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Abstract

Diversified retrieval and online learning are two core research areas in the design
of modern information retrieval systems. In this paper, we propose the linear sub-
modular bandits problem, which is an online learning setting for optimizing a gen-
eral class of feature-rich submodular utility models for diversified retrieval. We
present an algorithm, called LSBGREEDY, and prove that it efficiently converges
to a near-optimal model. As a case study, we applied our approach to the setting
of personalized news recommendation, where the system must recommend small
sets of news articles selected from tens of thousands of available articles each day.
In a live user study, we found that LSBGREEDY significantly outperforms existing
online learning approaches.

1 Introduction

User feedback has become an invaluable source of training data for optimizing information retrieval
systems in a rapidly expanding range of domains, most notably content recommendation (e.g., news,
movies, ads). When designing retrieval systems that adapt to user feedback, two important chal-
lenges arise. First, the system should recommend optimally diversified content that maximizes
coverage of the information the user finds interesting (to maximize positive feedback). Second, the
system should make exploratory recommendations in order to learn a reliable model from feedback.

Challenge 1: diversification. In most retrieval settings, the retrieval system must recommend sets of
articles, rather than individual articles. Furthermore, the recommended articles should be well diver-
sified. This is motivated by the principle that recommending redundant articles leads to diminishing
returns on utility, since users need to consume redundant information only once. This notion of di-
minishing returns is well-captured by submodular utility models, which have become an increasingly
popular approach to modeling diversified retrieval tasks in recent years [24, 25, 18, 3, 21, 9, 16].

Challenge 2: feature-based exploration. In most retrieval settings, users typically only provide
feedback on the articles recommended to them. This partial feedback issue leads to an inherent
tension between exploration and exploitation when deciding which articles to recommend to the
user. Furthermore, it is typically desirable to learn a feature-based model that can generalize to new
or previously unseen articles and users; this is often called the contextual bandits problem [13, 15, 7].

Although there exist approaches that have addressed these challenges individually, to our knowledge
there is no single approach which solves both simultaneously and is also practical to implement. For
instance, existing online approaches for optimizing submodular functions typically assume a feature-
free model, and thus cannot generalize easily [18, 22, 23]. Such approaches measure performance
relative to the single best set (e.g., of articles). Thus, they are not suitable for many retrieval settings
since the set of available articles can change frequently (e.g., news recommendation).

In this paper, we address both challenges in a unified framework. We propose the linear submodular
bandits problem, which is an online learning setting for optimizing a general class of feature-based
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submodular utility models. To make learning practical, we represent the benefit of adding an article
to an existing set of selected articles as a linear model with respect to the user’s preferences. This
class of models encompasses several existing information coverage utility models for diversified
retrieval [24, 25, 9], and allows us to learn flexible models that can generalize to new predictions.

Similar to the contextual bandits setting considered in [15], our setting can be characterized as a
feature-based exploration-exploitation problem, where the uncertainty lies in how best to model user
interests using the available features. In contrast to [15], we aim to recommend optimally diversified
sets of articles rather than just single articles. From that standpoint, modeling this additional layer of
complexity in the bandit setting is our main technical contribution. We present an algorithm, called
LSBGREEDY, to optimize this exploration-exploitation trade-off. When learning a d-dimensional
model to recommend sets of L articles for T time steps, we prove that LSBGREEDY incurs re-
gret that grows as O(d

√
LT ) (ignoring log factors). This regret matches the convergence rates of

analogous algorithms for the conventional linear bandits setting [1, 20, 8].

As a case study, we applied our approach to the setting of personalized news recommendation [9,
15, 16]. In addition to simulation experiments, we conducted a live user study over a period of
ten rounds, where in each round the retrieval system must recommend a small set of news articles
selected from tens of thousands of available articles for that round. We compared against existing
online learning approaches that either employ no exploration [9], or learn to recommend only single
articles (and thus do not model diversity) [15]. Compared to previous approaches, we find that
LSBGREEDY can significantly improve the performance of the retrieval system even when learning
for a limited number of rounds. Our empirical results demonstrate the advantage of jointly tackling
the challenges of diversification and feature-based exploration, as well as showcase the practicality
of our approach.

2 Submodular Information Coverage Models

Before presenting our online learning setting, we first describe the class of utility functions that we
optimize over. Throughout this paper, we use personalized news recommendation as our motivating
example. In this setting, utility corresponds to the amount of interesting information covered by the
set of recommended articles.

Suppose that news articles are represented using a set of d “topics” or “concepts” that we wish to
cover (e.g., the Middle East or the weather).1 Intuitively, recommending two articles that cover
highly overlapping topics might not be more beneficial than recommending just one of the articles
– this is the notion of diminishing returns we wish to capture in our information coverage model.

