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Abstract

Although spectral clustering has enjoyed considerable empirical success in ma-
chine learning, its theoretical properties are not yet fully developed. We analyze
the performance of a spectral algorithm for hierarchical clustering and show that
on a class of hierarchically structured similarity matrices, this algorithm can toler-
ate noise that grows with the number of data points while still perfectly recovering
the hierarchical clusters with high probability. We additionally improve upon pre-
vious results for k-way spectral clustering to derive conditions under which spec-
tral clustering makes no mistakes. Further, using minimax analysis, we derive
tight upper and lower bounds for the clustering problem and compare the perfor-
mance of spectral clustering to these information theoretic limits. We also present
experiments on simulated and real world data illustrating our results.

1 Introduction

Clustering, a fundamental and ubiquitous problem in machine learning, is the task of organizing data
points into homogenous groups using a given measure of similarity. Two popular forms of clustering
are k-way, where an algorithm directly partitions the data into k disjoint sets, and hierarchical,
where the algorithm organizes the data into a hierarchy of groups. Popular algorithms for the k-way
problem include k-means, spectral clustering, and density-based clustering, while agglomerative
methods that merge clusters from the bottom up are popular for the latter problem.

Spectral clustering algorithms embed the data points by projection onto a few eigenvectors of (some
form of) the graph Laplacian matrix and use this spectral embedding to find a clustering. This
technique has been shown to work on various arbitrarily shaped clusters and, in addition to being
straightforward to implement, often outperforms traditional clustering algorithms such as the k-
means algorithm.

Real world data is inevitably corrupted by noise and it is of interest to study the robustness of spectral
clustering algorithms. This is the focus of our paper.

Our main contributions are:

• We leverage results from perturbation theory in a novel analysis of a spectral algorithm
for hierarchical clustering to understand its behavior in the presence of noise. We provide
strong guarantees on its correctness; in particular, we show that the amount of noise spectral
clustering tolerates can grow rapidly with the size of the smallest cluster we want to resolve.

• We sharpen existing results on k-way spectral clustering. In contrast with earlier work, we
provide precise error bounds through a careful characterization of a k-means style algo-
rithm run on the spectral embedding of the data.

• We also address the issue of optimal noise thresholds via the use of minimax theory. In
particular, we establish tight information-theoretic upper and lower bounds for cluster re-
solvability.
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2 Related Work and Definitions

There are several high-level justifications for the success of spectral clustering. The algorithm has
deep connections to various graph-cut problems, random walks on graphs, electric network theory,
and via the graph Laplacian to the Laplace-Beltrami operator. See [16] for an overview.

Several authors (see von Luxburg et. al. [17] and references therein) have shown various forms of
asymptotic convergence for the Laplacian of a graph constructed from random samples drawn from
a distribution on or near a manifold. These results however often do not easily translate into precise
guarantees for successful recovery of clusters, which is the emphasis of our work.

There has also been some theoretical work on spectral algorithms for cluster recovery in random
graph models. McSherry [9] studies the “cluster-structured” random graph model in which the
probability of adding an edge can vary depending on the clusters the edge connects. He considers a
specialization of this model, the planted partition model, which specifies only two probabilities, one
for inter-cluster edges and another for intra-cluster edges. In this case, we can view the observed
adjacency matrix as a random perturbation of a low rank “expected” adjacency matrix which en-
codes the cluster membership. McSherry shows that one can recover the clusters from a low rank
approximation of the observed (noisy) adjacency matrix. These results show that low-rank matrices
have spectra that are robust to noise. Our results however, show that we can obtain similar insensi-
tivity (to noise) guarantees for a class of interesting structured full-rank matrices, indicating that this
robustness extends to a much broader class of matrices.

More recently, Rohe et al [11] analyze spectral clustering in the stochastic block model (SBM),
which is an example of a structured random graph. They consider the high-dimensional scenario
where the number of clusters k grows with the number of data points n and show that under certain
assumptions the average number of mistakes made by spectral clustering → 0 with increasing n.
Our work on hierarchical clustering also has the same high-dimensional flavor since the number of
clusters we resolve grows with n. However, in the hierarchical clustering setting, errors made at the
bottom level propogate up the tree and we need to make precise arguments to ensure that the total
number of errors→ 0 with increasing n (see Theorem 1).

Since Rohe et al [11] and McSherry [9] consider random graph models, the “noise” on each entry has
bounded variance. We consider more general noise models and study the relation between errors in
clustering and noise variance. Another related line of work is on the problem of spectrally separating
mixtures of Gaussians [1, 2, 8].

Ng et al. [10] study k-way clustering and show that the eigenvectors of the graph Laplacian are stable
in 2-norm under small perturbations. This justifies the use of k-means in the perturbed subspace
since ideally without noise, the spectral embedding by the top k eigenvectors of the graph Laplacian
reflects the true cluster memberships, However, closeness in 2-norm does not translate into a strong
bound on the total number of errors made by spectral clustering.

Huang et al. [7] study the misclustering rate of spectral clustering under the somewhat unnatural
assumption that every coordinate of the Laplacian’s eigenvectors are perturbed by independent and
identically distributed noise. In contrast, we specify our noise model as an additive perturbation to
the similarity matrix, making no direct assumptions on how this affects the spectrum of the Lapla-
cian. We show that the eigenvectors are stable in∞-norm and use this result to precisely bound the
misclustering rate of our algorithm.

2.1 Definitions
The clustering problem can be defined as follows: Given an (n × n) similarity matrix on n data
points, find a set C of subsets of the points such that points belonging to the same subset have
high similarity and points in different subsets have low similarity. Our first results focus on binary
hierarchical clustering, which is formally defined as follows:

Definition 1 A hierarchical clustering T on data points {Xi}ni=1 is a collection of clusters (subsets
of the points) such that C0 := {Xi}ni=1 ∈ T and for any Ci, Cj ∈ T , either Ci ⊂ Cj , Cj ⊂ Ci, or
Ci∩Cj = ∅. A binary hierarchical clustering T is a hierarchical clustering such that for each non-
atomic Ck ∈ T , there exists two proper subsets Ci, Cj ∈ T with Ci ∩ Cj = ∅ and Ci ∪ Cj = Ck.
We label each cluster by a sequence s of Ls and Rs so that Cs·L and Cs·R partitions Cs, Cs·LL and
Cs·LR partititons Cs·L, and so on.
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Figure 1: (a): Two moons data set (Top). For a similarity function defined on the ε-neighborhood
graph (Bottom), this data set forms an ideal matrix. (b) An ideal matrix for the hierarchical problem.

Ideally, we would like that at all levels of the hierarchy, points within a cluster are more similar
to each other than to points outside of the cluster. For a suitably chosen similarity function, a
data set consisting of clusters that lie on arbitrary manifolds with complex shapes can result in
this ideal case. As an example, in the two-moons data set in Figure 1(a), the popular technique of
constructing a nearest neighbor graph and defining the distance between two points as the length
of the longest edge on the shortest path between them results in an ideal similarity matrix. Other
non-Euclidean similarity metrics (for instance density based similarity metrics [12]) can also allow
for non-parametric cluster shapes.

For such ideal similarity matrices, we can show that the spectral clustering algorithm will determin-
istically recover all clusters in the hierarchy (see Theorem 5 in the appendix). However, since this
ideal case does not hold in general, we focus on similarity matrices that can be decomposed into an
ideal matrix and a high-variance noise term.

Definition 2 A similarity matrixW is a noisy hierarchical block matrix (noisy HBM) ifW , A+R
where A is ideal and R is a perturbation matrix, defined as follows:

• An ideal similarity matrix, shown in Figure 1(b), is characterized by ranges of off-block-
diagonal similarity values [αs, βs] for each cluster Cs such that if x ∈ Cs·L and y ∈ Cs·R
then αs ≤ Axy ≤ βs. Additionally, min{αs·R, αs·L} > βs.

• A symmetric (n×n) matrixR is a perturbation matrix with parameter σ if (a) E(Rij) = 0,
(b) the entries of R are subgaussian, that is E(exp(tRij)) ≤ exp(σ

2t2

2 ) and (c) for each
row i, Ri1, . . . , Rin are independent.

The perturbations we consider are quite general and can accommodate bounded (with σ upper
bounded by the range), Gaussian (where σ is the standard deviation), and several other common
distributions. This model is well-suited to noise that arises from the direct measurement of similar-
ities. It is also possible to assume instead that the measurements of individual data points are noisy
though we do not focus on this case in our paper.

In the k-way case, we consider the following similarity matrix which is studied by Ng et. al [10].

Definition 3 W is a noisy k-Block Diagonal matrix if W , A + R where R is a perturbation
matrix and A is an ideal matrix for the k-way problem. An ideal matrix for the k-way problem has
within-cluster similarities larger than β0 > 0 and between cluster similarities 0.

Finally, we define the combinatorial Laplacian matrix, which will be the focus of our spectral algo-
rithm and our subsequent analysis.

Definition 4 The combinatorial Laplacian L of a matrix W is defined as L , D −W where D is
a diagonal matrix with Dii ,

∑n
j=1Wij .

We note that other analyses of spectral clustering have studied other Laplacian matrices, particularly,
the normalized Laplacians defined as Ln , D−1L and Ln , D−

1
2LD−

1
2 . However as we show in

Appendix E, the normalized Laplacian can mis-cluster points even for an ideal noiseless similarity
matrix.
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Algorithm 1 HS
input (noisy) n× n similarity matrix W

Compute Laplacian L = D −W
v2 ← smallest non-constant eigenvector of L
C1 ← {i : v2(i) ≥ 0}, C2 ← {j : v2(j) < 0}
C ← {C1, C2}∪ HS (WC1

)∪ HS (WC2
)

output C Figure 2: An ideal matrix and a noisy HBM. Clus-
ters at finer granularity are masked by noise.

Algorithm 2 K-WAY SPECTRAL

input (noisy) n× n similarity matrix W , number of clusters k
Compute Laplacian L = D −W
V ← (n× k) matrix with columns v1, ..., vk, where vi , ith smallest eigenvector of L
c1 ← V1 (the first row of V ).
For i = 2 . . . k let ci ← argmaxj∈{1...n}minl∈{1,...,i−1} ||Vj − Vcl ||2.
For i = 1 . . . n set c(i) = argminj∈{1...k}||Vi − Vcj ||2

output C , {{j ∈ {1 . . . n} : c(j) = i}}ki=1

3 Algorithms and Main Results
In our analysis we study the algorithms for hierarchical and k-way clustering, outlined in Algo-
rithms 1 and 2. Both of these algorithms take a similarity matrix W and compute the eigenvectors
corresponding to the smallest eigenvalues of the Laplacian of W . The algorithms then run simple
procedures to recover the clustering from the spectral embedding of the data points by these eigen-
vectors. Our Algorithm 2 deviates slightly from the standard practice of running k-means in the
perturbed subspace. We instead use the optimal algorithm for the k-center problem (Hochbaum-
Shmoys [6]) because of its amenability to theoretical analysis. We will in this section outline our
main results; we sketch the proofs in the next section and defer full proofs to the Appendix.

We first state the following general assumptions, which we place on the ideal similarity matrix A:

Assumption 1 For all i, j, 0 < Aij ≤ β∗ for some constant β∗.

Assumption 2 (Balanced clusters) There is a constant η ≥ 1 such that at every split of the hierarchy
|Cmax|
|Cmin| ≤ η, where |Cmax|, |Cmin| are the sizes of the biggest and smallest clusters respectively.

