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This document contains additional technical details eglab the work described in [1]. For brevity,
any constructs which here are left undefined are assumedi¢otha same meaning as in the main
document, and are referred, where necessary, to its apg@pections.

1 Detecting Conflicting Actions Through Convex Optimizatian

As described in section 3.2.2 of [1], actiomsinda’ are said to beonflictingin local space if there
are two points, b’ such thatV/¥b = MFb’, and wherep(arg maxaer o - b); # ¢(argmaxaer o -

b'); for agenti. This means that andb’ are associated with different individual actions for that
agent, but are undistinguishable given only their marggadibnb,.. We shall consider the action
with the highest value bound &t (hereafter defined ag as the expected best action to take. For
this action there already is at least one joint belief paimtvihich it is maximal - the point which
generated the maximum value bound. The problem is then tosfineb wherea’ # a is the
maximal action. Givev = Ab andv’ = A’b, the vectors describing all possible values associated
with @ anda’, the problem can then be described as the constrained aption:

minimize maxv; — maxv}
i J

subjectto v = Ab b>=0,
/ / T (1)
v =A% 1,b=1
MFb =0,

If the solution to this problem is negative, then we know tiflas maximal at some poirit, which
means that neither action can be taken whithout furthermm&ion. Unfortunately, the target func-
tion in this optimization is non-convex. Taking the epignag the first term of the target function,
the problem becomes:
minimize s — max v’
e
subjectto Ab < 1;s b>=0,

vV=4b 1lp=1
MFb=b,

)



If the vectors inN'®’| (rows of A’) are then taken individually, the problem trivially beccsvike LP:

Vi=1,...,]T maximize T¢b—s
subjectto Ab<1xs b=0, 3)
MFb=0b, 1Xp=1

An alternative is to introduce the slack variagla the constraints of (2):

Abjlks btﬂn
Ab=1ps+¢ 11b=1 ()
MFb=10b,

If the maximum element of is positive at some, then we can safely conclude thatix; v; <
max; v; and therefore the actions are undecidable. The problem afrmzng the maximum
element of¢, however, is only solvable by splitting into its positive and negative components,
¢+ and¢—, and requiring thatét)” - ¢~ = 0. The latter constraint is itself non-convex, and at
best it increases the complexity of the optimization praczedeyond that of the exhaustive LP (3).
In order to contain this problem as an LP, we must then relagetconstraints, and describe the
problem as:

maximize 17,¢

subjectto Ab < 1;s b>=0, c
Ab=1ps+¢ 1Tp=1 ®)
MFb=b,

The target function in this optimization is not the same akéoriginal problem (1), since it instead
seeks to find the poirtwith the highest average difference between the maximumesi¢ofv and
the values ofd’ (highest mean value @f). While the optimal solution to this problem is typically
achieved at a point wherghas positive components, this is not necessarily so, andftire we
must consider this as an approximate solution to the origiredlem. Since the vectors ithand A’
are arbitrary as long as the full value function is conveis, &lso difficult to establish a bound on the
quality of this approximation. In practice, for the exangp#tudied in the results of [1], we found
that using (5) instead of (3) does not noticeably affect thality of the resulting communication
map, and allows us to scale better to larger domains.

The extension of (5) to the problem of finding a set of fact@rwith no conflicting actions is
straightforward: we need only to simultaneously consider symmetric problems, that of finding
a pointb wherea is maximal, and that of finding wherea’ is maximal, while requiring that these
points are undistinguishable when projectedtdrhe full optimization is then:

maximize 1,& +17¢

subjectto Ab < 1s Ab=1ps+¢ MEFb =0, ©)
AY < 1ps AV =18 + ¢ MFY =b,
b>=0, V=0, Mgb=MzV



2 Building the Communication Map

Below is a more detailed, pseudo-code description of therdlgn suggested in section 3.2.3 of [1].
The inputs to this algorithm are the set of local factdtsthe set of non-local factot®, the value
functionV, and the number of desired samplésThe output is a set of paifé ., G) of local belief
points and associated communication decisions.

Algorithm 1 CreateCommunicationMag, 7, V, N)

1: {Single_LP(bz,a,a’) refersto (5)

2: {Full_LP(factors,br,a’) refers to (6}

3: Samples < sampleN reachable local belief points:;
4: bounds < obtain local value bounds &f; Map + 0;
5: forall by € Samples do

6: o « argmax, Vy(be);

7 if V(b)) > Va(be) Va # o' or Single LP(bz,a,a’) >0 VYo # o then
8: Map + MapU (be,D);

9: else

10: G+ 0 H+— F/L;

11 while # is not emptydo

12: temp < remove factor front; factors + HUG;

13: if Full_ LP(factors,bz,a’) returns both negative solutiottsen
14: G « temp;

15: end if

16: end while

17: Map + MapU{bz,G);

18: endif

19: end for

20: return Map

3 The OneDoor Scenario

We here provide further description of the OneDoor envirentused in the results of [1]. In this
problem, originally introduced in [2], two agents operataigrid-like world, represented in fig. 1,
and may each be in one ©possible positions. One of the agents is know to be in pastip2 or 3
(with uniform probability) and has the goal of reaching piosi 5. The other starts in positiorss 6
or 7 and must reach positidh Each agent can move in any of the four directions, with an@ated
probability of ending up in an unintended neighbor statel, @m observe positiorgs 4 and6 with

no noise. The remaining positions all produce the same wvaisen, albeit also deterministically.
Therefore|O;| = 4. The robots may share the same position, and they receiveatypéor being
both in position4 at the same time. They receive a positive reward for reacthiaely goal, and
no reward otherwise. The agents are uncoupled expect thrifnegreward function (i.e. we here
assume a transition-observation independent versionegbitbblem). Even so, this means that an
acceptable policy in this problem must be such that one ohgfemts waits for the other to clear the
“door” in position4 until it attempts to move there.

If a sufficiently large horizon is considered, as shown in fiis problem allows for a significant
reduction in communication, using our method. This is beeanear-optimal joint policy defines
wich agent should take priority, and since that agent alwagses first, it rarely needs to commu-
nicate (only when the other agent has a sufficient probghifitmoving to positiond due to the
noise in its actions). The other agent, in turn, must comeairiuntil its partner clears the door,
and afterwards, its local actions can also be taken indepelydand so it ceases communication.
For horizons smaller thatD, however, the agents may not have enough decisions lefthegany
positive reward, and in these cases they both communicateler to avoid any possible collisions.



Figure 1: Representation of the OneDoor scenario.
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