 0

We can sample exactly from the above equation using the inverse cdf transform.

Let sjn =
∑n
i=1 γiuij . Let P (un+1,j < x|rest) = F (x). We have for GGP

F (x) =


(sjn+τ)−mj+σ−(sjn+τ+xγn+1)−mj+σ

(sjn+τ)−mj+σ−(sjn+τ+γn+1)−mj+σ
if mj − σ 6= 0

log
(

1+
xγn+1
τ+sjn

)
log
(

1+
γn+1
τ+sjn

) if mj − σ = 0

and

F−1(y)

=
1

γn+1

[
((τ + sjn)−mj+σ + y

(
(τ + sjn + γn+1)−mj+σ − (τ + sjn

)−mj+σ
))1/(−mj+σ) − (τ + sjn)

]
if mj − σ 6= 0 and

F−1(y) =
τ + sjn
γn+1

((
1 +

γn+1

τ + sjn

)y
− 1

)
otherwise.

F Inference in latent factor models

Let assume here that the binary matrix Z is unknown and that we have some likelihood function
p(D|Z) where D is the set of data. The Gibbs sampler for approximating the posterior distribution
p(Z,U,w,G∗(Θ)|D) iterates between the following steps

• Update U |Z,w as in Section 2.5

• Update Z|w
• Update (w,G∗(Θ))|U,Z as in Section 2.5

We now describe the update of Z|w. For i = 1, . . . , n, let K−i be the total number of features in
{Zk}k 6=i. Given {wj}j=1,...,K−i and G∗(Θ), we have for j = 1, . . . ,K−i

p(zij |wj ,D, z−ij) ∝ (1− exp(−γiwj))zij exp(−(1− zij)γiwj)p(D|Z)

and the total number of new features K+
i for object i is obtained by

p(K+
i |D, {Zk}k 6=i) ∝ Poisson

K+
i ; ψ̃λ

γi,∑
k 6=i

γk

 p(D|Z)

from which we can sample by truncating the infinite sum on the right hand-side, as for the IBP
model [2]. Note that exact sampling techniques based on slice sampling may also be employed [5].

G Marginal distribution

When γi = γ, it is possible to marginalize over the CRM G as well as the latent variables U so as to
obtain an analytical expression for the joint distribution of P (Z1, . . . , Zn) as well as the predictive
P (Zn+1|Z1, . . . , Zn). Note that in this case, we have a Poisson degree distribution for readers. We
provide the proof in the following section, which relies on properties of Poisson processes. In the
case of the gamma process, it is also possible to derive this result by taking the limit of a finite
model. As this construction may appear more intuitive, we also include it here for completeness.
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G.1 Construction using CRM

We have

P (Z1, . . . , Zn|G)

=

K∏
j=1

[(1− exp(−γwj))mj exp(−γwj(n−mj))]× exp(−γnG(Θ\{θ1, . . . , θK}))

=

K∏
j=1

[[
mj∑
k=0

(
mj

k

)
(−1)k exp(−kwjγ)

]
exp(−γwj(n−mj))

]
× exp(−γnG(Θ\{θ1, . . . , θK}))

=

K∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k exp(−wjγ(n−mj + k))

]
× exp(−γnG(Θ\{θ1, . . . , θK}))

=

K∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k+1(1− exp(−wjγ(n−mj + k)))

]
× exp(−γnG(Θ\{θ1, . . . , θK}))

Applying the Palm formula to the above yields

P (Z1, . . . , Zn) =

K∏
j=1

[
h(θj)

mj∑
k=0

(
mj

k

)
(−1)k+1ψλ(γ(n−mj + k))

]
× exp(−ψλ(nγ))

Hence the conditional distribution of Zn+1 given Z1,. . . ,Zn is

Zn+1 = Z∗n+1 +

K∑
j=1

zn+1,jδθj

where

zn+1,j |Z1, . . . , Zn ∼ Ber

(∑mj+1
k=0

(
mj+1
k

)
(−1)k+1ψλ(γ(n−mj + k))∑mj

k=0

(
mj
k

)
(−1)k+1ψλ(γ(n−mj + k))

)
while the number of new elements Z∗n+1 is a Poisson process over Θ of intensity measure (ψλ((n+
1)γ)− ψλ(nγ))h(θ) as shown in corollary 4.

G.2 Construction by taking the limit of a finite model

In the gamma process case, we can derive the above construction from the limit of a finite model,
similarly to the original construction of the Indian buffet process [2]. Let us consider the finite model
defined for i = 1, . . . , n and j = 1, . . . , p by

zij |wj ∼ Ber(1− exp(−γwj))

and for j = 1, . . . , p

wj ∼ Gamma

(
α

p
, τ

)
Then we have

p(z|w) =

p∏
j=1

(1− exp(−wjγ))mj (exp(−wjγ))n−mj

Using the identity (1 + x)n =
∑n
k=0

(
n
k

)
xk, we obtain

p(z|w) =

p∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k exp(−kwjγ)

]
(exp(−wjγ))n−mj

=

p∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k exp(−wjγ(n−mj + k))

]
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and then

p(z) = Ew[P (z|w)]

=

p∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)kEwj [exp(−wjγ(n−mj + k)])