Assumption 3 (Range Restriction) For every cluster s, min{αs·L, αs·R} − βs > η(βs − αs).

It is important to note that these assumptions are placed only on the ideal matrices. The noisy HBMs
can with high probability violate these assumptions.

We assume that the entries of A are strictly greater than 0 for technical reasons; we believe, as
confirmed empirically, that this restriction is not necessary for our results to hold. Assumption 2
says that at every level the largest cluster is only a constant fraction larger than the smallest. This
can be relaxed albeit at the cost of a worse rate. For the ideal matrix, the Assumption 3 ensures that
at every level of the hierarchy, the gap between the within-cluster similarities and between-cluster
similarities is larger than the range of between-cluster similarities. Earlier papers [9, 11] assume that
the ideal similarities are constant within a block in which case the assumption is trivially satisfied
by the definition of the ideal matrix. However, more generally this assumption is necessary to show
that the entries of the eigenvector are safely bounded away from zero. If this assumption is violated
by the ideal matrix, then the eigenvector entries can decay as fast as O(1/n) (see Appendix E for
more details), and our analysis shows that such matrices will no longer be robust to noise.

Other analyses of spectral clustering often directly make less interpretable assumptions about the
spectrum. For instance, Ng et al. [10] assume conditions on the eigengap of the normalized Lapla-
cian and this assumption implicitly creates constraints on the entries of the ideal matrix A that can
be hard to make explicit.
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To state our theorems concisely we will define an additional quantity γ∗S . Intuitively, γ∗S quantifies
how close the ideal matrix comes to violating Assumption 3 over a set of clusters S.

Definition 5 For a set of clusters S, define γ∗S , mins∈S min{αs·L, αs·R} − βs − η(βs − αs).

We, as well as previous works [10, 11], rely on results from perturbation theory to bound the error
in the observed eigenvectors in 2-norm. Using this approach, the straightforward way to analyze
the number of errors is pessimistic since it assumes the difference between the two eigenvectors is
concentrated on a few entries. However, we show that the perturbation is in fact generated by a
random process and thus unlikely to be adversarially concentrated. We formalize this intuition to
uniformly bound the perturbations on every entry and get a stronger guarantee.

We are now ready to state our main result for hierarchical spectral clustering. At a high level, this
result gives conditions on the noise scale factor σ under which Algorithm HS will recover all clusters
s ∈ Sm, where Sm is the set of all clusters of size at least m.

Theorem 1 Suppose that W = A + R is an (n × n) noisy HBM where A satisfies Assumptions 1,

2, and 3. Suppose that the scale factor of R increases at σ = o
(

min
(
κ?5
√

m
logn , κ

?4 4

√
m

logn

))
where κ? = min

(
α0,

γ?Sm
1+η

)
, m > 0 and m = ω(log n) 1. Then for all n large enough, with

probability at least 1− 6/n, HS , on input M , will exactly recover all clusters of size at least m.

A few remarks are in order:
1. It is impossible to resolve the entire hierarchy, since small clusters can be irrecoverably

buried in noise. The amount of noise that algorithm HS can tolerate is directly dependent
on the size of the smallest cluster we want to resolve.

2. As a consequence of our proof, we show that to resolve only the first level of the hierarchy,
the amount of noise we can tolerate is (pessimistically) o(κ?5 4

√
n/ log n) which grows

rapidly with n.
3. Under this scaling between n and σ, it can be shown that popular agglomerative algorithms

such as single linkage will fail with high probability. We verify this negative result through
experiments (see Section 5).

4. Since we assume that β∗ does not grow with n, both the range (βs − αs) and the gap
(min{αs·L, αs·R} − βs) must decrease with n and hence that γ∗Sm must decrease as well.
For example, if we have uniform ranges and gaps across all levels, then γ∗Sm = Θ(1/ log n).

For constant α0, for n large enough κ? =
γ?Sm
1+η . We see that in our analysis γ?Sm is a crucial

determinant of the noise tolerance of spectral clustering.

We extend the intuition behind Theorem 1 to the k-way setting. Some arguments are more subtle
since spectral clustering uses the subspace spanned by the k smallest eigenvectors of the Laplacian.
We improve the results of Ng et. al. [10] to provide a coordinate-wise bound on the perturbation of
the subspace, and use this to make precise guarantees for Algorithm K-WAY SPECTRAL.

Theorem 2 Suppose thatW = A+R is an (n×n) noisy k-Block Diagonal matrix whereA satisfies
Assumptions 1 and 2. Suppose that the scale factor of R increases at rate σ = o(β0

k ( n
k logn )1/4).

Then with probability 1 − 8/n, for all n large enough, K-WAY SPECTRALwill exactly recover the
k clusters.

3.1 Information-Theoretic Limits
Having introduced our analysis for spectral clustering a pertinent question remains. Is the algorithm
optimal in its dependence on the various parameters of the problem?

We establish the minimax rate in the simplest setting of a single binary split and compare it to our
own results on spectral clustering. With the necessary machinery in place, the minimax rate for the
k-way problem follows easily. We derive lower bounds on the problem of correctly identifying two
clusters under the assumption that the clusters are balanced. In particular, we derive conditions on
(n, σ, γ), i.e. the number of objects, the noise variance and the gap between inter and intra-cluster
similarities, under which any method will make an error in identifying the correct clusters.

1Recall an = o(bn) and bn = ω(an) if limn→∞
an
bn

= 0
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Theorem 3 There exists a constant α ∈ (0, 1/8) such that if, σ ≥ γ
√

n

α log(n2 )
the probability of

failure of any estimator of the clustering remains bounded away from 0 as n→∞.

Under the conditions of this Theorem γ and κ? coincide, provided the inter-cluster similarities re-
main bounded away from 0 by at least a constant. As a direct consequence of Theorem 1, spectral

clustering requires σ ≤ min

(
γ5
√

n

C log(n2 )
, γ4

4

√
n

C log(n2 )

)
(for a large enough constant C).

Thus, the noise threshold for spectral clustering does not match the lower bound. To establish
that this lower bound is indeed tight, we need to demonstrate a (not necessarily computationally
efficient) procedure that achieves this rate. We analyze a combinatorial procedure that solves the
NP-hard problem of finding the minimum cut of size exactly n/2 by searching over all subsets. This
algorithm is strongly related to spectral clustering with the combinatorial Laplacian, which solves a
relaxation of the balanced minimum cut problem. We prove the following theorem in the appendix.

Theorem 4 There exists a constant C such that if σ < γ
√

n

C log(n2 )
the combinatorial procedure

described above succeeds with probability at least 1− 1
n which goes to 0 as n→∞.

This theorem and the lower bound together establish the minimax rate. It however, remains an
open problem to tighten the analysis of spectral clustering in this paper to match this rate. In the
Appendix we modify the analysis of [9] to show that under the added restriction of block constant
ideal similarities there is an efficient algorithm that achieves the minimax rate.

4 Proof Outlines
Here, we present proof sketches of our main theorems, deferring the details to the Appendix.

Outline of proof of Theorem 1

Let us first restrict our attention toward finding the first split in the hierarchical clustering. Once we
prove that we can recover the first split correctly, we can then recursively apply the same arguments
along with some delicate union bounds to prove that we will recover all large-enough splits of the
hierarchy. To make presentation clearer, we will only focus here on the scaling between σ2 and n.
Of course, when we analyze deeper splits, n becomes the size of the sub-cluster.

Let W = A+R be the n×n noisy HBM. One can readily verify that the Laplacian of W , LW , can
be decomposed as LA + LR. Let v(2), u(2) be the second eigenvector of LA, LW respectively.

We first show that the unperturbed v(2) can clearly distinguish the two outermost clusters and that
λ1, λ2, and λ3 (the first, second, and third smallest eigenvalues of LW respectively), are far away
from each other. More precisely we show |v(2)

i | = Θ( 1√
n

) for all i = 1, ..., n and its sign cor-
responds to the cluster identity of point i. Further the eigen-gap, λ2 − λ1 = λ2 = Θ(n), and
λ3 − λ2 = Θ(n). Now, using the well-known Davis-Kahan perturbation theorem, we can show that

||v(2) − u(2)||2 = O

(
σ

√
n log n

min(λ2, λ3 − λ2)

)
= O

(
σ

√
log n

n

)
The most straightforward way of turning this l2-norm bound into uniform-entry-wise l∞ bound is to
assume that only one coordinate has large perturbation and comprises all of the l2-perturbation. We
perform a much more careful analysis to show that all coordinates uniformly have low perturbation.

Specifically, we show that if σ = O( 4

√
logn
n ), then with high probability, ||v(2)

i −u
(2)
i ||∞ = O(

√
1
n ).

Combining this and the fact that |v(2)
i | = Θ( 1√

n
), and performing careful comparison with the

leading constants, we can conclude that spectral clustering will correctly recover the first split.

Outline of proof of Theorem 2

Leveraging our analysis of Theorem 1 we derive an `∞ bound on the bottom k-eigenvectors. One
potential complication we need to resolve is that the k-Block Diagonal matrix has repeated eigen-
values and more careful subspace perturbation arguments are warranted.
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Figure 3: (a),(b): Threshold curves for the first split in HBMs. Comparison of clustering algorithms
with n = 512,m = 9 (c), and on simulated phylogeny data (d).

We further propose a different algorithm, K-WAY SPECTRAL, from the standard k-means. The
algorithm carefully chooses cluster centers and then simply assigns each point to its nearest cen-
ter. The `∞ bound we derive is much stronger than `2 bounds prevalent in the literature and in a
straightforward way provides a no-error guarantee on K-WAY SPECTRAL.

Outline of proof of Theorem 3

As is typically the case with minimax analysis, we begin by restricting our attention to a small (but
hard to distinguish) class of models, and follow this by the application of Fano’s inequality. Models
are indexed by Θ(n, σ, γ, I1), where I1 denotes the indices of the rows (and columns) in the first
cluster. For simplicity, we’ll focus only on models with |I1| = n/2.

Since we are interested in the worst case we can make two further simplifications. The ideal (noise-
less) matrix can be taken to be block-constant since the worst case is when the diagonal blocks are
at their lower bound (which we call p) and the off diagonal blocks are at their upper bound (q). We
consider matrices W = A+R, which are (n× n) matrices, with Rij ∼ N (0, σ2).

Given the true parameter θ0 we choose the following “hard" subset {θ1, . . . , θM}. We will select
models which mis-cluster only the last object in I1, there are exactly n/2 such models. Our proof
is an application of Fano’s inequality, using the Hamming distance and the KL-divergence between
the true model I1 and the estimated model Î1. See the appendix for calculations and proof details.

The proof of Theorem 4 follows from a careful union bound argument to show that even amongst
the combinatorially large number of balanced cuts of the graph, the true cut has the lowest weight.

5 Experiments
We evaluate our algorithms and theoretical guarantees on simulated matrices, synthetic phylogenies,
and finally on two real biological datasets. Our experiments focus on the effect of noise on spectral
clustering in comparison with agglomerative methods such as single, average, and complete linkage.

5.1 Threshold Behavior
One of our primary interests is to empirically validate the relation between the scale factor σ and
the sample size n derived in our theorems. For a range of scale factors and noisy HBMs of varying
size, we empirically compute the probability with which spectral clustering recovers the first split
of the hierarchy. From the probability of success curves (Figure 3(a)), we can conclude that spectral
clustering can tolerate noise that grows with the size of the clusters.

