
A Analysis of Randomized Approximation Algorithms

In this section, we will establish several key properties of column projection and random column
sampling that will aid us in deriving DFC recovery guarantees. Hereafter, ε ∈ (0, 1] represents a
prescribed error tolerance, and δ ∈ (0, 1] designates a target failure probability.

Our first theorem asserts that, with high probability, column projection produces an approximation
nearly as good as a given rank-r target by sampling a number of columns proportional to the coher-
ence and r log r.
Theorem 6. Given a matrix M ∈ Rm×n and a rank-r approximation L ∈ Rm×n, choose l ≥
crµ0(VL) log(n) log(1/δ)/ε2, where c is a fixed positive constant, and let C ∈ Rm×l be a matrix
of l columns ofM sampled uniformly without replacement. Then,

‖M− Lproj‖F ≤ (1 + ε)‖M− L‖F
with probability at least 1− δ.

The proof of Thm. 6 builds upon the randomized #2 regression work of [6] and will be given in
Sec. A.1.

Our next lemma bounds the µ0 and µ1-coherence of a uniformly sampled submatrix in terms of
the coherence of the full matrix. These properties will allow for accurate submatrix completion or
outlier removal using standard MC and RMF algorithms. Its proof is given in Sec. A.2.
Lemma 7. Let L ∈ Rm×n be a rank-r matrix and LC ∈ Rm×l be a matrix of l columns of L
sampled uniformly without replacement. If l ≥ crµ0(VL) log(n) log(1/δ)/ε2, where c is a fixed
positive constant defined in Thm. 6, then

i) rank(LC) = rank(L)

ii) µ0(ULC ) = µ0(UL)

iii) µ0(VLC ) ≤
µ0(VL)

1− ε/2

iv) µ2
1(LC) ≤

rµ0(UL)µ0(VL)

1− ε/2

all hold jointly with probability at least 1− δ/n.

A.1 Proof of Theorem 6

We now give a proof of Thm. 6. While the results of this section are stated in terms of i.i.d. with-
replacement sampling of columns and rows, a simple argument due to [10, Sec. 6] implies the same
conclusions when columns and rows are sampled without replacement.

Our proof of Thm. 6 will require a strengthened version of the randomized #2 regression work of [6,
Thm. 5]. The proof of Thm. 5 of [6] relies heavily on the fact that ‖AB−GH‖F ≤ ε

2‖A‖F ‖B‖F
with probability at least 0.9, whenG andH contain sufficiently many rescaled columns and rows of
A and B, sampled according to a particular non-uniform probability distribution. A result of [11],
modified to allow for slack in the probabilities, shows that a related claim holds with probability
1− δ for arbitrary δ ∈ (0, 1].
Lemma 8 (Sec. 3.4.3 of [11]). Given matrices A ∈ Rm×k and B ∈ Rk×n with r ≥
max(rank(A), rank(B)), an error tolerance ε ∈ (0, 1], and a failure probability δ ∈ (0, 1], de-
fine probabilities pj satisfying

pj ≥
β

Z
‖A(j)‖‖B(j)‖, Z =

∑

j

‖A(j)‖‖B(j)‖, and
∑k

j=1pj = 1 (1)

for some β ∈ (0, 1]. Let G ∈ Rm×l be a column submatrix of A in which exactly l ≥
48r log(4r/(βδ))/(βε2) columns are selected in i.i.d. trials in which the j-th column is chosen
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with probability pj , and let H ∈ Rl×n be a matrix containing the corresponding rows of B. Fur-
ther, let D ∈ Rl×l be a diagonal rescaling matrix with entry Dtt = 1/

√

lpj whenever the j-th
column of A is selected on the t-th sampling trial, for t = 1, . . . , l. Then, with probability at least
1− δ,

‖AB−GDDH‖2 ≤ ε

2
‖A‖2‖B‖2.

Using Lemma 8, we now establish a stronger version of Lemma 1 of [6]. For a given β ∈ (0, 1] and
L ∈ Rm×n with rank r, we first define column sampling probabilities pj satisfying

pj ≥
β

r
‖(VL)(j)‖2 and

∑n
j=1pj = 1. (2)

We further let S ∈ Rn×l be a random binary matrix with independent columns, where a single 1
appears in each column, and Sjt = 1 with probability pj for each t ∈ {1, . . . , l}. Moreover, letD ∈
Rl×l be a diagonal rescalingmatrix with entryDtt = 1/

√

lpj wheneverSjt = 1. Postmultiplication
by S is equivalent to selecting l random columns of a matrix, independently and with replacement.
Under this notation, we establish the following lemma:
Lemma 9. Let ε ∈ (0, 1], and define V"

l = V"
LS and Γ = (V"

l D)+ − (V"
l D)". If

l ≥ 48r log(4r/(βδ))/(βε2) for δ ∈ (0, 1] then with probability at least 1− δ:

rank(Vl) = rank(VL) = rank(L)

‖Γ‖2 = ‖Σ−1
V !

l
D
−ΣV !

l D‖
2

(LSD)+ = (V"
l D)+Σ−1

L U"
L

‖Σ−1
V !

l D
−ΣV !

l D‖
2
≤ ε/

√
2.

