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Abstract

When used to learn high dimensional parametric probabilistic models, the clas-
sical maximum likelihood (ML) learning often suffers from computational in-
tractability, which motivates the active developments of non-ML learning meth-
ods. Yet, because of their divergent motivations and forms, the objective func-
tions of many non-ML learning methods are seemingly unrelated, and there lacks
a unified framework to understand them. In this work, based on an information
geometric view of parametric learning, we introduce a general non-ML learning
principle termed as minimum KL contraction, where we seek optimal parameters
that minimizes the contraction of the KL divergence between the two distributions
after they are transformed with a KL contraction operator. We then show that
the objective functions of several important or recently developed non-ML learn-
ing methods, including contrastive divergence [12], noise-contrastive estimation
[11], partial likelihood [7], non-local contrastive objectives [31], score match-
ing [14], pseudo-likelihood [3], maximum conditional likelihood [17], maximum
mutual information [2], maximum marginal likelihood [9], and conditional and
marginal composite likelihood [24], can be unified under the minimum KL con-
traction framework with different choices of the KL contraction operators.

1 Introduction

Fitting parametric probabilistic models to data is a basic task in statistics and machine learning.
Given a set of training data {x(1), · · · ,x(n)}, parameter learning aims to find a member in a
parametric distribution family, qθ, to best represent the training data. In practice, many useful
high dimensional parametric probabilistic models, such as Markov random fields [18] or products
of experts [12], are defined as qθ(x) = q̃θ(x)/Z(θ), where q̃θ is the unnormalized model and
Z(θ) =

∫
Rd q̃θ(x)dx is the partition function. The maximum (log) likelihood (ML) estimation is

the most commonly used method for parameter learning, where the optimal parameter is obtained
by solving argmaxθ

1
n

∑n
k=1 log qθ(x

(k)). The obtained ML estimators has many desirable proper-
ties, such as consistency and asymptotic normality [21]. However, because of the high dimensional
integration/summation, the partition function in qθ oftentimes makes ML learning computationally
intractable. For this reason, non-ML parameter learning methods that use “tricks” to obviate direct
computation of the partition function have experienced rapid developments, particularly in recent
years. While many computationally efficient non-ML learning methods have achieved impressive
practical performances, with a few exceptions, their different learning objectives and numerical im-
plementations seem to suggest that they are largely unrelated.

In this work, based on the information geometric view of parametric learning, we elaborate on a gen-
eral non-ML learning principle termed as minimum KL contraction (MKC), where we seek optimal
parameters that minimize the contraction of the KL divergence between two distributions after they
are transformed with a KL contraction operator. The KL contraction operator is a mapping between
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probability distributions under which the KL divergence of two distributions tend to reduce unless
they are equal. We then show that the objective functions of a wide range of non-ML learning meth-
ods, including contrastive divergence [12], noise-contrastive estimation [11], partial likelihood [7],
non-local contrastive objectives [31], score matching [14], pseudo-likelihood [3], maximum con-
ditional likelihood [17], maximum mutual information [2], maximum marginal likelihood [9], and
conditional and marginal composite likelihood [24], can all be unified under the MKC framework
with different choices of the KL contraction operators and MKC objective functions.

2 Related Works

Similarities in the parameter updates among non-ML learning methods have been noticed in several
recent works. For instance, in [15], it is shown that the parameter update in score matching [14] is
equivalent to the parameter update in a version of contrastive divergence [12] that performs Langevin
approximation instead of Gibbs sampling, and both are approximations to the parameter update of
pseudo-likelihood [3]. This connection is further generalized in [1], which shows that parameter
update in another variant of contrastive divergence is equivalent to a stochastic parameter update
in conditional composite likelihood [24]. However, such similarities in numerical implementations
are only tangential to the more fundamental relationship among the objective functions of different
non-ML learning methods. On the other hand, the energy based learning [22] presents a general
framework that subsume most non-ML learning objectives, but its broad generality also obscures
their specific statistical interpretations.

At the objective function level, relations between some non-ML methods are known. For instance,
it is known that pseudo-likelihood is a special case of conditional composite likelihood [30]. In
[10], several non-ML learning methods are unified under the framework of minimizing Bregman
divergence.