We further verify the dependence between σ and n for recovering the first split. For the first split we
observe that when we rescale the x-axis of the curves in Figure 3(a) by

√
log(n)/n the curves line

up for different n. This shows that empirically, at least for the first split, spectral clustering appears
to achieve the minimax rate for the problem.

5.2 Simulations
We compare spectral clustering to several agglomerative methods on two forms of synthetic data:
noisy HBMs and simulated phylogenetic data. In these simulations, we exploit knowledge of the
true reference tree to quantitatively evaluate each algorithm’s output as the fraction of triplets of
leaves for which the most similar pair in the output tree matches that of the reference tree. One can
verify that a tree has a score of 1 if and only if it is identical to the reference tree.

Initially, we explore how HS compares to agglomerative algorithms on large noisy HBMs. In Fig-
ure 3(c), we compare performance, as measured by the triplets metric, of four clustering algorithms
(HS , and single, average, and complete linkage) with n = 512 and m = 9. We also evaluate
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(a) (b)

Figure 4: Experiments with real world data. (a): Heatmaps of single linkage (left) and HS (right)
on gene expression data with n = 2048. (b) ∆-entropy scores on real world data sets.

HS and single linkage as applied to reconstructing phylogenetic trees from genetic sequences. In
Figure 3(d), we plot accuracy, again measured using the triplets metric, of the two algorithms as a
function of sequence length (for sequences generated from the phyclust R package [3]), which
is inversely correlated with noise (i.e. short sequences amount to noisy similarities). From these
experiments, it is clear that HS consistently outperforms agglomerative methods, with tremendous
improvements in the high-noise setting where it recovers a significant amount of the tree structure
while agglomerative methods do not.

5.3 Real-World Data
We apply hierarchical clustering methods to a yeast gene expression data set and one phylogenetic
data set from the PFAM database [5]. To evaluate our methods, we use a ∆-entropy metric defined
as follows: Given a permutation π and a similarity matrix W , we compute the rate of decay off of
the diagonal as ŝd , 1

n−d
∑n−d
i=1 Wπ(i),π(i+d), for d ∈ {1, ..., n−1}. Next, we compute the entropy

Ê(π) , −
∑n−1
i=1 p̂π(i) log p̂π(i) where p̂π(i) , (

∑n
d=1 ŝd)

−1ŝi. Finally, we compute ∆-entropy
as Ê∆(π) = Ê(πrandom) − Ê(π). A good clustering will have a large amount of the probability
mass concentrated at a few of the p̂π(i)s, thus yielding a high Ê∆(π). On the other hand, poor
clusterings will specify a more uniform distribution and will have lower ∆-entropy.

We first compare HS to single linkage on yeast gene expression data from DeRisi et al [4]. This
dataset consists of 7 expression profiles, which we use to generate Pearson correlations that we use
as similarities. We sampled gene subsets of size n = 512, 1024, and 2048 and ran both algorithms on
the reduced similarity matrix. We report ∆-entropy scores in Table 4(b). These scores quantitatively
demonstrate that HS outperfoms single linkage and additionally, we believe the clustering produced
by HS (Figure 4(a)) is qualitatively better than that of single linkage.

Finally, we run HS on real phylogeny data, specifically, a subset of the PDZ domain (PFAM Id:
PF00595). We consider this family because it is a highly-studied domain of evolutionarily well-
represented protein binding motifs. Using alignments of varying length, we generated similarity
matrices and computed ∆-entropy of clusterings produced by both HS and Single Linkage. The
results for three sequence lengths (Table 4(b)) show that HS and Single Linkage are comparable.

6 Discussion
In this paper we have presented a new analysis of spectral clustering in the presence of noise and
established tight information theoretic upper and lower bounds. As our analysis of spectral clustering
does not show that it is minimax-optimal it remains an open problem to further tighten, or establish
the tightness of, our analysis, and to find a computationally efficient minimax procedure in the
general case when similarities are not block constant. Identifying conditions under which one can
guarantee correctness for other forms of spectral clustering is another interesting direction. Finally,
our results apply only for binary hierarchical clusterings, yet k-way hierarchies are common in
practice. A future challenge is to extend our results to k-way hierarchies.
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A Details of Experiments

The ∆-entropy metric is defined as follows: Given a permutation π and a similarity matrix W , we
compute the rate of decay off of the diagonal as ŝd , 1

n−d
∑n−d
i=1 Wπ(i),π(i+d), for d ∈ {1, ..., n−1}.

Next, we compute the entropy Ê(π) , −
∑n−1
i=1 p̂π(i) log p̂π(i) where p̂π(i) , (

∑n
d=1 ŝd)

−1ŝi.
Finally, we compute ∆-entropy as Ê∆(π) = Ê(πrandom) − Ê(π). The distribution defined by the
p̂πs of a good clustering have a large amount of the probability mass concentrated at a few of the
p̂π(i)s, and thus it will have a high Ê∆(π). On the other hand, poor clusterings will specify a more
uniform distribution and will have lower ∆-entropy.

B Proof of Theorem 1

To ease the presentation of our proof, we compartmentalize into several sections outlined as follows:

1. Noiseless Spectral Clustering: We show that Algorithm HS will perfectly cluster a noise-
less Hierarchical Block Matrix (HBM).

2. Derive spectral properties of noiseless matrices: We study the spectral properties of a re-
lated matrix, the Constant Block Matrix (CBM), and use it to understand the spectral prop-
erties of the HBM. This analysis is entirely deterministic.

3. Bound spectral norm of noise matrices: We analyze the noise matrices and show that, with
high probability, they have small spectral norm uniformly across all levels of the hierarchy.

4. Davis-Kahan For Laplacians: We next derive a variant of the well-known Davis-Kahan sin
theorem that we can apply to Laplacians. This allows us to bound the `2-norm deviation
between the eigenvectors of the HBM and the noisy HBM in terms of the spectral norm of
the noise matrices.

5. `∞-norm deviation bounds: We observe that due to the independence and randomness of
the noise, it is unlikely that the eigenvector of the noisy HBM is spiked in just one or a few
coordinates. We formalize this notion by deriving `∞-norm deviation bounds between the
eigenvectors of the HBM and the noisy HBM.

6. Final steps: we conclude that for sufficiently large n, every entry of the second eigenvectors
(across all calls to Algorithm HS ) correctly clusters the data.

B.1 Noiseless Spectral Clustering

We first show that in the absence of noise, Algorithm HS will correctly cluster the data.

Theorem 5 Given an ideal noiseless Hierarchical Block Matrix W (i.e. R = 0) satisfying Assump-
tion 1, HS will recover the true hierarchical clustering.

Note that this theorem would not hold if Algorithm HS used either the normalized Laplacian or the
similarity matrix directly. In fact, in Appendix E, we show several examples that demonstrate the
shortcomings of these approaches. In addition, note that we do not require Assumptions 2 and 3 for
Theorem 5.

Our proof strategy is to first show that HS will correctly output the first split the hierarchical clus-
tering in Lemma 6. Repeated application of this lemma concludes the proof. Recall that the ideal
matrix has within cluster similarity greater than all between cluster similarities; this motivates the
statement of Lemma 6.

Lemma 6 Let W be a (p + q) × (p + q) matrix with the Large-Small block structure of(
WL WS

WT
S W ′L

)
such that WL is a p× p block, W ′L is a q × q block and

min
1≤i,j≤p

(WL)ij > max
1≤i≤p<j≤p+q

(WS)ij > 0

10



min
p+1≤i,j≤p+q

(W ′L)ij > max
1≤i≤p<j≤p+q

(WS)ij > 0

Let D be the diagonal matrix such that Dii =
∑
jWij . Let v be the smallest non-constant eigen-

vector of the graph-Laplacian L = D−W , then v has either the sign pattern of
(
v+

v−

)
where v+,

the first p elements of v, are strictly positive and v−, the other q elements of v, are strictly negative
or the reverse sign pattern.

Proof (of Lemma 6)
Step 1: First, we will show that if a (p+ q)× (p+ q) symmetric matrix B has the Positive-Negative

block structure of
(
B+ B−
BT
− B′+

)
, where every non-diagonal element in the p × p block B+ and

the q × q block B′+ is strictly positive and every element in the p× q block B− is strictly negative,

then the first eigenvector of B, call it v, either has the sign pattern of
(
v+

v−

)
where v+, the first

p elements of v, are strictly positive and v−, other q elements of v, are strictly negative or has the
reverse sign pattern.

Let v =

(
v+

v−

)
be the largest eigenvector of B where v+ are the first p elements and v− are the

other q elements. Let I+, I− be index sets of positive and negative elements in v+, and I the index
of all elements in v+. Let J+, J− be index sets of positive and negative elements in v−, and J the
index of all elements in v−. Then

vTBv = vT+B+v+︸ ︷︷ ︸
term 1

+ vT+B−v−︸ ︷︷ ︸
term 2

+ vT−B
T
−v+︸ ︷︷ ︸

term 3

+ vT−B
′
+v−︸ ︷︷ ︸

term 4

Let us form a new vector w by changing the signs of all elements in I− and all elements in J+. We
now proceed to compare wTBw with vTBv term by term, noting that ||w||2 = ||v||2 = 1

Term 1 is vT+B+v+ =
∑
i,j∈I viBijvj . Since Bij > 0, wiBijwj ≥ viBijvj for all i, j, we notice

that we have strictly increased term 1, provided that I−, I+ are non-empty. An analogous argument
reveals that we do not decrease term 4 by changing v to w. Furthermore, we strictly increased term
4 if J−, J+ are non-empty.

Term 2 is vT+B−v
T
− =

∑
i∈I,j∈J viBijvj . Since Bij < 0, we see that wiBijwj = −|vi|Bij |vj | ≥

viBijvj for all i, j with strict inequality whenever i ∈ I−, j ∈ J− or i ∈ I+, j ∈ J+. Thus we have
strictly increased term 2 (and 3 by analogous argument) provided that the index sets are non-empty.

We see then that unless I−, J+ are empty or I+, J− are empty, wTBw > vTBv. However, v is
assumed to be largest eigenvector and hence maximize vTBv among all unit-norm vectors. We
reached a contradiction and thus, all of v+ must have same sign and be opposite of v−.

Now suppose vi = 0, then BT
i v = 0 where Bi is the i − th row of B. However, since v cannot be

all zero, we see then that BT
i v > 0. Thus, vi cannot be zero for all i and v+ is all positive and v− is

all negative.

Step 2: Now we prove the claim of the theorem. Let 1 be a vector of all ones. Since theW satisfy the
Large-Small block structure there exist c ∈ R such that the matrix B , c11T−L = c11T−D+W

has the Positive-Negative block structure of
(
B+ B−
BT
− B′+

)
except on the diagonals.

Let {v(i)} be the eigenvectors of L with corresponding eigenvalue {λi}. Since we know that 1 is an
un-normalized eigenvector of L with eigenvalue 0, let v(1) = 1 and λ1 = 0. All other eigenvectors
of L must be orthogonal to 1 and hence, {v(i)} are also eigenvectors of B. Furthermore, for B,
{v(i)} have the corresponding eigenvalues of {−λi} except for {v(1)}, which has the eigenvalue of
{c}.
We know thus that the v, the largest eigenvector of B, is also the smallest non-constant eigenvector
of L. By step 1, we know that v has the sign pattern of v = (v+v−)T. �
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B.2 Spectral Properties of Noiseless Matrices

As will become evident later, it will also be important to establish bounds on certain spectral quan-
tities of noiseless HBMs. We use several results from spectral graph theory to obtain these bounds
in this section. To derive these bounds, we first must study a more structured matrix, which we call
the Constant Block Matrix (CBM). The CBM has the same cluster structure as the HBM only it has
constant off-block-diagonal similarities rather than ranges as with the HBM.