Proof By Lemma 8, for all 1 ≤ i ≤ r,

|1− σ2
i (V

"
l D)| = |σi(V

"
LVL)− σi(V

"
l DDVl)|

≤ ‖V"
LVL −V"

LSDDS"VL‖2
≤ ε/2‖V"

L‖2‖VL‖2 = ε/2,

where σi(·) is the i-th largest singular value of a given matrix. Since ε/2 ≤ 1/2, each singular
value of Vl is positive, and so rank(Vl) = rank(VL) = rank(L). The remainder of the proof is
identical to that of Lemma 1 of [6].

Lemma 9 immediately yields improved sampling complexity for the randomized %2 regression of
[6]:
Proposition 10. SupposeB ∈ Rp×n and ε ∈ (0, 1]. If l ≥ 3200r log(4r/(βδ))/(βε2) for δ ∈ (0, 1],
then with probability at least 1− δ − 0.2:

‖B−BSD(LSD)+L‖F ≤ (1 + ε)‖B−BL+L‖F
.

Proof The proof is identical to that of Thm. 5 of [6] once Lemma 9 is substituted for Lemma 1 of
[6].

Prop. 10 allows us to prove a generalization of Thm. 1 of [6] that will provide recovery guarantees
for column projection relative to an arbitrary low-rank approximation.
Theorem 11. SupposeM ∈ Rm×n and ε ∈ (0, 1]. If l ≥ 3200r log(4r/(βδ))/(βε2) for δ ∈ (0, 1],
then with probability at least 1− δ − 0.2,

‖M−MSD(MSD)+M‖F ≤ (1 + ε)‖M− L‖F .

Proof Since (MSD)+M minimizes ‖M−MSDX‖F over allX ∈ Rl×n, it follows that

‖M−MSD(MSD)+M‖F ≤ ‖M−MSD(LSD)+L‖F .
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Further, by Prop. 10,
‖M−MSD(LSD)+L‖F ≤ (1 + ε)‖M−ML+L‖F .

Finally, noting thatML+ minimizes ‖M−YL‖F over allY ∈ Rm×m yields
‖M−ML+L‖F ≤ ‖M− L‖F ,

establishing the result.

By sampling an additional factor of O(log(1/δ)) columns, we may boost the success probability of
Thm. 11 to an arbitrarily large value of 1− δ.
Corollary 12. SupposeM ∈ Rm×n and ε ∈ (0, 1]. If

l ≥ 3200r log(16r/β)(log(δ)/ log(0.45))/(βε2)

for δ ∈ (0, 1], then with probability at least 1− δ,
‖M−MSD(MSD)+M‖F ≤ (1 + ε)‖M− L‖F .

Proof Partition the columns of S into b = log(δ)/ log(0.45) submatrices, S = [S1, · · · ,Sb],
each with a = l/b columns.6 Associate with each submatrix Si a diagonal matrix Di with entry
Ditt = 1/

√
apj whenever Sijt = 1. Since

a ≥ 3200r log(4r/(0.25β))/(βε2),

we may apply Thm. 11 independently for each i to yield
‖M−MSiDi(MSiDi)

+M‖F ≤ (1 + ε)‖M− L‖F (3)
with probability at least 0.55. Moreover, for any i,

‖M−PMSiDiM‖2F = ‖P⊥
MSiDi

M‖2
F
= ‖PMSDP⊥

MSiDi
M‖2

F
+ ‖P⊥

MSDP⊥
MSiDi

M‖2
F

≥ ‖P⊥
MSDP⊥

MSiDi
M‖2

F
= ‖P⊥

MSDM‖2F = ‖M−PMSDM‖2F ,

where the penultimate equality holds sinceMSiDi is contained in the column space ofMSD for
all i. Hence, if

‖M−PMSDM‖F ≤ (1 + ε)‖M− L‖F ,
fails to hold, then, for each i, Eq. 3 also fails to hold. The desired conclusion therefore must hold
with probability at least 1− 0.45b = 1− δ.

A typical application of Cor. 12 would involve performing a truncated SVD ofM to obtain the sta-
tistical leverage scores, ‖(VL)(j)‖2, used to compute the column sampling probabilities of Eq. (2).
Here, we will take advantage of the slack term, β, allowed in the sampling probabilities of Eq. (2) to
show that uniform column sampling gives rise to the same recovery guarantees for column projection
approximations when L is sufficiently incoherent.

Fix c = 16000/ log(1/0.45). To prove Thm. 6, we first notice that for n > 1,
16000 log(n) = 3200 log(n5) ≥ 3200 log(16n).