Two key properties we will exploit are that our utility functions are monotone and submodular. A
set function F mapping sets of recommended articles A to real values (e.g., the total information
covered by A) is monotone and submodular if and only if

F (A ∪ {a}) ≥ F (A) and F (A ∪ {a})− F (A) ≥ F (B ∪ {a})− F (B),

respectively, for all articles a and sets A ⊆ B. In other words, since A is smaller than B, the benefit
of adding a to A is larger than the benefit of adding a to B. Submodularity provides a natural
framework for characterizing diminishing returns in information coverage, since the gain of adding
a second (redundant) article on a topic will be smaller than the gain of adding the first.

For each topic i, let Fi(A) be a monotone submodular function corresponding to how well the
recommended articles A cover topic i. We write the total utility of recommending A as

F (A|w) = w>〈F1(A), . . . , Fd(A)〉, (1)

where w ∈ <d+ is a parameter vector indicating the user’s interest level in each topic. Thus, F (A|w)
corresponds to the weighted information coverage of A, and depends on the preferences of the par-
ticular user. Since sums of monotone submodular functions are themselves monotone submodular,
this implies that F (A|w) is also monotone submodular (this would not hold if w has negative com-
ponents). When making recommendations, the goal then is to select the A that maximizes F (A|w).
This class of information utility models encompasses several existing models of information cover-
age for diversified retrieval [24, 25, 9].

1In general, these features can represent any “nugget of information”, such as a single word [24, 25, 9].
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Example: Probabilistic Coverage. As an illustrative example, we now describe the probabilistic
coverage model proposed in [9]. This will also be the coverage model used in our case study (see
Section 5). Each article a has some probability P (i|a) of covering topic i.2 Assuming each article
a ∈ A has an independent probability of covering each topic, then we can write Fi(A) as

Fi(A) = 1−
∏
a∈A

(1− P (i|a)), (2)

which corresponds to the probability that topic i is covered by at least one article in A. It is straight-
forward to check that Fi in (2) is monotone submodular [9].

Local Linearity. One attractive property of F (A|w) in (1) is that the incremental gains are locally
linear. In particular, the incremental gain of adding a to A can be written as w>∆(a|A), where

∆(a|A) = 〈 F1(A ∪ {a})− F1(A) , . . . , Fd(A ∪ {a})− Fd(A) 〉. (3)

In other words, the i-th component of ∆(a|A) corresponds to the incremental coverage (i.e., sub-
modular advantage) of topic i by article a, conditioned on articles A having already been selected.
This property will be exploited by our online learning algorithm presented in Section 4.

Optimization. Another attractive property of monotone submodular functions is that the myopic
greedy algorithm is guaranteed to produce a near-optimal solution [17]. For any budget L (e.g.,
L = 10 articles), the constrained optimization problem, argmaxA:|A|≤L F (A|w), can be solved
greedily to produce a solution that is within a factor (1 − 1/e) ≈ 0.63 of optimal. Achieving
better than (1− 1/e)OPT is known to be intractable unless P = NP [10]. In practice, the greedy
algorithm can often perform much better than this worst case guarantee (cf. [14]), and will be a
central component in our online learning algorithm.

3 Problem Formulation

We propose the linear submodular bandits problem which is described in the following. At each
time step t = 1, . . . , T , our algorithm interacts with the user in the following way:

• A set of articlesAt is made available to the algorithm. Each article a ∈ At is represented using a set
of d basis coverage functions F1, . . . , Fd, defined as in Section 2, which is known to the algorithm.

• The algorithm chooses a ranked set of L articles, denoted At = (a
(1)
t , . . . , a

(L)
t ), using the basis

coverage functions of the articles and the outcomes of previous time steps.
• The user provides feedback (e.g., clicks on or ignores each article), and the rewards for each recom-

mended articles rt(At) (4) are observed.

In order to develop our algorithm, we require a model of user behavior. We assume the user scans
the recommended articles A = (a(1), . . . , a(L)) one by one in top-down fashion. For each article
a(`), the user considers the new information covered by a(`) and not covered by the above articles
A(1:`−1) (A(1:`) denotes the articles in the first ` slots). In our representation, this new information
is ∆(a(`)|A(1:`−1)) as in (3). The user then clicks on (or likes) a(`) with independent probability
(w∗)

>
∆(a(`)|A(1:`−1)), where w∗ is the hidden preferences of the user. Formally, for any set of

articles A chosen at time t, the rewards rt(A) can be written as the sum of rewards at each slot,

rt(A) =

L∑
`=1

r
(`)
t (A). (4)

We assume each r(`)t is an independent random variable bounded in [0, 1] and satisfies

E
[
r
(`)
t (A)

]
= (w∗)

>
∆(a(`)|A(1:`−1)), (5)

where w∗ is a weight vector unknown to the algorithm with ‖w∗‖ ≤ S. In other words, the expected
reward in each slot is realizable, linear in ∆(a(`)|A(1:`−1)), and independent of the other slots. We
call this independence property conditional submodular independence, which we will leverage in

2E.g., the topics and coverage probabilities can be derived from a topic model such as LDA [4].
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Algorithm 1 LSBGREEDY