Definition 6 A similarity matrix A is a Constant Block Matrix if A is an ideal matrix with εs ,
αs = βs for all clusters s.

Lemma 7 (Spectrum of CBM) Consider an (n× n) Constant-Block Matrix A characterized by an
εs for each level s, with min{εs·L, εs·R} > εs and with balance factor η. Then the laplacian LA has
the following eigenvalues (λ1 ≤ λ2,≤ . . . ≤ λn) and eigenvectors (v1, . . . vn):

1. v(1) = 1√
n

1 with λ1 = 0.

2.
√

1
nη ≤ |v

(2)(i)| ≤
√

η
n with λ2 = nε0.

3. n
1+η (ηε0 + min{εL, εR}) ≤ λ3 ≤ n

1+η (ε0 + ηmax{εL, εR}).

Proof (of Lemma 7) The first claim is true simply because LA is a Laplacian Matrix.

We prove the remaining claims by induction on number of levels l in the Constant-Block Matrix A.
Suppose that A is an n× n constant matrix of only one level, that is, Aij = ε0 for all i, j. It is then
easy to verify that every vector orthogonal to 1 is an eigenvector of LA with eigenvalue of nε0.

Suppose now that A is an n×n CBM with entries εs as defined in the lemma. Let |CL|, |CR| be the
sizes of the two first-level clusters and let L = {1, ..., |CL|} and R = {|CL| + 1, ..., |CL| + |CR|}
be the index sets of the two first-level clusters.

Let v be a vector such that v(i) =
√
|CR|
n|CL| for i ∈ L and v(i) = −

√
|CL|
n|CR| for i ∈ R. Then it

is easy to verify that v is an eigenvector of LA with eigenvalue nε0. We will show that nε0 is the
second smallest eigenvalue.

Note the upper left block ALL and the lower right block ARR are Hierarchical Constant-Block
matrices. Hence, the upper left block of the Laplacian is (LA)LL = L(ALL) + |CR|ε0I and the
lower right block of the Laplacian is (LA)RR = L(ARR) + |CL|ε0I .

From the inductive hypothesis, the second smallest eigenvalue of L(HLL) is |CL|εL. Let vCL be its
corresponding eigenvector of L(ALL), we can see that by filling all additional coordinates of vCL
with zero, vCL becomes an eigenvector of LA with eigenvalue |CL|εL + |CR|ε0 > nε0. Hence,
we know that at least |CL| − 1 eigenvalues of LA are larger than nε0. Apply the same argument to
L(ARR) and we see that at least n−2 eigenvalues of LA are larger than nε0. Since 0 is an eigenvalue
of LA, we conclude that nε0 is the second smallest eigenvalue of LA.

Since 1
η ≤

|CR|
|CL| ≤ η, we have proved claim 2. Note that in proving claim 2, we have also shown that

the third smallest eigenvalue of LA is min(|CL|εL+ |CR|ε0, |CR|εR+ |CL|ε0). Apply the definition
of η and we see that the third claim holds true as well. �

Equipped with these properties of the CBM, we now turn our attention to the more general Hierarchi-
cal Block Matrix. The following result extends Lemma 7 to the more general HBM and shows that
under Assumption 3, the spectrum is well behaved, i.e. the eigenvalues and eigenvector elements
vary with n at the same rate as those of the CBM.

Lemma 8 (Spectrum of HBMs) Consider an (n × n) ideal Hierarchical Block Matrix A =(
AL AS
AT
S A′L

)
such that all values in off-diagonal blocks AS are in [α0, β0] and all values in the

diagonal blocks AL, A′L are in [α1, β
∗] (here we take α1 = min{αL, αR}).
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Suppose A satisfies Assumptions 1 and 2 with balance factor η. Suppose also that A satisfies As-
sumption 3. Then:

1. Let λ1, λ2, λ3 be the first, second and third smallest eigenvalue ofLA respectively (λ1 = 0),
then the eigengap δ , min(|λ2−λ1|, |λ3−λ2|) ≥ min(nα0,

n
η+1 (α1+ηα0−(1+η)β0) =

Θ(n)

2. Let v(2) be the second eigenvector of LA, then every entry of v(2) satisfies
√

1
Kηn

≤

|v(2)(i)| ≤
√

Kη
n where

Kη =

(
(β∗ − α0)

(α1 − β0)

β0 − α0 + η(β∗ − α0)

α1 − β0 − η(β0 − α0)

)2

Note that once we prove this Lemma, we can recursively apply it on sub-matrices that represent the
similarity matrix of sub-clusters to characterize the eigenvectors and eigenvalues at every split of
the hierarchical clustering. One complication with recursively applying Lemma 8 is that at different
level i, we would get a different Kη . To succinctly present the final rates, we define K∗η as the
maximum over all Kη for all levels i:

K∗η = max
s∈Sm(

(β∗ − αs)
(min{αs·L, αs·R} − βs)

βs − αs + η(β∗ − αs)
min{αs·L, αs·R} − βs − η(βs − αs)

)2

where β∗ is the largest entry in the entire ideal HBM A and L is the number of levels we recover.

Our proof will construct two ideal Constant-Block Matrices, show that eigenvalues and eigenvectors
of the HBM A are constrained by the two CBMs, and then leverage Lemma 7 to get the final result.
Before we proceed to the proof, we state two well-known results in Spectral Graph Theory that we
will use:

Lemma 9 [13] If LG and LH are two graph Laplacians such that LG � cLH , then λk(G) ≥
cλk(H). (where we say PSD matrices A � B if A−B � 0)

Lemma 10 [13] Let G = (V,E,w) and H = (V,E, z) be two graphs that differ only in edge
weights. Then LG � mine∈E

w(e)
z(e) LH .

Proof (of Lemma 8): Let Hα be a two level ideal Constant-Block matrix with the same block
structure as A. Let all entries of the diagonal blocks of Hα have value α1 , min{αL, αR} and let
all entries of the off-diagonal blocks ofHα have value α0. Define another constant-block matrixHβ

similarly, the diagonal blocks are β∗ while the off-diagonal blocks are β0.

Lemma 7 characterizes the spectrum of Hα and Hβ . Using this characterization, along with Lem-
mas 9 and 10, we have that nα0 ≤ λ2(LA) ≤ nβ0 and that n

1+η (ηα0 + α1) ≤ λ3(LA) ≤
n

1+η (β0 + ηβ∗).

Combined with the fact that λ1 = 0 for any Laplacian, we get that δ ≥ min(nα0,
n
η+1 (α1 + ηα0 −

(1 + η)β0)). Under Range Restriction Assumption 3, we see that (α1 + ηα0 − (1 + η)β0) > 0 and
hence δ = Θ(n).

To establish bounds on entries of v(2), we consider a single coordinate of v(2); using the definition
of eigenvector we get that

v(2)(i) =
Aiv

(2)

di − λ2

Where Ai is the i-th row of A. From theorem 5, we can assume without loss of generality that
v(2)(i) is all strictly positive for one cluster and strictly negative for other. From the fact that 1 is an
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eigenvector of LA, we get that
∑

i:v(2)(i)>0

|v(2)(i)| =
∑

i:v(2)(i)<0

|v(2)(i)|. Hence:

J(α1 − β0) ≤ Aiv(2) ≤ J(β∗ − α0)

where J = 1
2

∑
i |v(2)(i)|. We can similarly derive an upper and lower bound for di − λ2 :

n
1

1 + η
α1+n

η

1 + η
α0 − nβ0

≤ di − λ2 ≤ n
1

1 + η
β0 + n

η

1 + η
β∗ − nα0

Note that with the Range Restriction, the lower bound of di−λi is positive and is Θ(n). Combining
these two results, we get

Jc1
n

≤ |v(2)(i)| ≤ Jc2
n

c1 =
(α1 − β0)(η + 1)

β0 + ηβ∗ − (1 + η)α0

c2 =
(β∗ − α0)(η + 1)

α1 + ηα0 − (1 + η)β0

Since v(2) must be a unit vector, we can bound J and get that

c1
c2

1√
n
≤ |v(2)(i)| ≤ c2

c1

1√
n

Set Kη = ( c2c1 )2 and we get the desired result. �

B.3 Bounds on the Noise

We now analyze the noise matrices. We begin by stating results bounding subgaussian random
variables, then we turn our attention to bounding the spectral norm of the random matrices.

Lemma 11 (Max of Subgaussian) Let X1, ...Xn be identically distributed subgaussian random
variables with scale σ. With probability 1− δ

max
i=1,...n

|Xi| ≤ σ
√

2 log n+ 2 log
2

δ

Proof It is well known that for a single subgaussian random variable X with scale factor σ,

P(|X| ≥ x) ≤ 2 exp

(
− x2

2σ2

)
Thus, by union bound,

P

(
max
i
|Xi| ≥ σ

√
2 log n+ 2 log

2

δ

)
≤ nP

(
|Xi| ≥ σ

√
2 log n+ 2 log

2

δ

)
≤ δ

�

Lemma 12 (Sums of Subgaussians) Suppose X1, . . . , Xn are independent subgaussian random

variables, each with E(etXi) ≤ e
σ2i t

2

2 . For any scalars a1, . . . , an independent of X1, . . . , Xn

we have,
∑n
i=1 aiXi is a subgaussian random variable with E(et

∑n
i=1 aiXi) ≤ e

t2
∑n
i=1 a

2
i σ

2
i

2 .
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Proof The proof is by simple mathematical expansions. We note that E(e(t
∑n
i=1 aiXi)) =∏n

i=1 E(etaiXi) ≤
∏n
i=1 e

t2a2i σ
2
i

2 and multiplying the exponentials gives the result. �

Now we turn to the study of the random matrices. We start by stating a well known result from
Random Matrix Theory:

Lemma 13 [14] The operator norm of R is O(
√
n) and is concentrated as

P (||R||2 ≥ Aσ
√
n) ≤ C exp(−cAn)

for absolute constants c, C and for all A ≥ C.

The matrix we will ultimately have to bound is LR, we derive this bound next:

Lemma 14 (Noise-Laplacian) Let R be a perturbation matrix, let LR = DR −R. For all n ≥ n0,
we have that with probability at least 1− 4/n,

||LR||2 ≤ 4σ
√
n log n

where n0 is an absolute constant.

Proof

||LR||2 = ||DR −R||2 ≤ ||DR||2 + ||R||2

DR is diagonal and ||DR||2 is the largest (in absolute value) diagonal element. Since every diagonal
element of DR is subgaussian with scale factor ≤

√
nσ, we can apply Lemma 11 and get that

||DR||2 ≤ σ
√
n
√

2 log n+ 2 log 4
δ with probability at least 1 − δ/2. Setting δ = 4/n we have

||DR||2 ≤ 2σ
√
n log n.

Using Lemma 13, we know that with probability 1 − 8/n, for n large enough (depending on the
absolute constants c and C), ||R||2 = Cσ

√
n. Hence, for n large enough, ||DR||2 ≥ ||R||2 and

||LR||2 ≤ 2||DR||2 and we get the desired result. �

In order to guarantee recovery of all clusters of size at least m, it is not sufficient to bound ||LR||
at just the top-most level of the hierarchy. We must ensure that the noise matrices for all of the
subclusters we hope to recover have uniformly bounded spectral norm (where the specific bound
could be different for different submatrices). The following lemmas establish the desired uniform
bound.