3 KL Contraction Operator

We base our discussion hereafter on continuous variables and probability density functions. Most
results can be readily extended to the discrete case by replacing integrations and probability density
functions with summations and probability mass functions. We denote Ωd as the set of all probability
density functions over Rd. For two different probability distributions p, q ∈ Ωd, their Kulback-
Leibler (KL) divergence (also known as relative entropy or I-divergence) [6] is defined as KL(p‖q) =∫
Rd p(x) log p(x)

q(x)dx. KL divergence is non-negative and equals to zero if and only if p = q almost
everywhere (a.e.). We define a distribution operator, Φ, as a mapping between a density function
p ∈ Ωd to another density function p̃ ∈ Ωd′ , and adopt the shorthand notation p̃ = Φ{p}. A
distribution p is a fix point of a distribution operator Φ if p = Φ{p}.

p
q

q̃
p̃
D

KL (p̃ �q̃ )

DKL (p �q )

p̃ = Φ{p}
q̃ = Φ{q}

Figure 1: Illustration of a KL contraction
operator on two density functions p and q.

A KL contraction operator is a distribution operator, Φ :
Ωd 7→ Ωd′ , such that for any p, q ∈ Ωd, there exist a
constant β ≥ 1 for the following condition to hold:

KL(p‖q)− βKL(Φ{p}‖Φ{q}) ≥ 0. (1)

Subsequently, β is known as the contraction factor, and
LHS of Eq.(1) is the KL contraction of p and q under Φ.
Obviously, if p = q (a.e.), their KL contraction, as well
as their KL divergence, is zero. In addition, a KL con-
traction operator is strict if the equality in Eq.(1) holds
only when p = q (a.e.). Intuitively, if the KL divergence
is regarded as a “distance” metric of probability distri-
butions1, then it is never increased after both distributions are transformed with a KL contraction
operator, a graphical illustration of which is shown in Fig.1. Furthermore, under a strict KL contrac-
tion operator, the KL divergence is always reduced unless the two distributions are equal (a.e.). The
KL contraction operators are analogous to the contraction operators in ordinary metric spaces, with
β having a similar role as the Lipschitz constant [19].

1Indeed, it is known that the KL divergence behaves like the squared Euclidean distance [6].
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Eq.(1) gives the general and abstract definition of KL contraction operators. In the following, we
give several examples of KL contraction operators that are constructed from common operations of
probability distributions.

3.1 Conditional Distribution

We can form a family of KL contraction operators using conditional distributions. Consider x ∈ Rd
with distribution p(x) ∈ Ωd and y ∈ Rd′ , from a conditional distribution, T (y|x), we can define a
distribution operator, as

ΦcT {p}(y) =

∫
Rd

T (y|x)p(x)dx = p̃(y). (2)

The following result shows that ΦcT is a strict KL contraction operator with β = 1.

Lemma 1 (Cover & Thomas [6]2) For two distributions p, q ∈ Ωd, with the distribution operator
defined in Eq.(2), we have

KL(p‖q)−KL(ΦcT {p}‖ΦcT {q}) =

∫
Rd′

p̃(y)KL(Tp(x|y)‖Tq(x|y)) dy ≥ 0,

where Tp(x|y) = T (y|x)p(x)
p̃(y) and Tq(x|y) = T (y|x)q(x)

q̃(y) are the induced conditional distributions
from p and q with T . Furthermore, the equality holds if and only if p = q (a.e.).

3.2 Marginalization and Marginal Grafting

Two related types of KL contraction operators can be constructed based on marginal distributions.
Consider x with distribution p(x) ∈ Ωd, and a nonempty index subset A ⊂ {1, · · · , d}. Let \A
denote {1, · · · , d}−A, the marginal distribution, pA(xA), of sub-vector xA formed by components
whose indices are in A is obtained by integrating p(x) over sub-vector x\A. This marginalization
operation thus defines a distribution operator between p ∈ Ωd and pA ∈ Ω|A|, as:

ΦmA {p}(xA) =

∫
Rd−|A|

p(x)dx\A = pA(xA) (3)

Another KL contraction operator termed as marginal grafting can also be defined based on pA. For
a distribution q(x) ∈ Ωd, the marginal grafting operator is defined as:

Φgp,A{q}(x) =
q(x)pA(xA)

qA(xA)
= q\A|A(x\A|xA)pA(xA), (4)

Φgp,A{q} can be understood as replacing qA in q(x) with pA. The last term in Eq.4 is nonnegative
and integrates to one over Rd, and is thus a proper probability distribution in Ωd. Furthermore, p is
the fixed point of operator Φgp,A, as Φgp,A{p} = p.