1: input: λ, αt
2: for t = 1, . . . , T do

3: Mt ← λId +
∑t−1
τ=1

∑L
`=1 ∆

(`)
τ

(
∆

(`)
τ

)>
//covariance matrix

4: bt ←
∑t−1
τ=1

∑L
`=1 r̂

(`)
τ ∆

(`)
τ //aggregate feedback so far

5: wt ←M−1
t bt //linear regression using previous feedback as training data

6: At ← ∅
7: for ` = 1, . . . , L do
8: ∀a ∈ At \A(t) : µa ← w>t ∆ (a|At) //compute mean estimate of utility gain

9: ∀i ∈ At \A(t) : ca ← αt

√
∆ (a|At)>M−1

t ∆ (a|At) //compute confidence interval

10: set a(`)t ← argmaxa(µa + ca) //select article with highest upper confidence bound

11: store ∆
(`)
t ← ∆

(
a
(`)
t

∣∣∣A(1:`−1)
t

)
, At ← At ∪

{
a
(`)
t

}
12: end for
13: recommend articles At in the order selected, and observe rewards r̂(1)t , . . . , r̂

(L)
t for each slot

14: end for

our analysis. While conditional submodular independence may seem ideal, we will show in our user
study experiments that it is not required for our proposed algorithm to achieve good performance.

Equations (4) and (5) imply that E[rt(A)] = F (A|w∗) for F defined as in (1). Thus, E[rt] is
monotone submodular, and a clairvoyant system with perfect knowledge of w∗ can greedily select
articles to achieve (expected) reward at least (1−1/e)OPT , whereOPT denotes the total expected
reward of the optimal recommendations for t = 1, . . . , T . Let A∗t denote the optimal set of articles
at time t. We quantify performance using the following notion of regret which we call greedy regret,

RegG(T ) =

(
1− 1

e

) T∑
t=1

E [rt(A
∗
t )]−

T∑
t=1

rt(At) ≡
(

1− 1

e

)
OPT −

T∑
t=1

rt(At). (6)

4 Algorithm and Main Results

A central question in the study of bandit problems is how best to balance the trade-off between
exploration and exploitation (cf. [15]). To minimize regret (6), an algorithm must exploit its past
experience to recommend sets of articles that appear to maximize information coverage. However,
topics that appear good (i.e., interesting to the user) may actually be suboptimal due to impreci-
sion in the algorithm’s knowledge. In order to avoid this situation, the algorithm must explore by
recommending articles about seemingly poor topics in order to gather more information about them.

In this section, we present an algorithm, called LSBGREEDY, which automatically trades off be-
tween exploration and exploitation (Algorithm 1). LSBGREEDY balances exploration and exploita-
tion using upper confidence bounds on the estimated gain in utility, and builds upon upper confidence
bound style algorithms for the conventional linear bandits setting [8, 20, 15, 7, 1]. Intuitively, the
algorithm can be decomposed into the following components.

Training a Model. Since we employ a linear model, at each time t, we can fit an estimate wt of the
true w∗ via linear regression on the previous feedback. Lines 3–5 in Algorithm 1 describe this step,
where ∆

(`)
τ denotes the incremental coverage features of the article selected at time τ and slot `, and

r̂
(`)
τ denotes the associated reward. Note that λ in Line 3 is the standard regularization parameter.

Estimating Incremental Coverage. Given wt, we can now estimate the incremental gain of adding
any article a to an existing set of resultsA. As discussed in Section 3, the true (expected) incremental
gain is (w∗)

>
∆(a|A). Our algorithm’s estimate is w>t ∆(a|A) (Line 8). If our algorithm were to

purely exploit prior knowledge, then it would greedily choose articles that maximize w>t ∆(a|A).3

Computing Confidence Intervals. Of course, each wt is an imprecise estimate of the true w∗.
Given such uncertainty, a natural approach is to use confidence intervals which contain the true w∗

3Note thatwt may have negative components, which would make F (·|wt) not monotone submodular. How-
ever, regret is measured by F (·|w∗), which is monotone submodular. We show in our analysis that having
negative components in wt does not hinder our ability to converge efficiently to w∗ in a regret sense.
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t A
(1)
t r

(1)
t A

(2)
t r

(2)
t

1 a1 1 a2 0
2 b1 1 b3 1

Figure 1: Illustrative example of LSBGREEDY for L = 2 and 2 days. Each day comprises 3 articles
covering 4 topics, which are depicted in the two plots. Each row in the table describes the choices of
LSBGREEDY and the resulting feedback. In day 1, LSBGREEDY recommends articles to explore
topics 1, 2, and 3, and the user indicates liking a1 and disliking a2. In day 2, LSBGREEDY recom-
mends b1 to exploitatively cover topic 1, and b3 to both cover topic 1 and explore topic 4.

with some target confidence (e.g., 95%). Our algorithm’s uncertainty in the gain of article a given set
A depends directly to how much feedback we have collected regarding prominent topics in ∆(a|A).
In our linear setting, uncertainty is measured using the inverse covariance matrix M−1t of the sub-
modular features of the previously selected articles (Line 9). If our algorithm were to purely explore,

then it would greedily select articles that have maximal uncertainty
√

∆(a|A)>M−1t ∆(a|A).