Before we present the lemmas, we specify our notation. For each level l ∈ {0, . . . , n} in the
hierarchy, denote the set of clusters at level l by {Cli : i ∈ {1 . . . , 2l}} and let mli = |Cli|. For any
subcluster Cli we write the corresponding noise degree matrix as DCli

R and the corresponding noise
matrix as RCli .

Lemma 15 (Hierarchical Noise Degree Bound) Let R be the noise matrix associated with a n× n
noisy Hierarchical Block Matrix satisfying Assumptions 1 and 2. Then with probability 1− 2/n, for
all sub-clusters Cli in the true hierarchical clustering, the corresonding noise degree matrix DCli

R
will have operator norm bounded by

||DCli
R ||2 ≤ σ

√
6mli log n

Proof We first bound the number of levels in the tree. l is bounded by log n in the balanced binary
case, but bounded by n in the worst case irrespective of η.

Now, at each level we bound at most n random draws from various sub-Gaussians. For instance,
consider the first level. We need to bound the operator norm of a diagonal degree matrix, and each
diagonal entry is a draw from a sub-Gaussian with scale factor at most

√
nσ, and there are at most n

diagonal entries. On the second level we will have two matrices but still n degree random variables
we will need to bound. Over l levels there are at most nl random variables to bound.
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Figure 5: All sub-matrices corresponding to sub-clusters at level 3

Let 0 < δ < 1 and let Γn,δ ,
√

2 log n+ log 2
δ , then we have, by union bound:

P(∃ cluster Cli, ||DCli
R ||2 ≥ σ

√
2mliΓn,δ) ≤

n∑
l=1

P(∃ cluster Cli at level l, ||DCli
R ||2 ≥ σ

√
2mliΓn,δ)

We emphasize again that mli = |Cli| and is dependent on Cli.

Note that at any fixed level l, we can bound the spectral norm of all diagonal matrices DCli
R by

bounding all the diagonal elements of all the matrices DCli
R . The collection of all diagonal elements

is just a collection of n sub-Gaussian random variables:

{(DCli
R )jj : i ∈ {1, . . . 2l}, j ∈ Cli}

where each (DCli
R )jj is the jth diagonal entry of DCli

R and hence it is sum of mli entries from Rli
and has scale factor at most

√
mliσ. Then:

P(∃ cluster Cli, ||DCli
R ||2 ≥ σ

√
2mliΓn,δ)

≤
n∑
l=1

2l∑
i=1

∑
j∈Cli

P(|(DCli
R )jj | ≥ σ

√
2mliΓn,δ)

≤
n∑
l=1

2l∑
i=1

∑
j∈Cli

2 exp

(
−

2mliσ
2Γ2

n,δ

2mliσ2

)

=

n∑
l=1

2l∑
i=1

∑
j∈Cli

1

n

(
1

n

)
δ

≤
n∑
l=1

(
1

n

)
δ

≤ δ

where the second inequality follows from the fact that if X is a subgaussian random variable with
scale factor σ, then P(|X| ≥ x) ≤ 2 exp(− x2

2σ2 ), the third and four inequality follow from the union
bound and from the fact for a fixed level, there are at most n subgaussian random variables. Plugging
in the desired value for δ we arrive at the result. �

Lemma 16 (Hierarchical Laplacian Spectral Bound) Let R be the noise matrix associated with an
n× n noisy Hierarchical Block Matrix satisfying Assumptions 1 and 2.
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Then with probability 1 − 4/n, for all large enough sub-clusters Cli (with size mli = ω(log n)) in
the true hierarchical clustering, the corresponding noise Laplacian matrix LCliR will have operator
norm bounded by

||LCliR ||2 ≤ 2σ
√

6mli log n

for all n ≥ n0(η), where n0(η) is a constant depending on η.

Proof We will argue that if n is large enough and that m = ω(log n), then for every sub-cluster Cli
with mli ≥ m, ||DCli

R ||2 will be larger than spectral norm of just the noise sub-matrix ||RCli ||2.

Let us now bound the number of levels in the tree. We will need to be more careful than in Lemma
15 where bounding l by n did not affect the rate. When the clusters are imbalanced with a balance
factor η we have

l ≤ 1

log( 1+η
η )

log n = Cη log n

with Cη = 1
log(1+1/η) . To see this note that at each split the larger cluster is of size at most η

1+ηn.
After l levels the cluster size is at most 1, i.e.(

η

1 + η

)l
n = 1

We can solve this to obtain that l ≤ Cη log n.

Returning to the proof, we note that we need to bound the norm of at most 2l+1 − 2 ≤ e2l, sub-
gaussian matrices of varying sizes.

From Lemma 13 we know also that for each Cli, ||RCli ||2 ≤ Bliσ
√
mli holds with probability at

least exp(−cBlimli), where Bli ≥ C for some absolute constant C.

By letting Bli = max(
2Cη logn+log 2

δ

cmli
, C), we can take union bound over all 2l+1 − 2

noise sub-matrices and get that with probability at least 1 − δ
2 , for all sub-clusters Cli,

||RCli ||2 ≤ max
(
σ

2Cη logn+log 2
δ

c
√
mli

, Cσ
√
mli

)
. Taking δ = 4/n we have ||Rli||2 ≤

max
(
σ

3Cη logn
c
√
mli

, Cσ
√
mli

)
.

Now, for mli = ω(log n) the second term dominates and we have for n ≥ n0(η), ||RCli ||2 ≤
Cσ
√
mli where n0(η) is a constant depending on η.

From Lemma 15, we know that with probability 1− 2/n, for every Cli, ||DCli
R ||2 ≤ σ

√
6mli log n.

As before we see that ifm = ω(log n), with probability at least 1 - 4/n, ||DCli
R ||2 dominates ||RCli ||2

and we have for n ≥ n0(η) ||LCliR ||2 ≤ 2||DCli
R ||2.

Hence, with probability at least 1− 4/n, for every sub-cluster Cli, ||LCliR ||2 ≤ 2σ
√

6mli log n. �

We stress that at this point, we have dealt with all of the randomness involved in recovering the
clusters, across all levels. Specifically, we now know that with probability at least 1 − 4/n, every
noise Laplacian of size mli will have spectral norm bounded by O(σ

√
mli log n).

B.4 Davis-Kahan for Laplacians and `2 Deviation Bounds

We now derive some results related to perturbation theory that will be useful in our final proof. The
first is a variant of the Davis-Kahan theorem that bounds the eigenvector deviation in `2-norm. We
also state Weyl’s inequality which bounds the deviation between eigenvalues. Let λi be the ordered
eigenvectors and eigenvalues of LA, and u(i), µi be the ordered eigenvectors and eigenvalues of LW .

Lemma 17 (Davis-Kahan Modified) With probability at least 1− δ,

||u(i) − v(i)||2 ≤
√

2||LR||
ξi

where ξi denotes the eigengap for the ith eigenvalue of LA, i.e. ξi = mini 6=j |λi − λj |.
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Proof (of Lemma 17) Note that LR + LA = LW .

From Davis-Kahan theorem, we know that

| sin θi| ≤
||LR||

minj 6=i |λi − λj |
where λi and λj are respectively the i-th and j-th smallest eigenvalue of LA and θi is the angle
between v(i) and u(i), i.e. cos θi = v(i)Tu(i)

Without loss of generality, we can orient vectors as desired and assume that |θi| ≤ π
2 . Since v(i) and

u(i) are unit vectors, we get that

||u(i) − v(i)||2 ≤
√
||v(i)||2 + ||u(i)||2 − 2v(i)Tu(i)

= |2 sin
θi
2
| ≤ |2

√
2 sin

θi
2

cos
θi
2
| = |
√

2 sin θi|

The second inequality follow because
√

2 cos θi2 ≥ 1 under assumption that |θi| ≤ π
2 . Combining

this with Davis-Kahan gives us the desired result. �

For ease of reference, we also state here a well-known result in perturbation theory that we use.

Lemma 18 (Weyl’s Inequality) Let LW , LA be n × n positive definite matrices and let LR =
LW − LA. Let λ1 ≤ ... ≤ λn and µ1 ≤ ... ≤ µn be the eigenvalues of LA and LW respectively.

Then, for all i, |λi − µi| ≤ ||LR||2.

Before we proceed, we remark here that Lemma 17, combined with Lemma 16, immediately gives
us an `2 deviation between the eigenvectors of the noisy HBM and the ideal HBM. Specifically, if
we additionally use Lemma 8 to lower bound ξi, we see that for the cluster Cli:

||u(2) − v(2)||2 = O

(
σ

√
log n

mli

)

Using the uniform spectral bounds in Lemma 16, we arrive at this `2-norm deviation bound for all
clusters of size at least m = ω(log(n)) with probability 1− 4/n.

B.5 Uniform bounds on u(2) − v(2)

Note that the above result is not sufficient to guarantee that spectral clustering will make no mistakes
as u(2) could be spiked even if it is close to v(2) in `2. To make this guarantee, we perform a more
careful analysis and show that u(2) is uniformly close to v(2) in every coordinate.

In this analysis, let us focus on a cluster Cs of size ms. For ease of notation, we will denote the
adjacency matrix of Cs by A and the perturbation of Cs by R. We will further use DAi and DRi to
denote the sum of the ith row of A and R respectively. Repeated application for all of the clusters,
using the fact that all of the noise laplacians can be bounded, will guarantee the correctness of our
algorithm across all clusters. Let k = u(2)− v(2). We will show that with high probability, k(i), the
element-wise perturbation is uniformly low.

k(i) =
(LAi + LRi)u

(2)

µ2
− v(2)(i)

=
LAi(v

(2) + k)

µ2
+
LRiu

(2)

µ2
− v(2)(i)

=
λ2v

(2)(i)

µ2
+
LAik

µ2
+
LRiu

(2)

µ2
− v(2)(i)

= v(2)(i)
λ2 − µ2

µ2
+
LAik

µ2
+
LRiu

(2)

µ2

18



where LAi is the i-th row of LA. Since the diagonal elements are much larger than the off-diagonals,
we will have to treat them differently.

Consider, only the second term.

LAik

µ2
=
DAik(i)−Aik

µ2

Similarly, for the third term.

LRiu
(2)

µ2
=
LRiv

(2)

µ2
+
DRik(i)

µ2
− Rik

µ2

Using this we get,

k(i) =
1

ci

(
v(2)(i)(λ2 − µ2)−Aik + LRiv

(2) −Rik
)

where ci = µ2 −DAi −DRi.

We are interested in the absolute difference. Using triangle inequality we get,

|k(i)| ≤

T1︷ ︸︸ ︷
|v(2)(i)(λ2 − µ2)|+

T2︷ ︸︸ ︷
|Aik|+

T3︷ ︸︸ ︷
|LRiv(2)|+

T4︷ ︸︸ ︷
|Rik|

|ci|︸︷︷︸
T5

Call the numerator terms T1, T2, T3 and T4 and the denominator term T5. We will bound each of
these terms seperately.

Bound on T1: To bound T1 we will use simple results we have already derived.

T1 = |v(2)(i)(λ2 − µ2)| = |v(2)(i)||λ2 − µ2| ≤

√
K?
η

ms
||LR||2

Here we use Lemma 8 along with Weyl’s Inequality (Lemma 18). Using our uniform bound on
||LR||2 (Lemma 16), we see that with probability 1− 4/n

T1 ≤ 2σ
√

6K?
η log n

Bound on T2: Remember that, κ? = min(α0,
γ?S

1+η ).

