• **Learning on graphs/trees domains**: hyperlinked webpages, social networks, co-author networks, biological networks, ...

• **Our learning problem**: node classification of weighted, connected and undirected trees (and graphs) based only on graph topology

• We focus on **binary labeling**

• Bias: strongly connected nodes → same label

 = cut edge

 weight of cut-edges is **small**
Learning protocol

The Shazoo algorithm

On-line learning protocol: Vertices are issued one by one in an arbitrary order v_1, v_2, \ldots, v_n

At each time step t: learner **predicts** the label of v_t
- learner **observes** the label of v_t

Goal: few prediction mistakes

- **The Shazoo algorithm:** input = weighted trees T
 (if the input is a graph G we can run Shazoo on a spanning tree T of G)

- **Shazoo (1) partitions** T into components (satisfying some properties), **(2) uses mincut** for estimating the labels of the component **border** vertices, **(3) uses a NN method** for predicting the required label
Analysis, implementation and experiments

Accuracy: mistake bound of Shazoo is **optimal** (up to log factors)

Implementation: simple and fast recursive method (based on sum-product algorithm) for using the mincut strategy

Time complexity:
- **On line protocol:** Worst case time per prediction: $O(\#\text{vertices})$
- **Batch protocol** (vertices are split into training and test sets):
 Worst case time for predicting all labels of the test set: $O(\#\text{vertices})$

Space complexity: Linear in $\#\text{vertices}$

Experimental results: Shazoo outperforms most of its competitors (e.g. Label Propagation) on all our experiments on real-world datasets
Shazoo

- Accuracy analysis: optimal mistake bound
- Scalability: very fast
- Easy to implement
- Works well in practice on real world datasets
- Easily extendible to multiclass prediction

Come to poster T82!