Balancing Exploration and Exploitation. In order to achieve low regret, LSBGREEDY greedily
selects articles that maximize a compromise between estimated gain and uncertainty (Line 10), with
αt controlling the tradeoff. For any δ ∈ (0, 1), Lemma 3 in Appendix A.2 provides sufficient
conditions on αt for constructing confidence intervals,

w>t ∆(a|A)± αt
√

∆(a|A)>M−1t ∆(a|A) ≡ w>t ∆(a|A)± αt‖∆(a|A)‖M−1
t
, (7)

that contain the true value, (w∗)>∆(a|A), with probability at least 1 − δ. In this sense, Line 10
maximizes the upper confidence bound on the true expected reward. Figure 1 provides an illustrative
example of the behavior of LSBGREEDY.

We now state our main result, which essentially bounds the greedy regret (6) of LSBGREEDY as
O(d
√
TL) (ignoring log factors). This means that the average loss incurred per slot and per day by

LSBGREEDY relative to (1− 1/e)OPT decreases at a rate of O(d/
√
TL).

Theorem 1. For L ≤ d, λ = L, and αt defined as

αt =
√

2 log
(
2 det(Mt)1/2 det(λId)−1/2/δ

)
+ S
√
λ, (8)

with probability at least 1− δ, LSBGREEDY achieves greedy regret (6) bounded by

RegG(T ) ≤ αT
√

8TL log det(MT+1) +

√
2(1 + TL) log

(√
1 + TL

δ/2

)
= O

(
Sd
√
TL log

(
TL

δ

))
.

The proof of Theorem 1 is presented in Appendix A in the supplementary material. In practice, the
choice of αt in (8) may be overly conservative. As we show in our experiments, more aggressive
choices of αt can often lead to faster convergence.

5 Empirical Analysis: Case Study in News Recommendation

We applied LSBGREEDY to the setting of personalized news recommendation (cf. [9, 15, 16]),
where the system is tasked with recommending sets of articles that maximally cover the interesting
information of the available articles. The user provides feedback (e.g., by indicating that she likes
or dislikes each article), and the goal is to maximize the total positive feedback by personalizing
to the user. We conducted both simulation experiments as well as a live user study. Since real
users are unlikely to behave exactly according to our modeling assumptions (e.g., obey conditional
submodular independence), our user study tests the effectiveness of our approach in settings beyond
those considered in our theoretical analysis.

5.1 Simulations

Data. We ran simulations using both synthetic datasets as well as the blog dataset from [9]. For
each setting, we generated a hidden true preference vector w∗. For the synthetic data, all articles
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Figure 2: Simulation results comparing LSBGREEDY (red), RankLinUCB (black thick), Multiplica-
tive Weighting (black thin), and ε-Greedy (dashed thin). The middle column computes regret versus
the clairvoyant greedy solution, and not (1− 1/e)OPT . Unless specified, results are for L = 5.

were randomly generated using d = 25 topics, and w∗ was randomly generated and re-scaled so the
most likely articles were liked with probability≈ 75%. For the blog dataset, articles are represented
using d = 100 topics generated using Latent Dirichlet Allocation [4], and w∗ was derived from
a preliminary version of our user study. Our simulated user behaves according to the user model
described in Section 3. We use probabilistic coverage (2) as the submodular basis functions.

Competing Methods. We compared LSBGREEDY against the following online learning algo-
rithms. Note that all learning algorithms use the same underlying submodular utility model.

• Multiplicative Weighting (MW) as proposed in [9], which does not employ exploration.
• RankLinUCB, which combines the LinUCB algorithm [8, 20, 15, 7, 1] with Ranked Bandits [18, 22].

RankLinUCB is similar to LSBGREEDY except that it maintains a separate weight vector per slot
since it employs a reduction to L separate linear bandits (one per slot). In a sense, this is the natural
application of existing approaches to our setting.4

• ε-Greedy, which randomly explores with probability ε, and exploits otherwise [15].

Results. Figure 2 shows a representative sample of our simulation results.5 We see that both ε-
Greedy and Multiplicative Weighting achieve significantly worse results than LSBGREEDY. We
also observe the performance of Multiplcative Weigthing diverge in the synthetic dataset, which is
due to the fact that it does not employ exploration. RankLinUCB is more competitive, and achieves
matching performance in the synthetic dataset. We also see that RankLinUCB is more sensitive to
the choice of α. Interestingly, both LSBGREEDY and RankLinUCB approach the same performance
when recommending L = 10 articles. This can be explained by the user’s interests being saturated
by 10 articles, and suggests that the bound in Theorem 1 could potentially be further refined. Addi-
tional details can be found in Appendix B in the supplementary material.

5.2 User Studies

Design. The design of our study is similar to the personalization study conducted in [9]. We pre-
sented each user with ten articles per day over ten days from January 18, 2009 to January 27, 2009.
Each day, the articles are selected using an interleaving of two policies (described below). The ar-
ticles are displayed as a title with its contents viewable via a preview pane. The user is instructed

4One can show that RankLinUCB achieves greedy regret (6) that grows asO(dL
√
T ) (ignoring log factors),

which is a factor
√
L worse than the regret guarantee of LSBGREEDY.