T2 = |Aik| ≤ ||Ai||2||k||2 ≤
√
msβ

∗√2||LR||2
ξ2

≤ 4σβ∗

κ?

√
3 log n

where ξ2 is the eigengap corresponding to the second eigenvector. The first inequality is Cauchy-
Schwarz while the second follows from Lemma 17. The third inequality uses Lemma 8 to bound the
eigengap ξ2 which is at least msκ

?, and Lemma 16 to bound ||LR||2. This inequality holds under
the same 1− 4/n probability event used in the T1 bound.

Bound on T3 The terms T3 and T4 are the main “noise" terms.

T3 = |LRiv(2)| = |DRiv
(2)(i)−Riv(2)|

Since each entry Rij is subgaussian with scale factor σ, since Rij , Rij′ are independent for all
j 6= j′, and since ||v(2)||2 = 1, we conclude that Riv(2) is distributed as a subgaussian with scale
factor σ by Lemma 12.

DRiv
(2)(i) is a subgaussian random variable with scale factor ≤

√
K?
ησ since v(2)(i) ≤

√
K?
η

ms
and

each entry DRi is subgaussian with scale factor
√
msσ. Since σ2 ≤ K?

ησ
2, T3 is a draw from a

subgaussian with scale factor ≤
√

2K?
ησ.
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To ensure that T3 is uniformly low for all i, we take a union bound and use Lemma 11. Note that
this union bound is across all levels of the hierarchy, so there are nl ≤ n2 subgaussians that we must
bound. We get that with probability at least 1− 2/n,

T3 ≤ 4σ
√
K?
η3 log n

Bound on T4

T4 = |Rik| ≤ ||Ri||2||k||2 ≤ ||R||2||k||2
From the proof of Lemma 16, we see that for ms = ω(log n), and for n large enough, under the
1− 4/n probability event described in T1,

||R||2 ≤ Cσ
√
ms

for some absolute constant C. So we have,

T4 ≤ Cσ
√
ms

√
2||LR||2
ξ2

≤ 4Cσ2
√

3 log n

κ?

Bound on T5 The term T5 appears in the denominator and here, we establish a lower bound on it.

T5 = |µ2 −DAi −DRi| = |DAi +DRi − µ2|

Note that DAi ≥ ms
1+η (ηαs + αs+) where αs+ , min{αs◦L, αs◦R} and that µ2 ≤ λ2 + ||LR||2 ≤

msβs + ||LR||2. Hence:

T5 ≥
∣∣∣∣ ms

1 + η
(ηαs + αs+) +DRi −msβs − ||LR||2

∣∣∣∣
≥ ms

1 + η

∣∣∣∣αs+ + ηαs − (1 + η)βs −
1 + η

ms
(2||DR||2 + ||R||2)

∣∣∣∣
Where the inequalities only hold provided that the term inside the absolute value is ≥ 0. Note that
αs+ + ηαs − (1 + η)βs is just γ. We will show that for large enough n, this is indeed true. Under
the 1− 4/n probability event described in the T1 bound, we have:

2||DR||2 + ||R||2 ≤ 3σ
√

6ms log n

Now, provided that σ = o(γ
√

ms
logn ), and using the definition of γ, we have that then 1+η

ms
(2||DR||2+

||R||2) = o(γ), and for large enough n, we can conclude that γ− 1+η
ms

(2||DR||2+||R||2) ≥ γ
2 ≥

γ?S
2 .

From the statement of the theorem we have σ = o(min(κ?5
√

ms
logn , κ

?4 4

√
ms

logn )) = o(γ
√

ms
logn ).

Therefore:

T5 ≥
ms

1 + η

γ?S
2
≥ msκ

?

2

Putting Everything Together Combining all of the terms together, we see that with probability
1− 6

n

||k||∞ ≤
2σ
√

log n

msκ?

[
s
√

6K?
η +

4
√

3β∗

κ?
+ 4
√

3K?
η +

4Cσ
√

3

κ?

]
To arrive at our final rate, we must characterize the dependence of K?

η on κ∗. Note in the expression
for K?

η that min{αs·L, αs·R} − βs ≥ γ∗, and that the terms in the numerator are all bounded by a
constant depending on η and β∗ which is the bound on the entries of the similarity matrix. Thus, we
get K?

η ≤
Cη,β∗

γ?4 ≤
Cη,β∗

κ?4 .

We now see that if σ = o(min(κ?5
√

ms
logn , κ

?4 4

√
ms

logn )) and m = ω(log n), then for large enough

n we have ||k||∞ ≤
√

1
Kηm

and our algorithm makes no mistakes in resolving all clusters of size at
least ms.
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C Proof of Theorem 2 (k-way)

The proof will be very similar to that of Theorem 1.

The difficulty here is that the spectral embedding of each point is not just a single number, but rather
a k-dimensional vector. To make matters worse, because LA has a k-dimensional eigenspace asso-
ciated with eigenvalue 0 (in other words, eigenvalue 0 has geometric multiplicity k), there are many
different possible spectral embeddings of each point–one for each set of basis of the eigenspace.

Let u(1), ..., u(k) be perturbed eigenvectors of LW . The set of u(j)’s cannot be close to all sets of
lowest k eigenvectors of LA because there are infinite number of sets of lowest k eigenvectors of LA
due to geometric multiplicity. Thus, the best we can say is that there exist at least one set of lowest
k eigenvectors of LA that is close to u(1), ..., u(k). Lemma 19, 20 formalize these concepts.

The following Lemmas extend Davis-Kahan theorem to describe perturbation of subspaces:

Lemma 19 Let W be a matrix with eigenvalues µ1 ≤ µ2, ... ≤ µn (possibly with multiplicity) and
corresponding eigenvectors u1, u2, ...un. Let A be a matrix with eigenvalues λ1 ≤ λ2, ... ≤ λn
(possibly with multiplicity) and corresponding eigenvectors v1, v2, ...vn. Let R ≡W −A.

Let U = span{ui}i∈I where I is some index set. Let V = span{vi}i∈I . Then we have, for all
unit-normed u ∈ U :

||PV ⊥u||2 ≤
2||R||2
δ

√
k

where k ≡ dimU = dimV , PV ⊥ is the orthogonal projection onto V ⊥, δ ≡ mini∈I δi and
δi ≡ minj /∈I |λi − λj |.

Intuitively, U , an eigen-subspace of W must be close to V , the corresponding eigen-subspace of A.
We simply quantified “close” as the projection of U onto V ⊥.

Proof Let U, V be eigen-subspaces of W,A as defined in theorem. Fix i ∈ I and let µi be an
eigen-value that correspond to ui ∈ U . Define Ā = A− λiI and W̄ = W − λiI .

Recall that ui is the eigenvector of W that correspond to µi; we can expand ui in the eigenbasis of
A and get ui =

∑
j cjvj .

||Āui||22 = ||Ā
∑
j

cjvj ||22

=
∑
j

c2j (λj − λi)2

≥
∑
j /∈I

c2j (λj − λi)2

≥ δ2
i

∑
j /∈I

c2j

= δ2
i ||PV ⊥ui||22

By using Weyl’s Inequality, we can upper bound ||Āui|| as such:

||Āui||2 ≤ ||W̄ui||2 + ||R||2 ≤ |µi − λi|+ ||R||2 ≤ 2||R||2

Combine the two results, we get:

||PV ⊥ui||2 ≤
2||R||2
δi
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Let u ∈ U and let ||u||2 = 1, then u =
∑
j∈I cjuj . We will now upper bound ||PV ⊥u||2

||PV ⊥u||22 = ||
∑
j∈I

cjPV ⊥uj ||22

=
∑
j∈I

c2j ||PV ⊥uj ||22 +
∑
j 6=i,∈I

cjci〈PV ⊥uj , PV ⊥ui〉

We already have that ||PV ⊥ui||22 ≤
4||R||22
δ2i

. Define δ = mini δi, then we have ||PV ⊥ui||22 ≤
4||R||22
δ2 .

By Cauchy-Schwartz, we get 〈PV ⊥uj , PV ⊥ui〉 ≤ ||PV ⊥uj ||2||PV ⊥ui||2 ≤
4||R||22
δ2 .

Combine the two above bounds, we can now continue upper bounding ||PV ⊥u||:

||PV ⊥u||22 ≤
4||R||22
δ2

(
∑
j∈I

c2j +
∑
j 6=i,∈I

|ci||cj |)

≤ 4||R||22
δ2

(
∑
j∈I
|cj |)2

≤ 4||R||22
δ2

k
∑
j∈I
|cj |2

≤ 4||R||22
δ2

k

Thus, we get ||PV ⊥u||2 ≤
2||R||2
δ

√
k as desired �

Lemma 20 (Eigenspace-Perturbation) Let U = span{ui}i∈I and V = span{vi}i∈I be eigen-
subspaces of matrices W,A respectively.

Assume 2||R||2
δ

√
k ≤ 1/2, then there exist a V -invariant isometry (orthonormal matrix) Θ such that

for all i

||Θvi − ui||2 ≤
6||R||2
δ

√
k

We say that Θ is V -invariant if for all v ∈ V , Θv ∈ V .

The difficulty of proving Lemma 20 comes from the fact that PV ui and PV uj need not be orthogonal
even if ui and uj are orthogonal. We use the next PSD Deviation Lemma to address this difficulty.

Lemma 21 (PSD Deviation) Let K be a positive definite matrix with some eigenvectors that span
V . Let 0 ≤ θ < 1 and let all eigenvalues of K be between 1 + θ and 1− θ.

Then ||Kv − v||2 ≤ θ||v||2 for all v ∈ V .

Proof (of Lemma 21) Let w1, ...wk be the eigenvectors ofK that span V with corresponding eigen-
values λ1, ...λk.

Then u =
∑
k ckwk and we get:

||Kv − v||2 = ||
∑
k

ckKwk −
∑
k

ckwk||2

= ||
∑
k

ckλkwk −
∑
k

ckwk||2

= ||
∑
k

ck(λk − 1)wk||2

≤ (max
i
|λi − 1|)||

∑
k

ckwk||2

= θ||v||2
�
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Now we can prove the Eigenspace Perturbation lemma:

Proof (of Lemma 20)

Define v′i = PV ui for i ∈ I . The collection of vectors {v′i}i∈I need not be orthogonal, but we claim
they are independent. To see this, suppose that there exist coefficients ci such that

∑
i∈I civ

′
i = 0.

Then ∑
i∈I

civ
′
i =

∑
i∈I

ciPV (ui) = PV (
∑
i∈I

ciui) = 0

The vector
∑
i∈I ciui is in U and non-zero. Hence, by Lemma 19 and the assumption that

2||R||2
δ

√
k ≤ 1/2, ||PV (

∑
i∈I ciui)||2 ≥

1
2 ||
∑
i∈I ciui||2 > 0. This is a contradiction.

Because v′i’s are independent, there exist a basis-transform linear operator K such that Kv′i = vi
for all i and Kw = w for all w /∈ V . Note that K is V -invariant since {v′i}i∈I spans V .

LetK = ΨK∗ be the V -invariant polar decomposition ofK, that is, Ψ is an isometry,K∗ is positive
semidefinite, and K∗ and Ψ are both V -invariant. Since Ψ is an isometry and hence preserves inner
product, we get that the collection of vectors {K∗v′i}i∈I must be orthogonal.