]

=

p∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k

(
1 +

γ(n−mj + k)

τ

)−α/p]

Similarly to the Indian buffet construction [2], we take the equivalence class [z] defined by left-
ordered binary matrices. We write j = 1, . . . ,K for the features j such that mj > 0 having at least
one feature and obtain

p([z]) =
p!∏2n−1

h=0 ph

K∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k

(
1 +

γ(n−mj + k)

τ

)−α/p] p∏
j=K+1

(
1 +

γn

τ

)−α/p
=

p!∏2n−1
h=0 ph

K∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k

(
1 +

γ(n−mj + k)

τ

)−α/p](
1 +

γn

τ

)−α(p−K)/p

where ph is the count of the number of columns with full history h, see [2] for details. When

p is large,
(

1 +
γ(n−mj+k)

τ

)−α/p
' 1 − α

p log
(

1 +
γ(n−mj+k)

τ

)
, and using the fact that∑mj

k=0

(
mj
k

)
(−1)k = 0, we obtain, for p large

p([z]) =
p!∏2n−1

h=0 ph

K∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k+1α

p
log

(
1 +

γ(n−mj + k)

τ

)](
1 +

γn

τ

)−α
=

αK∏2n−1
h=1 ph

p!

p0pK

K∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k+1 log

(
1 +

γ(n−mj + k)

τ

)](
1 +

γn

τ

)−α
=

αK∏2n−1
h=1 ph

K∏
j=1

[
mj∑
k=0

(
mj

k

)
(−1)k+1 log

(
1 +

γ(n−mj + k)

τ

)](
1 +

γn

τ

)−α
as p!

p0pK
→ 1 when p→∞, which completes the proof.

H Derivation of power-law properties

In this section, we derive power-law properties of the proposed model, in the case γi = γ. The
proofs are similar to those for the stable IBP (see Appendix A of [5]).

The total number of books follows a Poisson distribution of rate ψλ(nγ). For the GGP, we have

ψλ(nγ) =
α

σ
((nγ + τ)σ − τσ)

which for large n, is of order nσ .

For the degree distribution, we are interested in the joint distribution of (M1, . . .Mn), where Mm

is the number of books read by exactly m readers. There are K!∏n
m=1Mm!

∏n
m=1

(
n!

m!(n−m)!

)Mm

configurations of the model with the same statistics (M1, . . . ,Mn). Hence, by using Eq. (11) and
the fact that as m << n, we have γ

∑n
i=1 uij ' nγ, we obtain

P (M1, . . . ,Mn) ∝ K!∏n
m=1Mm!

n∏
m=1

(
n!

m!(n−m)!
γmκ(m,nγ)

)Mm

Conditioning on
∑n
m=1Mm, (M1, . . . ,Mn) is multinomial with the probability of having a book

read by m readers being proportional to the term in parentheses. For large m and even larger n, it
simplifies to O

(
Γ(m−σ)
Γ(m+1)

)
= O(m−1−σ).
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I Derivation of the Gibbs sampler from the limit of a finite model

In this section, we derive the Gibbs sampler, in the gamma process case, as the limit of a finite model.
Similar constructions were given, e.g. for the Dirichlet process[4] or the beta-Bernoulli process [2].
Let us consider the finite model defined for i = 1, . . . , n and j = 1, . . . , p by

zij |wj ∼ Ber(1− exp(−γiwj))

and for j = 1, . . . , p

wj ∼ Gamma

(
α

p
, τ

)
For i = 1, . . . , n and j = 1, . . . , p, we introduce latent variables uij such that

uij ∼ rExp(γiwj , 1)

if zij = 1, and 1 otherwise. We therefore have

p(zij = 0, uij |wj) = exp(−γiwj)
p(zij = 1, uij |wj) = γiwj exp(−γiwjuij)

Let K =
∑n
i=1

∑p
j=1 zij and mj =

∑n
i=1 zij . Without loss of generality, assume that mj > 0

for j = 1, . . . ,K and mj = 0 for j = K + 1, . . . , p. Let w∗ =
∑p
j=K+1 wj , then we have the

following updates. For j = 1, . . . ,K

wj |zij , uij ∼ Gamma

(
α

p
+mj , τ +

n∑
i=1

γiuij

)
and

w∗|z, u ∼ Gamma

(
α
p−K
p

, τ +

n∑
i=1

γi

)
Taking the limit when p→∞ yields

wj |zij , uij ∼ Gamma

(
mj , τ +

n∑
i=1

γiuij

)
and

w∗|z, u ∼ Gamma

(
α, τ +

n∑
i=1

γi

)
and one recovers the Gibbs sampler for the gamma process described in Section 2.5.

References

[1] F. Caron and Y. W. Teh. Bayesian nonparametric models for ranked data. In Neural Information
Processing Systems (NIPS), 2012.

[2] T Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In
NIPS, 2005.

[3] J.F.C. Kingman. Poisson processes, volume 3. Oxford University Press, USA, 1993.
[4] R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of

computational and graphical statistics, pages 249–265, 2000.
[5] Y.W. Teh and D. Görür. Indian buffet processes with power-law behavior. In NIPS, 2009.

6