The following result shows that both ΦmA and Φmgp,A are KL contraction operators, and that they are
in a sense complementary to each other.

Lemma 2 (Huber [13]) For two distributions p, q ∈ Ωd, with the distribution operators defined in
Eq.(3) and Eq.(4), we have

KL(p‖q)−KL
(

Φgp,A{p}
∥∥∥Φgp,A{q}) = KL(ΦmA {p}‖ΦmA {q}) .

Furthermore,

KL
(

Φgp,A{p}
∥∥∥Φgp,A{q}) =

∫
Rd

pA(xA)KL
(
p\A|A(·|xA)

∥∥q\A|A(·|xA)
)
dxA,

where p\A|A(·|xA) and q\A|A(·|xA) are the conditional distributions induced from p(x) and q(x),
and

KL(ΦmA {p}‖ΦmA {q}) = KL(pA(xA)‖qA(xA)) .

Lemma 2 also indicates that neither ΦmA nor Φmgp,A is strict - the KL contraction of p(x) and q(x) for
the former is zero if p\A|A(x\A|xA) = q\A|A(x\A|xA) (a.e.), even though they may differ on the
marginal distribution over xA. And for the latter, having pA(xA) = qA(xA) is sufficient to make
their KL contraction zero.

2We cite the original reference to this and subsequent results, which are recast using the terminology in-
troduced in this work. Due to the limit of space, we defer formal proofs of these results to the supplementary
materials.
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3.3 Binary Mixture

For two different distributions p(x) and g(x) ∈ Ωd, we introduce a binary variable c ∈ {0, 1} and
Pr(c = i) = πi, with π0, π1 ∈ [0, 1] and π0 + π1 = 1. We can then form a joint distribution
p̂(x, c = 0) = π0g(x) and p̂(x, c = 1) = π1p(x) over Rd × {0, 1}. Marginalizing out c from
p̂(x, c), we obtain a binary mixture p̃(x), which induces a distribution operator:

Φbg{p}(x) = π0g(x) + π1p(x) = p̃(x). (5)

The following result shows that Φbg is a strict KL contraction operator with β = 1/π1.

Lemma 3 For two distributions p, q ∈ Ωd, with the distribution operator defined in Eq.(5), we have

KL(p‖q)− 1

π1
KL
(
Φbg{p}

∥∥Φbg{q}) =
1

π1

∫
Rd

p̃(x)
[
KL
(
pc|x(c|x)

∥∥qc|x(c|x)
)]
dx ≥ 0,

where p(c|x) and q(c|x) are the induced posterior conditional distributions from p̂(x, c) and q̂(x, c),
respectively. The equality holds if and only if p = q (a.e.).

3.4 Lumping

Let S = (S1, S2, · · · , Sm) be a partition ofRd such that Si ∩Sj = ∅ for i 6= j, and
⋃m
i=1 Si = Rd,

the lumping [8] of a distribution p(x) ∈ Ωd over S yields a distribution over i ∈ {1, 2, · · · ,m}, and
subsequently induces a distribution operator ΦlS , as:

ΦlS{p}(i) =

∫
x∈Si

p(x)dx = PSi , for i = 1, · · · ,m. (6)

The following result shows that ΦlS is a KL contraction operator with β = 1.

Lemma 4 (Csiszàr & Shields [8]) For two distributions p, q ∈ Ωd, with the distribution operator
defined in Eq.(6), we have

KL(p‖q)−KL
(
ΦlS{p}

∥∥ΦlS{p}) =

m∑
i=1

PSi KL(p̃i‖q̃i) ≥ 0,

where p̃i(x) =
p(x)×1[x∈Si]∫
x′∈Si

p(x′)dx′
and q̃i(x) =

q(x)×1[x∈Si]∫
x′∈Si

q(x′)dx′
are the distributions induced from p and

q by restricting to Si, respectively, with 1[·] being the indicator function.

Note that ΦlS is in general not strict, as two distributions agree over all p̃i and q̃i will have a zero KL
contraction.