Also, since Ψ is an isometry and hence preserves norm, we get that ||K∗v′i||2 = 1 for all i ∈ I
and K∗ ◦ PV is an isometry when restricted to subspace U . Since the eigenvalues of PV restricted
to U are bounded between 1 and 1 − 2||R||2

δ

√
k, we get that the eigenvalues of K∗ restricted to

range(PV ) = V must be bounded between 1 and 1/(1− 2||R||2
δ

√
k).

By assumption from theorem, we can bound, by using the fact that 1
1−a ≤ 1 + 2a for 0 ≤ a ≤ 1/2,

the eigenvalues ofK∗ between 1 and 1+4 ||R||2δ

√
k. Hence, by Lemma 21, we get that for all v ∈ V ,

||K∗v − v||2 ≤ 4 ||R||2δ

√
k||v||2. Thus, we get:

||ui −K∗PV ui||2 ≤ ||ui − PV ui||2 + ||K∗PV ui − PV ui||2

≤ 2
||R||2
δ

+ 4
||R||
δ

√
k||PV ui||2

≤ 6
||R||2
δ

√
k

Where we used the fact that ||ui − PV ui||2 = ||PV ⊥ui||2, and Lemma 19 for the second inequality
and the trivial upper bound that ||PV ui||2 ≤ 1 for the third inequality.

Since vi = KPV ui = ΨK∗PV ui, Ψ−1vi = K∗PV ui. Hence, we have proven the theorem with
Ψ−1 as the isometry. �

The next lemma describes the spectrum of the Laplacian of a k-Block Diagonal similarity matrix in
a manner similar to Lemma 7 and Lemma 8.

Lemma 22 Let A be a k-Block Diagonal Matrix with blocks A(1), ...A(k) such that all entries in
A(1), ...A(k) are between β1 and β0 where 0 < β0 ≤ β∗ and all remaining entries of A are 0, i.e.

W =


A(1) ... 0

A(2)

... ...
0 A(k)


Let 0 < ν < 1 be such that νn is the size of the largest cluster. Then:
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1. λ1, ..., λk, the lowest k eigenvalues of LA, are 0 with corresponding eigenvectors

v(1) =
1√
|C1|

(1C1
, 0C2

, ..., 0Ck)

v(2) =
1√
|C2|

(0C1
, 1C2

, ...0Ck)

...

v(k) =
1√
|Ck|

(0C1
, 0C2

, ...1Ck)

where 0C1
is an all-zero vector of length |C1|.

2. λk+1 ≥ νn
η β0 (note that νnη lower bounds size of the smallest cluster)

Proof The first claim follows because LA is also block-diagonal and the diagonal blocks (LA)(i) =
LA(i) .

To prove the second claim, we construct a block-diagonal matrix S with the same block structure as
A and furthermore, the diagonals S(1), ..., S(k) all have constant value of β0. The claim then follows
by Lemma 9 and Lemma 10. �

Now we proceed to the proof of Theorem 2:

Proof (of Theorem 2)

Let j ∈ {1, ..., k}, define v′(j) = Θv(j). Since Θ is V -invariant, we know that LAv′(j) = 0.

Let let h(j) = u(j) − v′(j).

h(j)(i) = u(j)(i)− v′(j)(i)

=
(LAi + LRi)u

(j)

µj
− v′(j)(i)

=
LAi(v

(j) + h(j))

µj
+
LRiu

(j)

µj
− v′(j)(i)

=
LAih

(j)

µj
+
LRiu

(j)

µj
− v′(j)(i)

=
DAih

(j)(i)−Aih(j)

µj
+(

LRiv
′(j)

µj
+
DRih

(j)(i)

µj
− Rih

(j)

µj

)
− v′(j)(i)

We will collect the terms containing h(i) and get

µjh
(j)(i)−DAih

(j)(i)−DRih
(j)(i)

= −Aih(j) + LRiv
′(j) −Rih(j) − v′(j)(i)µj

and hence

h(j)(i) =
1

|µj −DAi −DRi |︸ ︷︷ ︸
T5

|v′(j)(i)|︸ ︷︷ ︸
T1

+ |Aih(j)|︸ ︷︷ ︸
T2

+ |LRiv′(j)|︸ ︷︷ ︸
T3

+ |Rih(j)|︸ ︷︷ ︸
T4


Call the numerator terms T1, T2, T3, T4 and call the denominator term T5. We will bound each of
these terms uniformly across all clusters j = 1, ..., k and across all elements h(j)(i), i = 1, ...n.

24



Bound for T1: Since Θ is V -invariant, we know that v′(j) =
∑k
t=1 αtv

(t) and hence, v′(j) has
vector-structure of ( 1√

|C1|
α1,

1√
|C2|

α2,
1√
|C3|

α3, ...) where α1 is sub-vector of length |C1| etc.

Because αt ≤ 1 for all j, we know that |v′(j)(i)| ≤
√

η
νn .

We can bound |µj | ≤ ||LR||2 + |λj | = ||LR||2 by Weyl’s Inequality. By Lemma 14, ||LR||2 ≤
4σ
√
n log n with probability at least 1− 4

n . Hence, T1 is upper bounded by 4σ
√

η
ν

√
log n.

Bound for T2: |Aih(j)| ≤ ||Ai||2||h(j)||2 ≤
√
νnβ∗ 6

√
k||LR||2
ξ where the bound on ||h(j)||2 comes

from Lemma 20.

Also, by Lemma 22, ξ ≡ λk+1 − λk = λk+1 ≥ νn
η β0. Thus, |Aih(j)| ≤ 6β

∗

β0
η
√

k
νn ||LR||2.

In the 1− 4
n probability event described in Lemma 14, we get that

|Aih(j)| ≤ 6
β∗

β0
η

√
k

ν
4σ
√

log n

Note that in order to invoke Lemma 20, we need to satisfy the condition that 6
√
k||LR||2
ξ ≤ 1

2 . Since

6
√
k||LR||2
ξ

≤ 6ση
√
k4
√

log n

νβ0
√
n

≤ 6ση

νβ0
4

√
k log n

n

and since σ = o
(
β0

k ( n
k logn )1/4

)
under assumption of the theorem, for large enough n, the condition

of Lemma 20 will be satisfied.

Bound for T3:
|LRiv′(j)| ≤ |DRiv

′(j)(i)|+ |Riv′(j)|

We see that |DRiv
′(j)(i)| ≤ |DRi ||v′(j)(i)|. We know that in the same 1 − 4

n probability event
described in T1 bound, |DRi | ≤ 4σ

√
n log n. Hence,

|DRi ||v′(j)(i)| ≤ 4σ

√
η

nu
log n

The second term |Riv′(j)| is trickier to bound. We first expand v′(j) in term of v(1), ..., v(k).

|Riv′(j)| ≤ |
k∑
t=1

αtRiv
(t)|

≤ (

k∑
t=1

|αt|) max
t=1,...,k

|Riv(t)|

≤
√
k max
t=1,...,k

|Riv(t)|

We know

Riv
(t) =

1√
|Ct|

|Ct|∑
l=1

Ril

By Lemma 12, we get thatRiv(t) is subgaussian with scale factor σ. Hence, with probability at least
1− 2

n , uniform across i = 1, ..., n, maxt=1,...,k|Riv(t)| ≤ σ
√

6 log n.
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Hence, T3 can be bounded as

|DRiv
(j)|+ |Rivt| ≤ 4σ

√
η

ν
log n+ σ

√
k6 log n

Bound for T4:

|Rih(j)| ≤ ||Ri||2||h(j)||2

≤ Cσ
√
n

6
√
k||LR||2
ξ

≤ (Cσ
√
n)

12
√
knη
√

4 log n

νnβ0

≤ 12Cσ2

√
k

β0

η

ν

√
4 log n

where we will assume the 1− 4
n probability event described in T1 bound.

Bound for T5: Recall that since T5 appears in the denominator, we need a lower bound for it as
opposed to an upper bound.

|µj −DAi −DRi | = |DAi +DRi − µj |

≥ |νn
η
β0 +DRi − ||LR||2|

≥ |νn
η
β0 − 3||LR||2|

≥ νn

η
|β0 − σ

η

νn
4
√
n log n︸ ︷︷ ︸

decaying term

|

Where the third inequality occurs under the same 1− 4
n probability event described in T1 bound.

Recall that we assume σ = o
(
β0

k ( n
k logn )1/4

)
in the statement of the theorem and under this condi-

tion, for large enough n, the decaying term will be less than β0

2 .

|µj −DAi −DRi | ≥
νn

η

β0

2

Suppose that both the event described in T1 and the event described in T3 hold, which happens with
probability 1− 8

n by union bound, the following bounds hold simultaneously for all j = 1, ..., k.

T1 ≤ 4σ

√
η

ν

√
log n

T2 ≤ 4σ
β1

β0
η

√
k

ν

√
log n

T3 ≤ 4σ

√
η

ν
log n+ σ

√
6k log n

T4 ≤ 12Cσ2

√
k

β0

η

ν

√
4 log n

T5 ≥
νn

η

β0

2
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Combining everything together, we conclude that, uniformly across all j = 1, ..., k:

||h(j)||∞ ≤ 12σ
√

4 log n
2η

νnβ0

[√
η

ν
+
β1η

β0

√
k

ν
+
√
k + Cσ

√
k

β0

η

ν

]

Since we hold β1 and η to be a constant and ν ≤ 1, we see that the last term of the sum dominates
the entire sum. We also note that ν ≥ 1

k and thus 1
ν ≤ k.

It is then straightforward to check that under the assumption that σ2 = o
(√

n
logn

β2
0

k5/2

)
, then for

large enough n, ||h(j)||∞ ≤
√

1
8νnk

Embedding of each point onto basis {v(1), ...v(k)} is k-dimensional vector with exactly one non-
zero coordinate. By the above definition, we can see that if points p1, p2 ∈ Rk are in the different

clusters, then ||p1 − p2|| ≥
√

2
νn .

Let v′(j) = Θv(j) be the transformed orthonormal basis, we will show that the embeddings of
points onto the transformed basis maintain the same pair-wise distance. We know that v′(j) =∑
j αjtv

(t) and hence, v′(j) has vector-structure of ( 1√
|C1|

αj1,
1√
|C2|

αj2,
1√
|C3|

αj3, ...) where αj1

is sub-vector of length |C1| whose every entry is αj1.

Let p1, p2 ∈ Rk be two points in the transformed-basis-embedding. Let p1 be in cluster a and p2 be
in cluster b, then ||p1 − p2||2 = || 1√

|Ca|
(α1a, ...αka) − 1√

|Cb|
(α1b, ...αkb)||. Thus, if p1, p2 are in

the same cluster, ||p1 − p2|| = 0.

Let αa , (α1a, ...αka) and αb , (α1b, ...αkb). Then

|| 1√
|Ca|

αa − 1√
|Cb|

αb||2

=
1

|Ca|
||αa||2 − 1√

|Ca||Cb|
2〈αa, αb〉+

1

|Cb|
||αb||2

Define k × k matrix M such that Mjt = αjt. Hence, row j of M contains the linear coefficients
of v′(j) in term of basis {v(1), ...v(k)}. Since v′(j)’s are orthonormal, it must be that rows of M are
orthonormal and therefore, M must be an isometry and its columns are also orthonormal.

Thus, we get that ||αa|| = ||αb|| = 1 and 〈αa, αb〉 = 0 and that ||p1 − p2||2 = 1
|Ca| + 1

|Cb| ≥
2
νn

and that if p1, p2 are in different clusters, then ||p1 − p2|| ≥
√

2
νn .