Hence
l ≥ 3200rµ0(VL) log(16n)(log(δ)/ log(0.45))/ε

2

≥ 3200rµ0(VL) log(16rµ0(VL))(log(δ)/ log(0.45))/ε
2

≥ 3200r log(16r/β)(log(δ)/ log(0.45))/(βε2)

whenever β ≥ 1/µ0(VL). Thus, we may apply Cor. 12 with β = 1/µ0(VL) ∈ (0, 1] and pj = 1/n
by noting that

β

r
‖(VL)(j)‖2 ≤ β

r

r

n
µ0(VL) =

1

n
= pj

for all j, by the definition of µ0(VL). By our choice of probabilities,D = I
√

n/l, and hence
‖M−CC+M‖F = ‖M−CD(CD)+M‖F ≤ (1 + ε)‖M− L‖F

with probability at least 1− δ, as desired.
6For simplicity, we assume that b divides l evenly.
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A.2 Proof of Lemma 7

Since for all n > 1,

c log(n) log(1/δ) = (c/4) log(n4) log(1/δ) ≥ 48 log(4n2/δ) ≥ 48 log(4rµ0(VL)/(δ/n))

as n ≥ rµ0(VL), claim i follows immediately from Lemma 9 with β = 1/µ0(VL), pj = 1/n for
all j, andD = I

√

n/l. When rank(LC) = rank(L), Lemma 1 of [18] implies that PULC
= PUL ,

which in turn implies claim ii.

To prove claim iii given the conclusions of Lemma 9, assume, without loss of generality, that Vl

consists of the first l rows of VL. Then if LC = ULΣLV
!
l has rank(LC) = rank(L) = r, the

matrixVl must have full column rank. Thus we can write

L+
CLC = (ULΣLV

!
l )

+ULΣLV
!
l

= (ΣLV
!
l )

+U+
LULΣLV

!
l

= (ΣLV
!
l )

+ΣLV
!
l

= (V!
l )

+Σ+
LΣLV

!
l

= (V!
l )

+V!
l

= Vl(V
!
l Vl)

−1V!
l ,

where the second and third equalities follow fromUL having orthonormal columns, the fourth and
fifth result from ΣL having full rank and Vl having full column rank, and the sixth follows from
V!

l having full row rank.

Now, denote the right singular vectors of LC byVLC ∈ Rl×r. Observe that PVLC
= VLCV

!
LC

=

L+
CLC , and define ei,l as the ith column of Il and ei,n as the ith column of In. Then we have,

µ0(VLC ) =
l

r
max
1≤i≤l

‖PVLC
ei,l‖2

=
l

r
max
1≤i≤l

e!i,lL
+
CLCei,l

=
l

r
max
1≤i≤l

e!i,l(V
!
l )

+V!
l ei,l

=
l

r
max
1≤i≤l

e!i,lVl(V
!
l Vl)

−1V!
l ei,l

=
l

r
max
1≤i≤l

e!i,nVL(V
!
l Vl)

−1V!
Lei,n,

where the final equality follows fromV!
l ei,l = V!

Lei,n for all 1 ≤ i ≤ l.

Now, definingQ = V!
l Vl we have

µ0(VLC ) =
l

r
max
1≤i≤l

e!i,nVLQ
−1V!

Lei,n

=
l

r
max
1≤i≤l

Tr
[

e!i,nVLQ
−1V!

Lei,n
]

=
l

r
max
1≤i≤l

Tr
[

Q−1V!
Lei,ne

!
i,nVL

]

≤ l

r
‖Q−1‖2 max

1≤i≤l
‖V!

Lei,ne
!
i,nVL‖∗ ,
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by Hölder’s inequality for Schatten p-norms. SinceV!
Lei,ne

!
i,nVL has rank one, we can explicitly

compute its trace norm as ‖V!
Lei,n‖

2
= ‖PVLei,n‖

2. Hence,

µ0(VLC ) ≤
l

r
‖Q−1‖2 max

1≤i≤l
‖PVLei,n‖

2

≤ l

r

r

n
‖Q−1‖2

(

n

r
max
1≤i≤n

‖PVLei,n‖
2
)

=
l

n
‖Q−1‖2µ0(VL) ,

by the definition of µ0-coherence. The proof of Lemma 9 established that the smallest singular value
of n

l Q = V!
l DDVl is lower bounded by 1− ε

2 and hence ‖Q
−1‖2 ≤ n

l(1−ε/2) . Thus, we conclude
that µ0(VLC ) ≤ µ0(VL)/(1 − ε/2).

To prove claim iv under Lemma 9, note that PUL = PULC
impliesULU

!
LULC = ULC . We thus

observe that,

ULCV
!
LC

= ULCΣ
−1
LC

U!
LC

LC

= ULCΣ
−1
LC

U!
LC

ULΣLV
!
l

= ULU
!
LULCΣ

−1
LC

U!
LC

ULΣLV
!
l .