4 Minimizing KL Contraction for Parametric Learning

In this work, we take the information geometric view of parameter learning - assuming training
data are samples from a distribution p ∈ Ωd, we seek an optimal distribution on the statistical
manifold corresponding to the parametric distribution family qθ that best approximates p [20]. In this
context, the maximum (log) likelihood learning is equivalent to finding parameter θ that minimizes
the KL divergence of p and qθ [8], as argminθ KL(p‖qθ) = argmaxθ

∫
Rd p(x) log qθ(x)dx. The

data based ML objective is obtained when we approximate the expectation with sample average as∫
Rd p(x) log qθ(x)dx ≈ 1

n

∑n
k=1 log qθ(x

(k)).

The KL contraction operators suggest an alternative approach for parametric learning. In particular,
the KL contraction of p and qθ under a KL contraction operator is always nonnegative and reaches
zero when p and qθ are equal almost everywhere. Therefore, we can minimize their KL contrac-
tion under a KL contraction operator to encourage the matching of qθ to p. We term this general
approach of parameter learning as minimum KL contraction (MKC). Mathematically, minimum KL
contraction may be realized with three different but related types of objective functions.
- Type I: With a KL contraction operator Φ, we can find optimal θ that directly minimizes the KL

contraction between p and qθ, as:
argmin

θ
KL(p‖qθ)− βKL(Φ{p}‖Φ{qθ}) . (7)

In practice, it may be desirable to use Φ with β = 1 that is also a linear operator for L2 bounded
functions over Rd [19]. To better see this, consider qθ(x) = q̃θ(x)

Z(θ) as the model defined with
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the unnormalized model and its partition function. Furthermore, assuming that we can obtain
samples {x1, · · · ,xn} and {y1, · · · ,yn′} from p and Φ{p}, respectively, the optimization of
Eq.(7) can be approximated as

argmin
θ

KL(p‖qθ)−KL(Φ{p}‖Φ{qθ})≈argmax
θ

1

n

n∑
k=1

log q̃θ(x
(k))− 1

n′

n′∑
k=1

log Φ{q̃θ}(y(k)),

where due to the linearity of Φ, the two terms of Z(θ) in qθ and L{qθ} cancel out each other.
Therefore, the optimization does not require the computation of the partition function, a highly
desirable property for fitting parameters in high dimensional probabilistic models with intractable
partition functions. Type I MKC objective functions with KL contraction operators induced from
conditional distribution, marginalization, marginal grafting, linear transform, and lumping all fall
into this category. However, using nonlinear KL contraction operators, such as the one induced
from binary mixtures, may also be able to avoid computing the partition function (e.g., Section
4.4). Furthermore, the KL contraction operator in Eq.(7) can have parameters, which can include
the model parameter θ (e.g., Section 4.2). However, the optimization becomes more complicated
as Φ{p} cannot be ignored when optimizing θ. Last, note that when using Type I MKC objective
functions with a non-strict KL contraction operator, we cannot guarantee p = qθ even if their
corresponding KL contraction is zero.

- Type II: Consider a strict KL contraction operator with β = 1, denoted as Φt, is parameterized
by an auxiliary parameter t that is different from θ, and for any distribution p ∈ Ωd, we have
Φ0{p} = p and Φt{p} is continuously differentiable with regards to t. Then, the KL divergence
Φt{p} and Φt{qθ} can be regarded as a function of t and θ, as: L(t, θ) = KL(Φt{p}‖Φt{qθ).
Thus, the KL contraction in Eq.(7) can be approximated with a Taylor expansion near t = 0, as
KL(p‖qθ)−KL(Φδt{p}‖Φδt{qθ}) = KL(Φ0{p}‖Φ0{qθ})−KL(Φδt{p}‖Φδt{qθ}) = L(0, θ)−
L(δt, θ) ≈ −δt ∂L(t,θ)∂t

∣∣∣
t=0

= −δt ∂
∂tKL(Φt{p}‖Φt{qθ})

∣∣
t=0

. If the derivative of KL contrac-
tion with regards to t is easier to work with than the KL contraction itself (e.g., Section 4.5),
we can fix δt and equivalently maximizing the derivative, which is the Type II MKC objective
function, as

argmax
θ

∂

∂t
KL(Φt{p}‖Φt{qθ})

∣∣∣∣
t=0

. (8)

- Type III: In the case where we have access to a set of different KL contraction operators,
{Φ1, · · · ,Φm}, we can implement the minimum KL contraction principle by finding optimal
θ that minimizes their average KL contraction, as

argmin
θ

1

m

m∑
i=1

(KL(p‖qθ)− βiKL(Φi{p}‖Φi{qθ})) . (9)

As each KL contraction in the sum is nonnegative, Eq.(9) is zero if and only if each KL contrac-
tion is zero. If the consistency of p and qθ with regards to Φi corresponds to certain constraints
on qθ, the objective function, Eq.(9), represents the consistency of all such constraints. Under
some special cases, minimizing Eq.(9) to zero over a sufficient number of certain types of KL
contraction operators may indeed ensure equality of p and qθ (e.g., Section 4.6).