Let q1, q2 be perturbed version of p1, p2, that is, the same points embedded in (u(1), ..., u(k))-basis.

Since each coordinate of the perturbed vector u(j) can change by at most
√

1
8νnk from v′(j), we get

that ||p1 − q1||2 ≤
√

1
8νn and likewise for ||p2 − q2||2.

If q1, q2 are in the same cluster, ||q1 − q2||2 ≤
√

1
2νn and if q1, q2 are in different clusters, ||q1 −

q2||2 ≥
√

2
νn −

√
1

2νn ≥
√

1
2νn .

Since the maximum distance between two points in the same cluster is less than minimum distance
between two points in different clusters, in our modified k-means procedure, the k chosen cluster
centers will be in different clusters and the remaining points will be assigned to the correct clusters.

�
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D Proofs of Theorem 3 and 4

First we state a version of Fano’s Inequality from [15]:

Theorem 23 Assume that M ≥ 2 and suppose that Θ contains elements θ0, θ1, . . . , θM such that:

1. d(θj , θk) ≥ 2s > 0, ∀0 ≤ j < j ≤M

2. Pj � P0, ∀j = 1, . . . ,M , and

1

M

M∑
j=1

K(Pj , P0) ≤ α logM

with 0 < α < 1/8 and Pj = Pθj , j = 0, 1, . . . ,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0

Recall that given a parameter θ0 we choose the subset {θ1, . . . , θM} in the following way. Consider,
that there are n/2 entries in I1, we will simply use the first n/2 − 1 of these indices and for each
j ∈ {1, . . . , n/2} use a different index /∈ I1.

In order to apply Theorem 23. We need to calculate the Hamming distance between the estimate Î1
and the true I1 as d. It is clear that d(θj , θk) ≥ 1 for j 6= k.

We also need the KL-divergence between the probability distributions induced by the parameters.
Since each distribution is a gaussian, we can readily verify that K(Pj , P0) = n(p−q)2

σ2 = nγ2

σ2 for
each j.

With this two calculations, we apply Theorem 23 and arrive at our lower bound.

As for the upper bound, our combinatorial procedure solves the minimum cut of size n/2. This
is equivalent to the algorithm that outputs a set of coordinates of size n/2 (denoted by Î) so as to
maximize the contrast between the two diagonal blocks (the Î Î block and the ÎcÎc block) and the
two off-diagonal blocks (the Î Îc block and the ÎcÎ block). Denote the true clusters by I and Ic.

Define,

S(W, I) =
∑

i∈I,j∈I
Wij +

∑
i∈Ic,j∈Ic

Wij −
∑

i∈I,j∈Ic
Wij −

∑
i∈Ic,j∈I

Wij

Our algorithm exactly minimizes S(W, I) subject to |I| = n/2. To analyze this procedure it’s useful
to consider the random variable ζ defined as,

ζÎ = S(W, I)− S(W, Î)

Further given a set Î define the number of indices in which Î and I agree to be s.

It is easy to see that for a given s,

ζs ∼ N
(

8s
(n

2
− s
)

(p− q), 16s
(n

2
− s
)
σ2
)

The combinatorial procedure succeeds if w.h.p ζÎ ≥ 0 for every Î 6= I .
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This probability (by the application of a union bound) is bounded by

Perror ≤
n/2−1∑
s=1

(
n/2

s

)(
n/2

n/2− s

)
P(ζs ≤ 0) ≤

n/2−1∑
s=1

(
n/2

s

)2

exp

{
−C1s(n/2− s)(p− q)2

σ2

}

≤
bn/4c∑
s=1

(
n/2

s

)2

exp

{
−C1s(n/2− s)(p− q)2

σ2

}
+

n/2−1∑
s=dn/4e

(
n/2

s

)2

exp

{
−C1s(n/2− s)(p− q)2

σ2

}

≤
bn/4c∑
s=1

exp

{
C2s log n− C1s(n/2− s)(p− q)2

σ2

}

+

n/2−1∑
s=dn/4e

exp

{
C3(n/2− s) log n− C1s(n/2− s)(p− q)2

σ2

}

≤ max
s∈{1,...,bn/4c}

exp

{
C ′2s

[
log n− C ′1n(p− q)2

σ2

]}
+ max
s∈{dn/4e,...,n/2}

exp

{
C ′3(n/2− s)

[
log n− C ′′1 n(p− q)2

σ2

]}
A simple calculation shows that if we select n(p − q)2 > Cσ2 log

(
n
2

)
for a large enough constant

C, both exponents are negative and this probability can be made smaller than any constant δ.

This establishes the minimax rate (i.e. the minimax scaling up to constants).

D.1 A minimax spectral algorithm

We show that for the restricted case of block constant similarities, under certain assumptions the
Algorithm of [9] is minimax optimal for the k-way problem, for k constant. The algorithm and its
analysis rely crucially on the fact that the noiseless matrix is of rank k and do not directly extend to
the non constant block similarities we consider in this paper.

Consider the following algorithm:

1. Input: Noisy similarity matrix W , number of clusters k
2. Randomly divide the columns of W into two parts W1 and W2 of size n/2 and define
PW1

= QW1
QTW1

, PW2
= QW2

QTW2
, where QW1

are the top k left singular vectors of W1

and QW2
are the top k left singular vectors of W2.

3. Compute Ŵ = [PW2
W1|PW1

W2]

4. Run the version of k-means described in our paper directly on the columns of the matrix
Ŵ to recover the k clusters.

Analysis

The analysis of this algorithm closely follows [9]. Following McSherry we will analyze the al-
gorithm under the assumption that each of the k clusters is exactly bisected in W1 and W2. It is
straightforward to show that each cluster is approximately bisected with high probability for k con-
stant and large n. Although it is possible to modify the analysis for the more realistic approximate
bisection case (see [9] for a discussion), the assumption that the clusters are exactly bisected eases
the analysis considerably. We derive a modified version of Theorem 12 of [9].

Theorem 24 With probability at least 1− δ, we have for all u

||Au − Ŵu||2 ≤ γ1 + γ2

where
γ1 ≤ C1σ

√
nk/s

and
γ2 ≤ C2σ

√
k log(n/δ)

where s is a lower bound on the cluster size.
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First, we consider the implications of the theorem and then discuss its proof. When we have gap γ
for any two points u, v in different clusters we have

||Au −Av||2 ≥
√

2sγ

In particular, if we have
√

2sγ ≥ 4C1σ
√
nk/s+ 4C2σ

√
k log(n/δ)

the algorithm described succeeds, since it is straightforward to see that every column in Ŵ is closer
to every other column in its own cluster than any column in any other cluster.

Taking s = Θ(n/k), we get that if

γ ≥ C1
σk
√
nk

n
+ C2σk

√
log(n/δ)

n
for slightly modified constants C1 and C2, we succeed in recovering the clusters.

For constant k, the second term dominates and we recover the minimax rate, i.e.

γ ≥ Cσ
√

log(n/δ)

n

suffices. Note that the algorithm is not minimax in its dependence on k unlike the combinatorial
procedure. Also, unlike the combinatorial algorithm and our own analysis of spectral clustering the
analysis here relies crucially on the fact that the true matrix A is block constant (and thus rank-k).

We now prove the Theorem.

The proof will show for any u,
||PW1

W2u −A2u||2 ≤ γ1

and
||PW1

(A2u −W2u)||2 ≤ γ2

where the subscript u denotes the uth column of the matrix.

Combining, these two with the identical proof for the other partition, and using triangle inequality
we will arrive at the final theorem.

Consider,

||(I−PW1)A2||2 = ||(I−PW1)A1||2 = ||(I−PW1)W1−(I−PW1)(W1−A1)||2 ≤ 2||W1−A1||2
The first equality follows because by our exact bisection assumption A1 and A2 can be taken to be
identical. The inequality follows from two observations.

||(I − PW1
)W1||2 = ||W1 − PW1

W1||2 ≤ ||W1 −A1||2
which holds since the left side of the inequality is the k + 1th eigenvalue of W1 and A1 is a rank-k
matrix. The second observation is that

||(I − PW1
)(W1 −A1)||2 ≤ ||I − PW1

||2||W1 −A1||2 ≤ ||W1 −A1||2
since PW1

is a projection matrix all of its eigenvalues are positive and bounded by 1.

Now, note that (I − PW1)A2 is of rank at most 2k and for any column u there are at least s/2
identical columns in (I − PW1

)A2. From this we get that for any u,

||A2u − PW1
A2u|| ≤

||(I − PW1
)A2||F√

s/2
≤ 4

√
k

s
||W1 −A1||2 ≤ C1σ

√
nk

s
≡ γ1

with probability at least δ/2 using the operator norm bound on W1 −A1.

Now,

||PW1(A2u −W2u)||2 =

√√√√ k∑
j=1

((A2u −W2u)TPW1j)
2
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Noting that PW1j is a unit vector independent of (A2u−W2u), each term in this sum is sub-Gaussian
with scale factor at most σ. To make a guarantee for any u we will also combine this with a union
bound.

From this, a calculation shows that with probability at least 1− δ we have,

||PW1
(A2u −W2u)||2 ≤

√
kt

where t = C2σ
√

log(n/δ). This is just γ2.

E Examples of worst case behavior

Here we demonstrate the undesireable spectral properties of both the combinatorial and normalized
laplacians, in addition to the adjacency matrix. We use concrete examples of similarity matrices
whose second eigenvector does not immediately produce the correct clustering. Additionally, we
motivate our Range Restriction, by showing that if this condition is not satisfied, the entries of the

eigenvector decay at O( 1
n ) instead of of O(

√
1
n ).

First, we turn to the drawbacks of using the spectrum of the adjacency matrix. McSherry [9] shows
that in the planted partition model, the eigenvectors of the adjacency matrix are enough to identify
the clusters. However, in the more general HBM, this is not the case. Consider a matrix with small
off-diagonal entries, larger entries on the diagonal blocks, and 2 very high entries in this block (See
Figure 6(a)). This is an ideal matrix and the second eigenvector of the combinatorial Laplacian
exactly identifies the true clustering, yet the eigenvector of the adjacency matrix fails to convey any
meaningful information (See Figure 6(e)).

The normalized Laplacian can also fail to identify the clusters of an ideal hierarchical matrix. For
example, on a similarity matrix like the one in Figure 6(b), the second eigenvector of the normalized
laplacian identifies the clustering at the second level of the hierarchy rather than the first, as shown
in Figure 6(f). We conjecture that different conditions will guarantee that correctness of a spectral
method using the normalized laplacian, but we instead focus on the combinatorial Laplacian and our
definition of ideal matrices.

The combinatorial Laplacian also has its shortcomings, most notably that it is highly influenced by
outliers in the data. If even one data point disrupts the structure of the matrix, as in Figure 6(c),
the second eigenvector of the combinatorial Laplacian becomes highly spiked and it can no longer
tolerate even small perturbations (see Figure 6(g)).

A related example demonstrates the necessity of the Assumption 3. Consider the matrix shown in
Figure 6(d), which is an ideal matrix that violates the range restriction. In this case, the eigenvector
again becomes highly spiked (Figure 6(h)), and moreover, the entries decay at a rate of O(1/n) (not
shown), which is too sharp for our results to hold.
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Figure 6: Example similarity matrices that result in undesireable behavior for Normalized Lapla-
cians and Adjacency Matrices and Combinatorial Laplacians.
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