5For all methods, we find performance to be relatively stable w.r.t. the tuning parameters (e.g., αt for
LSBGREEDY). Unless specified, we set all parameters to values that achieve good results for their respective
algorithms. In particular we set αt = 1 for LSBGREEDY, αt = 0.6 for RankLinUCB, β = 0.9 for MW,
and ε = 0.1 for ε-Greedy. LSBGREEDY, RankLinUCB, and ε-Greedy train linear models with regularization
parameter λ, which we kept constant at λ = 1.
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Figure 3: Displaying normalized learned preferences of LSBGREEDY (dark) and MW (light) for
two user study sessions. In the left session, MW overfits to the “world” topic. In the right session,
the user likes very few articles, and MW does not discover any topics that interest the user.

COMPARISON #SESSIONS WIN/TIE/LOSE GAIN PER DAY % OF LIKES
LSBGREEDY vs Static Baseline 24 24 / 0 / 0 1.07 63% (67%)
LSBGREEDY vs Mult. Weighting 26 24 / 1 / 1 0.54 57% (63%)
LSBGREEDY vs RankLinUCB 27 21 / 2 / 4 0.58 57% (61%)

Table 1: User study comparing LSBGREEDY with competing algorithms. The parenthetical values
in the last column are computed ignoring clicks on articles jointly recommended by both algorithms
(see Section 5.2). All results are statistically significant with 95% confidence.

to briefly skim each article to get a sense of its content and, one by one, mark each article as “inter-
ested in reading in detail” (like), or “not interested” (dislike). As in [9], for each decision, the user
is told to take into account the articles shown above in the current day, so as to capture the notion
of incremental coverage. For example, a user might be interested in reading an article regarding the
Middle East appearing at the top slot, and would mark it as “interested.” However, if several very
similar articles appear below it, the user may mark the subsequent articles as “not interested.”

Evaluation. For each day, we generate an interleaving of recommendations from two algorithms.
Interleaving allows us to make paired comparisons such that we simultaneously control for the
particular user and particular day (certain days may contain more or less interesting content to the
user than other days). Like other interleaving approaches [19], our approach maintains a notion of
fairness so that both competing algorithms recommend the same amount of content. After each day,
the user’s feedback is collected and given to the two competing algorithms. Additional details of
our experimental setup can be found in Appendix C in the supplementary material.

Data. In order to distinguish the gains of the algorithms from other effects (such as imperfections in
the features, or having too high a dimension to converge), we performed dimensionality reduction.
We created 18 genres (examples shown in Figure 3), labeled relevant articles and trained a model
via linear regression for each genre. Note that many articles are relevant to multiple genres.

We compared LSBGREEDY against the static baseline (i.e., no personalization), Multiplicative
Weighting (MW) from [9], and RankLinUCB. We evaluated each comparison setting using approx-
imately twenty five participants, most of whom are graduate students or young professionals.

Results. Table 1 describes our results. We first aggregated per user, and then aggregated over all
users. For each user, we computed three statistics: (1) whether LSBGREEDY won, tied, or lost in
terms of total number of liked articles, (2) the difference in liked articles per day, and (3) the fraction
of liked articles recommended by LSBGREEDY. Jointly recommended articles can be either counted
as half to each algorithm or ignored (these results are shown in parentheticals in Table 1).

Overall, about 90% of users preferred recommendations by LSBGREEDY over the competing al-
gorithms. On average, LSBGREEDY obtains about one additional liked article per day and 63%
of all liked articles versus the static baseline, and about half an additional liked article per day and
57% of all liked articles versus the two competing learning algorithms. The gains we observe are
all statistically significant with 95% confidence, and show that LSBGREEDY can be effective even
when the assumptions in our theoretical analysis may not be satisfied.

Figure 3 shows the learned preferences by LSBGREEDY and MW on two sessions. Since MW does
not employ exploration, it can either overfit to its previous experience and not find new topics that
interest the user (left plot), or fail to discover any good topics (right plot). We do not include a
comparison with RankLinUCB since it learns L preference vectors, which are difficult to visualize.
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6 Related Work

Diversified Retrieval. We are chiefly interested in training flexible submodular utility models,
since such models yield practical algorithmic approaches. At one extreme are feature-free models
that do not require training. However, such models are limited to unpersonalized settings that ignore
context, such as recommending a global set of blogs to monitor [14]. On the other hand, methods that
use feature-rich models typically either employ unsupervised training [24] or require fine-grained
subtopic labels [25]. Such learning approaches cannot easily adapt to new domains. One exception
is [9], whose proposed online learning approach does not incorporate exploration. As shown in our
experiments, this significantly inhibits the learning ability of their approach.

Beyond submodular models of information coverage, other approaches include methods that balance
relevance and novelty [5, 26, 6] and graph-based methods [27]. For such models, it remains a
challenge to design provably efficient online learning algorithms.