4.1 Fitting Gaussian Model with KL Contraction Operator from a Gaussian Distribution

We first describe an instance of MKC learning under a very simple setting, where we approximate
a distribution p(x) for x ∈ R with known mean µ0 and variance σ2

0 , with a Gaussian model qθ
whose mean and variance are the parameters to be estimated as θ = (µ, σ2). Using the strict KL
contraction operator ΦcT constructed with a Gaussian conditional distribution

T (y|x) =
1√

2πσ2
1

exp

(
− (y − x)2

2σ2
1

)
,

with known variance σ2
1 , we form the Type I MKC objective function. In this simple case, Eq.(7) is

reduced to a closed form objective function, as:

argmin
µ,σ2

[
σ2
0

2σ2
− σ2

0 + σ2
1

2(σ2 + σ2
1)

+
1

2
log

σ2

σ2 + σ2
1

+
σ2
1(µ− µ0)2

2σ2(σ2 + σ2
1)

]
,

whose optimal solution, µ = µ0 and σ2 = σ2
0 , is obtained by direct differentiation. The detailed

derivation of this result is omitted due to the limit of space. Note that, the optimal parameters do
not rely on the parameter in the KL contraction operator (in this case, σ2

1), and are the same as those
obtained by minimizing the KL divergence between p and qθ, or equivalently, maximizing the log
likelihood, when samples from p(x) are used to approximate the expectation.
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4.2 Relation with Contrastive Divergence [12]

Next, we consider the general strict KL contraction operator ΦcTθ constructed from a conditional
distribution, Tθ(y|x), for x,y ∈ Rd, of which the parametric model qθ is a fixed point, as qθ(y) =∫
Rd Tθ(y|x)qθ(x)dx = ΦcTθ{qθ}(y). In other words, qθ is the equilibrium distribution of the

Markov chain whose transitional distribution is given by Tθ(y|x). The Type I objective function
of minimum KL contraction, Eq.(7), for p, qθ ∈ Ωd under ΦcTθ is

argmin
θ

KL(p‖qθ)−KL
(
ΦcTθ{p}

∥∥ΦcTθ{qθ}) = argmin
θ

KL(p‖qθ)−KL(pθ‖qθ) ,

where pθ is the shorthand notation for ΦcTθ{p}. Note that this is the objective function of the con-
trastive divergence learning [12]. However, the dependency of pθ on θ makes this objective function
difficult to optimize. By ignoring this dependency, the practical parameter update in contrastive
divergence only approximately follows the gradient of this objective function [5].

4.3 Relation with Partial Likelihood [7] and Non-local Contrastive Objectives [31]

Next, we consider the Type I MKC objective function, Eq.(7), combined with the KL contraction
operator constructed from lumping. Using Lemma 4, we have

argmin
θ

{
KL(p‖qθ)−KL

(
ΦlS{p}

∥∥ΦlS{qθ})} = argmin
θ

m∑
i=1

PSi KL
(
p̃i
∥∥q̃θi )

= argmax
θ

m∑
i=1

PSi

∫
x∈Si
p̃i(x) log q̃θi (x)dx ≈ argmax

θ

1

n

n∑
k=1

1[x(k)∈Si]

m∑
i=1

PSi log q̃θi (x(k)),

where {x(1), · · · ,x(n)} are samples from p(x). Minimizing KL contraction in this case is equiv-
alent to maximizing the weighted sum of log likelihood of the probability distributions formed by
restricting the overall model to subsets of state space. The last step resembles the partial likelihood
objective function [7], which is recently rediscovered in the context of discriminative learning as
non-local contrastive objectives [31]. In [31], the partitions are required to overlap with each other,
while the above result shows that non-overlapping partitions of Rd can also be used for non-ML
parameter learning.