Letting B = U!
LULCΣ

−1
LC

U!
LC

ULΣL, we have

µ1(LC) =

√

ml

r
max

1≤i≤m
1≤j≤l

|e!i,mULCV
!
LC

ej,l|

=

√

ml

r
max

1≤i≤m
1≤j≤l

|e!i,mULBV!
l ej,l|

=

√

ml

r
max

1≤i≤m
1≤j≤l

|e!i,mULBV!
Lej,n|

=

√

ml

r
max

1≤i≤m
1≤j≤l

|Tr
[

e!i,mULBV!
Lej,n

]

|

=

√

ml

r
max

1≤i≤m
1≤j≤l

|Tr
[

BV!
Lej,ne

!
i,mUL

]

|

≤
√

ml

r
‖B‖2 max

1≤i≤m
1≤j≤l

‖V!
Lej,ne

!
i,mUL‖∗ ,

by Hölder’s inequality for Schatten p-norms. SinceV!
Lej,ne

!
i,mUL has rank one, we can explicitly

compute its trace norm as ‖U!
Lei,m‖‖V!

Lej,n‖ = ‖PULei,m‖‖PVLej,n‖. Hence,

µ1(LC) ≤
√

ml

r
‖B‖2 max

1≤i≤m
1≤j≤l

‖PULei,m‖‖PVLej,n‖

=

√

mlr2

mnr
‖B‖2

(
√

m

r
max

1≤i≤m
‖PULei,m‖

)(
√

n

r
max
1≤j≤l

‖PVLej,n‖
)

≤
√

mlr2

mnr
‖B‖2

(
√

m

r
max

1≤i≤m
‖PULei,m‖

)(
√

n

r
max
1≤j≤n

‖PVLej,n‖
)

=

√

lr

n
‖B‖2

√

µ0(UL)µ0(VL) ,
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by the definitition of µ0-coherence.

Next, we notice that

B!B = ΣLU
!
LULCΣ

−1
LC

U!
LC

ULU
!
LULCΣ

−1
LC

U!
LC

ULΣL

= ΣLU
!
LULCΣ

−1
LC

U!
LC

ULCΣ
−1
LC

U!
LC

ULΣL

= ΣLU
!
LULCΣ

−2
LC

U!
LC

ULΣL

= ΣLU
!
L (LCL

!
C)

+ULΣL

= ΣLU
!
L (ULΣLV

!
l VlΣLU

!
L )

+ULΣL

= ΣLU
!
LULΣ

−1
L (V!

l Vl)
−1Σ−1

L U!
LULΣL

= (V!
l Vl)

−1,

where the penultimate equality follows fromUL having orthogonal columns andΣLV
!
l VlΣL hav-

ing full rank. The proof of Lemma 9 established that the smallest singular value of n
l V

!
l Vl =

V!
l DDVl is lower bounded by 1 − ε/2 and hence that ‖B!B‖2 ≤ n

l(1−ε/2) and ‖B‖2 ≤
√

n
l(1−ε/2) . Thus, we conclude that µ1(LC) ≤

√

rµ0(UL)µ0(VL)/
√

1− ε/2.

B Proof of Theorem 3

Let L0 = [C0,1, . . . ,C0,t] and L̂ = [Ĉ1, . . . , Ĉt]. Define G as the event ‖L0 − L̂proj‖F ≤
(2 + ε)ce

√
mn∆, H as the event ‖L̂− L̂proj‖F ≤ (1 + ε)‖L0 − L̂‖F , and Bi as the event

‖C0,i − Ĉi‖F ≤ ce
√
ml∆, for each i ∈ {1, . . . , t}. WhenH holds, we have that

‖L0 − L̂proj‖F ≤ ‖L0 − L̂‖F + ‖L̂− L̂proj‖F ≤ (2 + ε)‖L0 − L̂‖F ,

by the triangle inequality, and hence

P(G) ≥ P(
⋂

iBi ∩H ∩
⋂

iA(C0,i)) = P(
⋂

iBi | H ∩
⋂

iA(C0,i))P(H ∩
⋂

iA(C0,i)).

Our choice of l, with a factor of log(2/δ), implies that each A(C0,i) holds with probability at least
1− δ/(2n) by Lemma 7, whileH holds with probability at least 1− δ/2 by Thm. 6. Hence, by the
union bound,

P(H ∩
⋂

iA(C0,i)) ≥ 1−P(Hc)−
∑

iP(A(C0,i)
c) ≥ 1− δ/2− tδ/(2n) ≥ 1− δ.

Further, by a union bound and our base MF assumption,

P(
⋂

iBi | H ∩
⋂

iA(C0,i)) ≥ 1−
∑

iP(Bc
i | A(C0,i)) ≥ 1− tδC

yielding the desired bound on P(G).