Bandit Learning. From the perspective of our work, existing bandit approaches can be categorized
along two dimensions: single-prediction versus set-prediction, and feature-based versus feature-free.

Most feature-based settings are designed to predict single results, rather than sets of results. Of such
settings, the most relevant to ours is the linear stochastic bandits setting [8, 20, 15, 7, 1], which
we build upon in our approach. One limitation here is the assumption of realizability – that the
“true” user model lies within our class. It may be possible to develop more robust algorithms for our
submodular bandits setting by building upon algorithms with more general guarantees (e.g., [2]).

Most set-based settings, such as bandit submodular optimization or the general bandit slate problem,
assume a feature-free model [18, 22, 23, 12]. As such, performance is quantified relative to a fixed
set of articles, which is not appropriate for many retrieval settings (e.g., news recommendation).
One exception is [21], which assumes that document and user models lie within a metric space.
However, it is unclear how to incorporate our submodular features into their setting.

7 Discussion of Limitations and Future Work

Submodular Basis Features. Our approach requires access to submodular basis functions as fea-
tures. In practice these basis features are often derived using various topic modeling or dimen-
sionality reduction techniques. However, the resulting features are almost always noisy or biased.
Furthermore, one expects that different users will be better modeled using different basis features.
As such, one important direction for future work is to learn the appropriate basis features from user
feedback, which is similar to the setting of interactive topic modeling [11].

Moreover, user behavior is likely to be influenced by many factors beyond those well-modeled by
submodular basis features. For example, the probability of the user liking a certain article could be
influenced by the time of day, or day of the week. A more unified approach would be to incorporate
both these standard features as well as submodular basis features in a joint model.

Curse of Dimensionality. The convergence rate of LSBGREEDY depends linearly on the number
of features d (which appears unavoidable without further assumptions). Thus, our approach may not
be practical for settings that use a very large number of features. One possible extension is to jointly
learn from multiple users simultaneously. If users tend to have similar preferences, then learning
jointly from multiple users may yield convergence rates that are sub-linear in d.

8 Conclusion

We proposed an online learning setting for optimizing a general class of submodular functions.
This setting is well-suited for modeling diversified retrieval systems that interactively learn from
user feedback. We presented an algorithm, LSBGREEDY, and proved that it efficiently converges
to a near-optimal model. We conducted simulations as well as user studies in the setting of news
recommendation, and found that LSBGREEDY outperforms competing online learning approaches.
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Supplementary Material

A Theoretical Analysis

Our analysis follows three conceptual phases:

• In the first phase, we present a reduction to a “parallel” bandit setting by introducing slot-wise regret
defined in (10) below. We will show that the sum of slot-wise regret upper bounds the greedy regret
(6), thus making it sufficient to bound the sum of slot-wise regret.

• In the second phase, we show that our confidence intervals parameterized by αt defined in (8) contain
the the true expected value of every possible ∆(a|A) ∈ <d+ (for any articles a and sets A) with
sufficient probability. This will be used to show that the sum of slot-wise regret depends directly on
the size of the confidence intervals.

• In the third phase, we show that our confidence intervals shrink sufficiently fast to yield regret sub-
linear in both T and L (when L ≤ d).

We first introduce the notion of the slot-wise optimal reward OPT (`). For each slot ` and time t,
we assume that the choices of slots 1 to `− 1 are fixed to be the choices of LSBGREEDY, A(1:`−1)

t .
The `-th slot optimal reward relative to A(1:`−1)

1 , . . . , A
(1:`−1)
T is then defined as

OPT (`) =

T∑
t=1

max
a∈At\A(1:`−1)

t

(w∗)
>

∆(a|A(1:`−1)
t ) ≡

T∑
t=1

r
(`)
t (ã

(`)
t |A

(1:`−1)
t ), (9)

where ã(`)t above is defined to be the locally optimal article at time t and slot ` conditioned on
A

(1:`−1)
t . One can interpret this to be the best possible choice at slot ` conditioned on fixing the

choices of slots 1, . . . , ` − 1. We can thus also define the slot-wise regret correspondingly. In
particular, the `-th slot regret, conditioned on A(1:`−1)

1 , . . . , A
(1:`−1)
T , is

Reg(`)(T ) =

T∑
t=1

r
(`)
t (ã

(`)
t |A

(1:`−1)
t )−

T∑
t=1

r
(`)
t (a

(`)
t |A

(1:`−1)
t )

≡ OPT (`) −
T∑
t=1

r
(`)
t (a

(`)
t |A

(1:`−1)
t ), (10)

where a(`)t denotes the article chosen by LSBGREEDY for slot ` and time t. In essense, slot-wise
regret quantifies the local (per-slot) regret incurred by LSBGREEDY, conditioned on its choices in
previous slots. Note that the above definitions of slot-wise optimal reward (9) and slot-wise regret
(10) can be defined for any online algorithm for the linear submodular bandits setting.