4.4 Relation with Noise Contrastive Estimation [11]

Next, we consider the Type I MKC objective function, Eq.(7), combined with the strict KL contrac-
tion operator constructed from the binary mixture operation (Lemma 3). In particular, we simplify
Eq.(7) using the definition of Φbg , as:

argmin
θ

KL(p‖qθ)−
1

π1
KL
(
Φbg{p}

∥∥Φbg{qθ})
= argmin

θ

1

π1

∫
Rd

(π0g(x) + π1p(x)) log (π0g(x) + π1qθ(x)) dx−
∫
Rd

p(x) log qθ(x)dx

= argmax
θ

∫
Rd

p(x) log
π1qθ(x)

π0g(x) + π1qθ(x)
dx +

π0
π1

∫
Rd

g(x) log
π0g(x)

π0g(x) + π1qθ(x)
dx.

When the expectations in the above objective function are approximated with averages over samples
from p(x) and g(x), {x(1), · · · ,x(n+)} and {y(1), · · · ,y(n−)}, the Type I MKC objective function
in this case reduces to

argmax
θ

1

n+

n+∑
k=1

log
π1qθ(x

(k))

π0g(x(k)) + π1qθ(x(k))
+
π0
π1

1

n−

n−∑
k=1

log
π0g(y(k))

π0g(y(k)) + π1qθ(y(k))
.

If we set π0 = π1 = 1/2, and treat {x(1), · · · ,x(n+)} and {y(1), · · · ,y(n−)} as data of interest and
noise, respectively, the above objective function can also be interpreted as minimizing the Bayesian
classification error of data and noise, which is the objective function of noise-contrastive estimation
[11].
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4.5 Relation with Score Matching [14]

Next, we consider the strict KL contraction operator, ΦcTt , constructed from an isotropic Gaussian
conditional distribution with a time decaying variance (i.e., a Gaussian diffusion process):

Tt(y|x) =
1

(2πt)d/2
exp

(
−‖y − x‖2

2t

)
,

where t ∈ [0,∞) is the continuous temporal index. Note that we have ΦcT0
{p} = p for any p ∈ Ωd.

If both p(x) and qθ(x) are functions differentiable with regards to x, it is know that the temporal
derivative of the KL contraction of p and qθ under ΦcTt is in closed form, which is formally stated in
the following result.

Lemma 5 (Lyu [25]) For any two distributions p, q ∈ Ωd differentiable with regards to x, we have

d

dt
KL
(
ΦcTt{p}

∥∥ΦcTt{qθ}) = −1

2

∫
Rd

ΦcTt{p}(x)

∥∥∥∥∇xΦcTtp(x)

ΦcTtp(x)
− ∇xΦcTtqθ(x)

ΦcTtqθ(x)

∥∥∥∥2 dx, (10)

where∇x is the gradient operator with regards to x.

Setting t = 0 in Eq.(10), we obtain a closed form for the Type II MKC objective function, Eq.(8),
which can be further simplified [14], as

argmax
θ

d

dt
KL(Φt{p}‖Φt{qθ})

∣∣∣∣
t=0

= argmin
θ

∫
Rd

p(x)

∥∥∥∥∇xp(x)

p(x)
− ∇xqθ(x)

qθ(x)

∥∥∥∥2 dx
= argmin

θ

∫
Rd

p(x)
(
‖∇x log qθ(x)‖2 + 24x log qθ(x)

)
dx

≈ argmin
θ

1

n

n∑
k=1

(∥∥∥∇x log qθ(x
(k))
∥∥∥2 + 24x log qθ(x

(k))

)
,

where {x(1), · · · ,x(n)} are samples from p(x), and4x is the Laplacian operator with regards to x.
The last step is the objective function of score matching learning [14].

4.6 Relation with Conditional Composite Likelihood [24] and Pseudo-Likelihood [3]

Next, we consider the Type I MKC objective function, Eq.(7), combined with the KL
contraction operator, ΦmA , constructed from marginalization. According to Lemma 2, we
have argminθ KL(p‖q) − KL(ΦmA {p}‖ΦmA {q}) = argmaxθ

∫
Rd p(x) log q\A|A(x\A|xA)dx ≈

argmaxθ
1
n

∑n
k=1 log q\A|A(x

(k)
\A |x

(k)
A ), where in the last step, expectation over p(x) is replaced

with averages over samples from p(x), {x(1), · · · ,x(n)}. This corresponds to the objective function
in maximum conditional likelihood [17] or maximum mutual information [2], which are non-ML
learning objectives for discriminative learning of high dimensional probabilistic data models.