To prove the second statement, we redefine L̂ and write it in block notation as:

L̂ =

[

Ĉ1 R̂2

Ĉ2 L0,22

]

, where Ĉ =

[

Ĉ1

Ĉ2

]

, R̂ =
[

R̂1 R̂2

]

and L0,22 ∈ R(m−d)×(n−l) is the bottom right submatrix of L0. We further define J as the event
‖L0 − L̂nys‖F ≤ (2 + 3ε)ce

√
ml + nd∆,K1 as the event ‖L̂− L̂nys‖F ≤ (1 + ε)‖L̂− L̂proj‖F ,

K2 as the event ‖L̂− L̂proj‖F ≤ (1 + ε)‖L0 − L̂‖F , and BC and BR as the events ‖C0 − Ĉ‖F ≤
ce
√
ml∆ and ‖R0 − R̂‖F ≤ ce

√
dn∆. As above,

‖L0 − L̂nys‖F ≤ ‖L0 − L̂‖F + ‖L̂− L̂nys‖F ≤ (2+2ε+ ε2)‖L0 − L̂‖F ≤ (2+3ε)‖L0 − L̂‖F ,

whenK1 ∩K2 holds, by triangle inequality. Reasoning identical to that above now yields

P(J) ≥ P(BC ∩BR | K1 ∩K2 ∩ A(C) ∩ A(R))P(K1 ∩ A(C))P(K2 ∩ A(R))

≥ (1 − δ)2(1− δC − δR).
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C Proof of Corollary 4

Cor. 4 is based on a new noisy MC theorem, which we prove in Sec. E. A similar recovery guarantee
is obtained by [3] under stronger assumptions.
Theorem 13. Suppose that L0 ∈ Rm×n is (µ, r)-coherent and that, for some target rate parameter
β > 1,

s ≥ 32µr(m+ n)β log2(m+ n)

entries ofM are observed with locationsΩ sampled uniformly without replacement. Then, ifm ≤ n
and ‖PΩ(M)− PΩ(L0)‖F ≤ ∆ a.s., the minimizer L̂ to the problem

minimizeL ‖L‖∗ subject to ‖PΩ(M− L)‖F ≤ ∆ (4)
satisfies

‖L0 − L̂‖F ≤ 8

√

2m2n

s
+m+

1

16
∆ ≤ c′e

√
mn∆

with probability at least 1− 4 log(n)n2−2β for c′e a positive constant.

We begin by proving the DFC-PROJ bound. For each i ∈ {1, . . . , t}, let Bi be the event that
‖C0,i − Ĉi‖F > c′e

√
ml∆ andDi be the event that si < 32µ′r(m+ l)β′ log2(m+ l), where si is

the number of revealed entries in C0,i,

µ′ !
µ2r

1− ε/2
, and β′ !

β log(n)

log(max(m, l))
.

Then, by Thm. 3, it suffices to establish that
P(Bi | A(C0,i)) ≤ (4 log(n̄) + 1)n̄2−2β

for each i. By Thm. 13 and our choice of β′,
P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), D

c
i ) +P(Di | A(C0,i))

≤ 4 log(max(m, l))max(m, l)2−2β′

+P(Di)

≤ 4 log(n̄)n̄2−2β +P(Di).

Further, since the support of S0 is uniformly distributed and of cardinality s, the variable si has
a hypergeometric distribution with Esi = sl

n and hence satisfies Hoeffding’s inequality for the
hypergeometric distribution [10, Sec. 6]:

P(si ≤ Esi − st) ≤ exp
(

−2st2
)

.

It therefore follows that

P(Di) = P

(

si < Esi − s

(

l

n
− 32µ′r(m+ l)β′ log2(m+ l)

s

))

= P

(

si < Esi − s

(

l

n
− β(m+ l) log2(m+ l)

βs(m+ n) log2(m+ n)

log(n̄)

log(max(m, l))

))

≤ P

(

si < Esi − s

(

l

n
− β

βs

))

≤ P

(

si < Esi − s

√

β − 1

nβs

)

≤ exp
(

−2s
β − 1

nβs

)

≤ exp(−2 log(n̄)(β − 1)) = n̄2−2β

by our assumptions on s and l. Hence, P(Bi | A(C0,i)) ≤ (4 log(n̄) + 1)n̄2−2β for each i, and the
DFC-PROJ result follows from Thm. 3.

For DFC-NYS, let BC be the event that ‖C0 − Ĉ‖F > c′e
√
ml∆ and BR be the event that

‖R0 − R̂‖F > c′e
√
dn∆. Reasoning identical to that above yields P(BC | A(C)) ≤ (4 log(n̄) +

1)n̄2−2β andP(BR | A(R)) ≤ (4 log(n̄)+1)n̄2−2β . Thus, the DFC-NYS bound also follows from
Thm. 3.
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D Proof of Corollary 5

Cor. 5 is based on the following theorem of Zhou et al. [25], reformulated for a generic rate parameter
β, as described in [2, Section 3.1].
Theorem 14 (Thm. 2 of [25]). Suppose that L0 is (µ, r)-coherent and that the support set of S0 is
uniformly distributed among all sets of cardinality s. Then, if m ≤ n and ‖M− L0 − S0‖F ≤ ∆

a.s., there is a constant cp such that with probability at least 1− cpn−β , the minimizer (L̂, Ŝ) to the
problem

minimizeL,S ‖L‖∗ + λ‖S‖1 subject to ‖M− L− S‖F ≤ ∆ (5)

with λ = 1/
√
n satisfies ‖L0 − L̂‖

2

F + ‖S0 − Ŝ‖
2

F ≤ c′′2e mn∆2, provided that

r ≤ ρrm

µ log2(n)
and s ≤ (1− ρsβ)mn

for target rate parameter β > 2, and positive constants ρr, ρs, and c′′e .