A.1 Reduction to Slot-wise Regret

We now show that the slot-wise regret (10) upper bounds the greedy regret (6). We then bound
the slot-wise regret in Appendix A.2. The following analysis builds upon the setting considered in
[18, 22].

Lemma 1. For all L slot-wise regret Reg(`)(T ) defined in (10), we have

T∑
t=1

r̂
(`)
t ≡

T∑
t=1

[
rt(A

(1:`)
t )− rt(A(1:`−1)

t )
]

≥ 1

L

T∑
t=1

[
E[rt(A

∗
t )]− rt(A

(1:`−1)
t )

]
− Reg(`)(T )

=
1

L

(
OPT −

T∑
t=1

rt(A
(1:`−1)
t )

)
− Reg(`)(T ) (11)

10



Proof. We know that the reward functions rt(A) are monotone submodular set functions that can be
written as

E[rt(A)] =

|A|∑
`=1

(w∗)
>

∆(a(σ(`))|A(σ(1:`))),

for any permutation σ on {1, . . . , |A|}, where σ(1 : `) = {σ(1), . . . , σ(`)}.

For any time t, by the pigeonhole principle, there must exist an article a ∈ A∗t \A
(1:`−1)
t such that

E[r
(`)
t (a|A(1:`−1)

t )] ≡ E[rt(A
(1:`−1)
t ∪ {a})]−E[rt(A

(1:`−1)
t )]

≥ 1

L

(
E[rt(A

∗
t )]−E[rt(A

(1:`−1)
t )]

)
.

This implies that

E[r
(`)
t (ã

(`)
t |A

(1:`−1)
t )] ≡ E[rt(A

(1:`−1)
t ∪ {ã(`)t })]−E[rt(A

(1:`−1)
t )]

≥ 1

L

(
E[rt(A

∗
t )]−E[rt(A

(1:`−1)
t )]

)
,

since ã(`)t is the article that maximizes r(`)t (·|A(1:`−1)
t ). Noting that

T∑
t=1

r̂
(`)
t =

T∑
t=1

E[r
(`)
t (ã

(`)
t |A

(1:`−1)
t )]− Reg(`)(T )

completes the proof.

Lemma 2. For any algorithm in the linear submodular bandits setting predicting At at time t, we
have

T∑
t=1

rt(At) ≥
(

1− 1

e

)
OPT −

L∑
`=1

Reg(`)(T ),

thus implying that greedy regret (6) is bounded by the sum of slot-wise regrets (10),

RegG(T ) ≤
L∑
`=1

Reg(`)(T ).

Proof. We prove by induction on the slots ` that

OPT −
T∑
t=1

rt(A
(1:`)
t ) ≤

(
1− 1

L

)`
OPT +

∑̀
m=1

Reg(`)(T ). (12)

The result of the lemma follows by taking ` = L and using the inequality (1− 1/L)L < 1/e.

The base case ` = 0 is trivial. In the inductive case, let

Z(`) = OPT −
T∑
t=1

rt(A
(1:`)
t )

≡ OPT −
∑̀
m=1

T∑
t=1

r̂
(m)
t .

Thus, we have

Z(`) = Z(`−1) −
T∑
t=1

r̂
(`)
t . (13)

Lemma 1 implies that
T∑
t=1

r̂
(`)
t ≥

1

L
Z(`−1) − Reg(`)(T ). (14)

Combining (13) and (14) yields

Z(`) ≤
(

1− 1

L

)
Z(`−1) + Reg(`)(T ).

Applying the inductive hypothesis proves (12).
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A.2 Bounding Slot-wise Regret

In this section, we build upon previous results for linear stochastic bandit optimization [1, 20, 8]
to the parallel setting in order to bound the sum of slot-wise regret (10) of LSBGREEDY. Due to
Lemma 2, this will also bound the greedy regret (6).

The following lemma provides a confidence region for the expected value every x (i.e. (w∗)
>
x)

given our current estimate wt.
Lemma 3 (Minor modification of Theorem 8 in [1]). For rewards bounded in [0, 1], we have

∀t, `, x : ‖w>t x− (w∗)
>
x‖ ≤ ‖x‖M−1

t

(√
2 log

(
det(Mt)1/2 det(λID)−1/2

δ

)
+ S
√
λ

)
,

with probability at least 1− δ.

Lemma 3 follows from Theorem 8 in [1] by observing that, at each time t and slot `, and for any a,
the deviation of the reward rt(a|A(1:`−1)

t ) from its expectation (w∗)
>

∆(a|A(1:`−1)
t ) behaves like a

sub-Gaussian martingale difference (with scale factor 1). This argument follows since the rewards at
each slot are sampled independently due to our assumption of conditional submodular independence.
For the actions chosen by LSBGREEDY, let each ε(`)t be the random variable corresponding to the
deviation of the realized reward r̂(`)t from its expectation, i.e.

ε
(`)
t = (w∗)

>
∆

(`)
t − r̂

(`)
t , (15)

where ∆
(`)
t = ∆(a

(`)
t |A

(1:`−1)
t ) denotes the submodular features of the article chosen for time t and

slot ` (as also described Line 11 in Algorithm 1). Again, we note that the sequence ε(`)t (ordered
following ε(1)t . . . , ε

(L)
t ) is a conditionally sub-Gaussian martingale difference (with scale factor 1).