However, Lemma 2 also shows that KL(p‖q)−KL(ΦmA {p}‖ΦmA {q}) = 0 is not sufficient to guaran-
tee p = qθ. Alternatively, we can use the Type III MKC objective function, Eq.(9), to combine KL
contraction operators formed from marginalizations over m different index subsets A1, · · · , Am:

argmin
θ

KL(p‖q)− 1

m

m∑
i=1

KL
(
ΦmAi{p}

∥∥ΦmAi{q}) ≈ argmax
θ

1

m

m∑
i=1

1

n

n∑
k=1

log qAi|\Ai(x
(k)
Ai
|x(k)
\Ai).

This is the objective function in conditional composite likelihood [24, 30, 23, 1] (also rediscovered
under the name piecewise learning in [26]).

A special case of conditional composite likelihood is when Ai = \{i}, the resulting marginal-
ization operator, Φm\{i}, is known as the ith singleton marginalization operator. With the d dif-
ferent singleton marginalization operators, we can rewrite the objective function as KL(p‖q) −
1
d

∑d
i=1 KL

(
Φm\ip

∥∥∥Φm\iq) = 1
d

∑d
i=1

∫
R pi(xi)KL

(
pi|\i(xi|x\i)

∥∥qi|\i(xi|x\i)) dxi. Note that in
this case, the average KL contraction is zero if and only if p(x) and qθ(x) agree on every singleton
conditional distribution, i.e., pi|\i(xi|x\i) = qi|\i(xi|x\i) for all i and x. According the Brook’s
Lemma [4], the latter condition is sufficient for p(x) = qθ(x) (a.e.). Furthermore, when approxi-
mating the expectations with averages over samples from p(x), we have
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argmin
θ

KL(p‖q)− 1

d

d∑
i=1

KL
(

Φm\{i}p
∥∥∥Φm\{i}q) ≈ argmax

θ

1

n

n∑
k=1

1

d

d∑
i=1

log qi|\i(x
(k)
i |x

(k)
\i ),

which is objective function in maximum pseudo-likelihood learning [3, 29].

4.7 Relation with Marginal Composite Likelihood

We now consider combining Type III MKC objective function, Eq.(9), with the KL contraction oper-
ator constructed from the marginal grafting operation. Specifically, with m different KL contraction
operators constructed from marginal grafting on index subsetsA1, · · · , Am, using Lemma 2, we can
expand the corresponding Type III minimum KL contraction objective function as:

argmin
θ

KL(p‖q)− 1

m

m∑
i=1

KL
(

Φgp,Ai{p}
∥∥∥Φgp,Ai{q}) = argmin

θ

1

m

m∑
i=1

KL(pAi(xAi)‖qAi(xAi))

= argmax
θ

1

m

m∑
i=1

∫
Rd

pAi(xAi) log qAi(xAi)dxAi ≈ argmax
θ

1

n

n∑
k=1

1

m

m∑
i=1

log qAi(x
(k)
Ai

)

The last step, which maximizes the log likelihood of a set of marginal distributions on training data,
corresponds to the objective function of marginal composite likelihood [30]. With m = 1, the
resulting objective is used in the maximum marginal likelihood or Type-II likelihood learning [9].

5 Discussions

In this work, based on an information geometric view of parameter learning, we have described
minimum KL contraction as a unifying principle for non-ML parameter learning, showing that the
objective functions of several existing non-ML parameter learning methods can all be understood as
instantiations of this principle with different KL contraction operators.

There are several directions that we would like to extend the current work. First, the proposed min-
imum KL contraction framework may be further generalized using the more general f -divergence
[8], of which the KL divergence is a special case. With the more general framework, we hope to
reveal further relations among other types of non-ML learning objectives [16, 25, 28, 27]. Second, in
the current work, we have focused on the idealization of parametric learning as matching probability
distributions. In practice, learning is most often performed on finite data set with an unknown under-
lying distribution. In such cases, asymptotic properties of the estimation as data volume increases,
such as consistency, become essential. While many non-ML learning methods covered in this work
have been shown to be consistent individually, the unification based on the minimum KL contrac-
tion may provide a general condition for such asymptotic properties. Last, understanding different
existing non-ML learning objectives through minimizing KL contraction also provides a principled
approach to devise new non-ML learning methods, by seeking new KL contraction operators, or
new combinations of existing KL contraction operators.
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