We begin by proving the DFC-PROJ bound. For each i ∈ {1, . . . , t}, let Bi be the event that
‖C0,i − Ĉi‖F > c′′e

√
ml∆, and further define m̄ ! max(m, l) and β′′ ! β log(n̄)/ log(m̄) ≤ β′.

Then, by Thm. 3, it suffices to establish that

P(Bi | A(C0,i)) ≤ (cp + 1)n̄−β

for each i. By Thm. 14 and the definitions of β′ and β′′,
P(Bi | A(C0,i)) ≤ P(Bi | A(C0,i), si ≤ (1− ρsβ

′′)ml) +P(si > (1− ρsβ
′′)ml | A(C0,i))

≤ cpm̄
−β′′

+P(si > (1− ρsβ
′′)ml)

≤ cpn̄
−β +P(si > (1 − ρsβ

′)ml),

where si is the number of corrupted entries in C0,i. Further, since the support of S0 is uniformly
distributed and of cardinality s, the variable si has a hypergeometric distribution with Esi = sl

n and
hence satisfies Bernstein’s inequality for the hypergeometric [10, Sec. 6]:

P(si ≥ Esi + st) ≤ exp
(

−st2/(2σ2 + 2t/3)
)

≤ exp
(

−st2n/4l
)

,

for all 0 ≤ t ≤ 3l/n and σ2 ! l
n (1−

l
n ) ≤

l
n . It therefore follows that

P(si > (1− ρsβ
′)ml) = P

(

si > Esi + s

(

(1 − ρsβ′)ml

s
− l

n

))

= P

(

si > Esi + s
l

n

(

(1− ρsβ′)

(1− ρsβs)
− 1

))

≤ exp

(

−s
l

4n

(

(1− ρsβ′)

(1 − ρsβs)
− 1

)2
)

= exp
(

−ml

4

(ρsβs − ρsβ′)2

(1− ρsβs)

)

≤ n̄−β

by our assumptions on s and l and the fact that l
n

(

(1−ρsβ
′)

(1−ρsβs)
− 1

)

≤ 3l/nwhenever 4βs−3/ρs ≤ β′.
Hence,P(Bi | A(C0,i)) ≤ (cp +1)n̄−β for each i, and the DFC-PROJ result follows from Thm. 3.

For DFC-NYS, let BC be the event that ‖C0 − Ĉ‖F > c′′e
√
ml∆ and BR be the event that

‖R0 − R̂‖F > c′′e
√
dn∆. Reasoning identical to that above yields P(BC | A(C)) ≤ (cp + 1)n̄−β

and P(BR | A(R)) ≤ (cp + 1)n̄−β . Thus, the DFC-NYS bound also follows from Thm. 3.

E Proof of Theorem 13

In the spirit of [3], our proof will extend the noiseless analysis of [22] to the noisy matrix completion
setting. As suggested in [9], we will obtain strengthened results, even in the noiseless case, by

17



reasoning directly about the without-replacement sampling model, rather than appealing to a with-
replacement surrogate, as done in [22].

ForUL0
ΣL0

V!
L0
the compact SVD ofL0, we let T = {UL0

X+YV!
L0

: X ∈ Rm×r,Y ∈ Rm×r},
PT denote orthogonal projection onto the space T , and PT⊥ represent orthogonal projection onto
the orthogonal complement of T . We further define I as the identity operator on Rm×n and the
spectral norm of an operatorA : Rm×n → Rm×n as ‖A‖2 = sup‖X‖F≤1 ‖A(X)‖F .

We begin with a theorem providing sufficient conditions for our desired recovery guarantee.
Theorem 15. Under the assumptions of Thm. 13, suppose that

mn

s

∥

∥

∥
PTPΩPT − s

mn
PT

∥

∥

∥

2
≤ 1

2
(6)

and that there exists aY = PΩ(Y) ∈ Rm×n satisfying

‖PT (Y) −UL0
V!

L0
‖
F
≤

√

s

32mn
and ‖PT⊥(Y)‖2 <

1

2
. (7)

Then,

‖L0 − L̂‖F ≤ 8

√

2m2n

s
+m+

1

16
∆ ≤ ce

√
mn∆.

Proof We may write L̂ as L0 + G + H, where PΩ(G) = G and PΩ(H) = 0. Then, under
Eq. (6),

‖PΩPT (H)‖2F =
〈

H,PTP2
ΩPT (H)

〉

≥ 〈H,PTPΩPT (H)〉 ≥ s

2mn
‖PT (H)‖2F .

Furthermore, by the triangle inequality, 0 = ‖PΩ(H)‖F ≥ ‖PΩPT (H)‖F − ‖PΩPT⊥(H)‖F .
Hence, we have

√

s

2mn
‖PT (H)‖F ≤ ‖PΩPT (H)‖F ≤ ‖PΩPT⊥(H)‖F ≤ ‖PT⊥(H)‖F ≤ ‖PT⊥(H)‖∗, (8)

where the penultimate inequality follows as PΩ is an orthogonal projection operator.

Next we select U⊥ and V⊥ such that [UL0
,U⊥] and [VL0

,V⊥] are orthonormal and
〈

U⊥V
!
⊥,PT⊥(H)

〉

= ‖PT⊥(H)‖∗ and note that

‖L0 +H‖∗ ≥
〈

UL0
V!

L0
+U⊥V

!
⊥,L0 +H

〉

= ‖L0‖∗ +
〈

UL0
V!

L0
+U⊥V

!
⊥ −Y,H

〉

= ‖L0‖∗ +
〈

UL0
V!

L0
− PT (Y),PT (H)

〉

+
〈

U⊥V
!
⊥,PT⊥(H)

〉

− 〈PT⊥(Y),PT⊥ (H)〉
≥ ‖L0‖∗ − ‖UL0

V!
L0

− PT (Y)‖
F
‖PT (H)‖F + ‖PT⊥(H)‖∗ − ‖PT⊥(Y)‖2‖PT⊥(H)‖∗

> ‖L0‖∗ +
1

2
‖PT⊥(H)‖∗ −

√

s

32mn
‖PT (H)‖F

≥ ‖L0‖∗ +
1

4
‖PT⊥(H)‖F

where the first inequality follows from the variational representation of the trace norm, ‖A‖∗ =
sup‖B‖

2
≤1〈A,B〉, the first equality follows from the fact that 〈Y,H〉 = 0 for Y = PΩ(Y), the

second inequality follows fromHölder’s inequality for Schatten p-norms, the third inequality follows
from Eq. (7), and the final inequality follows from Eq. (8).

Since L0 is feasible for Eq. (4), ‖L0‖∗ ≥ ‖L̂‖∗, and, by the triangle inequality, ‖L̂‖∗ ≥
‖L0 +H‖∗ − ‖G‖∗. Since ‖G‖∗ ≤

√
m‖G‖F and ‖G‖F ≤ ‖PΩ(L̂ −M)‖F +
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‖PΩ(M− L0)‖F ≤ 2∆, we conclude that

‖L0 − L̂‖
2

F = ‖PT (H)‖2F + ‖PT⊥(H)‖2F + ‖G‖2F

≤
(

2mn

s
+ 1

)

‖PT⊥(H)‖2F + ‖G‖2F

≤ 16

(

2mn

s
+ 1

)

‖G‖2∗ + ‖G‖2F

≤ 64

(

2m2n

s
+m+

1

16

)

∆2.

Hence

‖L0 − L̂‖F ≤ 8

√

2m2n

s
+m+

1

16
∆ ≤ ce

√
mn∆

for some constant ce, by our assumption on s.

To show that the sufficient conditions of Thm. 15 hold with high probability, we will require four
lemmas. The first establishes that the operator PTPΩPT is nearly an isometry on T when suffi-
ciently many entries are sampled.
Lemma 16. For all β > 1,

mn

s

∥

∥

∥
PTPΩPT − s

mn
PT

∥

∥

∥

2
≤

√

16µr(m+ n)β log(n)

3s

with probability at least 1− 2n2−2β provided that s > 16
3 µr(n+m)β log(n).

The second states that a sparsely but uniformly observed matrix is close to a multiple of the original
matrix under the spectral norm.
Lemma 17. Let Z be a fixed matrix in Rm×n. Then for all β > 1,

∥

∥

∥

(mn

s
PΩ − I

)

(Z)
∥

∥

∥

2
≤

√

8βmn2 log(m+ n)

3s
‖Z‖∞

with probability at least 1− (m+ n)1−β provided that s > 6βm log(m+ n).

The third asserts that the matrix infinity norm of a matrix in T does not increase under the operator
PTPΩ.
Lemma 18. Let Z ∈ T be a fixed matrix. Then for all β > 2

∥

∥

∥

mn

s
PTPΩ(Z) − Z

∥

∥

∥

∞
≤

√

8βµr(m+ n) log(n)

3s
‖Z‖∞

with probability at least 1− 2n2−β provided that s > 8
3βµr(m+ n) log(n).

These three lemmas were proved in [22, Thm. 3.4, Thm. 3.5, and Lemma 3.6] under the assump-
tion that entry locations in Ω were sampled with replacement. They admit identical proofs under
the sampling without replacement model by noting that the referenced Noncommutative Bernstein
Inequality [22, Thm. 3.2] also holds under sampling without replacement, as shown in [9].

Lemma 16 guarantees that Eq. (6) holds with high probability. To construct a matrix Y = PΩ(Y)
satisfying Eq. (7), we consider a sampling with batch replacement scheme recommended in [9] and
developed in [5]. Let Ω̃1, . . . , Ω̃p be independent sets, each consisting of q random entry locations
sampled without replacement, where pq = s. Let Ω̃ = ∪p

i=1Ω̃i, and note that there exist p and q
satisfying

q ≥ 128

3
µr(m+ n)β log(m+ n) and p ≥ 3

4
log(n/2).

It suffices to establish Eq. (7) under this batch replacement scheme, as shown in the next lemma.
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Lemma 19. For any location set Ω0 ⊂ {1, . . . ,m}× {1, . . . , n}, let A(Ω0) be the event that there
exists Y = PΩ0

(Y) ∈ Rm×n satisfying Eq. (7). If Ω(s) consists of s locations sampled uniformly
without replacement and Ω̃(s) is sampled via batch replacement with p batches of size q for pq = s,
then P(A(Ω̃(s))) ≤ P(A(Ω(s))).

Proof As sketched in [9]

P
(

A( ˜Ω(s))
)

=
s

∑

i=1

P(|Ω̃| = i)P(A(Ω̃(i)) | |Ω̃| = i)

≤
s

∑

i=1

P(|Ω̃| = i)P(A(Ω(i)))

≤
s

∑

i=1

P(|Ω̃| = i)P(A(Ω(s))) = P(A(Ω(s))),

since the probability of existence never decreases with more entries sampled without replacement
and, given the size of Ω̃, the locations of Ω̃ are conditionally distributed uniformly (without
replacement).

We now follow the construction of [22] to obtain Y = PΩ̃(Y) satisfying Eq. (7). Let W0 =

UL0
V"

L0
and define Yk = mn

q

∑k
j=1 PΩ̃j

(Wj−1) and Wk = UL0
V"

L0
− PT (Yk) for k =

1, . . . , p. Assume that
mn

q

∥

∥

∥
PTPΩ̃k

PT − q

mn
PT

∥

∥

∥

2
≤ 1

2
(9)

for all k. Then

‖Wk‖F =

∥

∥

∥

∥

Wk−1 −
mn

q
PTPΩ̃k

(Wk−1)

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(PT − mn

q
PTPΩ̃k

PT )(Wk−1)

∥

∥

∥

∥

F

≤ 1

2
‖Wk−1‖F

and hence ‖Wk‖F ≤ 2−k‖W0‖F = 2−k√r. Since p ≥ 3
4 log(n/2) ≥ 1

2 log2(n/2) ≥
log2

√

32rmn/s,Y ! Yp satisfies the first condition of Eq. (7).

The second condition of Eq. (7) follows from the assumptions
∥

∥

∥

∥

Wk−1 −
mn

q
PTPΩ̃k

(Wk−1)

∥

∥

∥

∥

∞

≤ 1

2
‖Wk−1‖∞ (10)

∥

∥

∥

∥

(

mn

q
PΩ̃k

− I
)

(Wk−1)

∥

∥

∥

∥

2

≤

√

8mn2β log(m+ n)

3q
‖Wk−1‖∞ (11)

for all k, since Eq. (10) implies ‖Wk‖∞ ≤ 2−k‖UL0
V"

L0
‖
∞
, and thus

‖PT⊥(Yp)‖2 ≤
p

∑

j=1

∥

∥

∥

∥

mn

q
PT⊥PΩ̃j

(Wj−1)

∥

∥

∥

∥

2

=
p

∑

j=1

∥

∥

∥

∥

PT⊥(
mn

q
PΩ̃j

(Wj−1)−Wj−1)

∥

∥

∥

∥

2

≤
p

∑

j=1

∥

∥

∥

∥

(
mn

q
PΩ̃j

− I)(Wj−1)

∥

∥

∥

∥

2

≤
p

∑

j=1

√

8mn2β log(m+ n)

3q
‖Wj−1‖∞

= 2
p

∑

j=1

2−j

√

8mn2β log(m+ n)

3q
‖UWV"

W ‖∞ <

√

32µrnβ log(m+ n)

3q
< 1/2
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by our assumption on q. The first line applies the triangle inequality; the second holds sinceWj−1 ∈
T for each j; the third follows because PT⊥ is an orthogonal projection; and the final line exploits
(µ, r)-coherence.

We conclude by bounding the probability of any assumed event failing. Lemma 16 implies that
Eq. (6) fails to hold with probability at most 2n2−2β . For each k, Eq. (9) fails to hold with probability
at most 2n2−2β by Lemma 16, Eq. (10) fails to hold with probability at most 2n2−2β by Lemma 18,
and Eq. (11) fails to hold with probability at most (m+ n)1−2β by Lemma 17. Hence, by the union
bound, the conclusion of Thm. 15 holds with probability at least

1− 2n2−2β − 3

4
log(n/2)(4n2−2β + (m+ n)1−2β) ≥ 1− 15

4
log(n)n2−2β ≥ 1− 4 log(n)n2−2β .
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