The following lemma provides a bound on the sum of deviation errors.

Lemma 4. For ε(`)t defined in (15), we have

P

 T∑
t=1

L∑
`=1

ε
(`)
t >

√
2(1 + TL) log

(√
1 + TL

δ

) ≤ δ.
Lemma 4 is a straightforward modification of Theorem 3 and Corollary 1 in [1]. It is essentially a
one-dimensional version of Lemma 3.
Lemma 5. If λ ≥ L, then we have

T∑
t=1

L∑
`=1

‖∆(`)
t ‖2M−1

t
≤ 2 log det(MT+1).

Proof. Adapting from Lemma 4 in [1], we have
T∑
t=1

L∑
`=1

‖∆(`)
t ‖2M−1

t
≤ 2

T∑
t=1

log

(
1 +

L∑
`=1

‖∆(`)
t ‖2M−1

t

)
(16)

≤ 2

T∑
t=1

log det

Id +

(
M
−1/2
t

L∑
`=1

∆
(`)
t

)(
M
−1/2
t

L∑
`=1

∆
(`)
t

)> (17)

= 2

T∑
t=1

log det

Mt +

(
L∑
`=1

∆
(`)
t

)(
L∑
`=1

∆
(`)
t

)>− log det (Mt)


= 2

T∑
t=1

[log det (Mt+1)− log det (Mt)]

≤ 2 log det (MT+1) ,
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where (16) holds since 2 log(1 + x) ≥ x for x ∈ [0, 1] and ‖∆(`)
t ‖2M−1

t

≤ 1/λ ≤ 1/L, and (17)

holds since, for any X ∈ <d×L+ , the determinant

det
(
Id +XXT

)
is minimized when XXT is rank 1, i.e.,

det
(
Id +XXT

)
≥ 1 +

L∑
`=1

‖X(`)‖2,

where X(`) denotes the `-th column of X .

Proof of Theorem 1. We can write the sum of slot-wise regret (10) as
L∑
`=1

Reg(`)(T ) =

T∑
t=1

L∑
`=1

(w∗)
>

∆(ã
(`)
t |A

(1:`−1)
t )− (w∗)

>
∆

(`)
t + ε

(`)
t

≤
T∑
t=1

L∑
`=1

w>t ∆
(`)
t + αt‖∆(`)

t ‖M−1
t
− (w∗)

>
∆

(`)
t + ε

(`)
t (18)

≤
T∑
t=1

L∑
`=1

2αt‖∆(`)
t ‖M−1

t
+ ε

(`)
t

where (18) holds with probability at least 1 − δ/2. This follows from Lemma 3 and the fact that
LSBGREEDY always picks the article whose features ∆

(`)
t maximizes

w>t ∆
(`)
t + αt‖∆(`)

t ‖M−1
t

as indicated in Lines 10–11 in Algorithm 1. Lemma 4 implies that, with probability 1− δ/2,
T∑
t=1

L∑
`=1

ε
(`)
t ≤

√
2(1 + TL) log

(√
1 + TL

δ/2

)
.

Thus, by the union bound, we know that
L∑
`=1

Reg(`)(T ) ≤
T∑
t=1

L∑
`=1

2αt‖∆(`)
t ‖M−1

t
+

√
2(1 + TL) log

(√
1 + TL

δ/2

)
holds with probability at least 1− δ.

We know that the regret incurred at each time t and slot ` is at most 1. We can thus write the sum of
slot-wise regret as

L∑
`=1

Reg(`)(T ) ≤

√√√√TL

T∑
t=1

L∑
`=1

min
(

2αt‖∆(`)
t ‖M−1

t
, 1
)2

+

√
2(1 + TL) log

(√
1 + TL

δ/2

)

≤ α(T )

√√√√4TL

T∑
t=1

L∑
`=1

‖∆(`)
t ‖2M−1

t

+

√
2(1 + TL) log

(√
1 + TL

δ/2

)
.

Applying Lemma 5 and Lemma 2 yields

RegG(T ) ≤ αT
√

8TL log det(MT+1) +

√
2(1 + TL) log

(√
1 + TL

δ/2

)
.

Noting that
log det (MT+1) ≤ d log(L(1 + T/d))

and that L ≤ d yields

RegG(T ) ≤

(√
2d log

(
1 + T/d

δ/2

)
+ S
√
d

)√
8dTL log(L(1 + T/d)) +

√
2(1 + TL) log

(√
1 + TL

δ/2

)
= O

(
Sd
√
TL log

(
TL

δ

))
.
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Figure 4: Simulation results comparing LSBGREEDY (red), RankLinUCB (black thick), Multi-
plicative Weighting (black thin), and ε-Greedy (dashed thin). Synthetic 2 and Blog 2 are identical
to Synthetic and Blog, respectively, from Figure 2. The middle column computes regret versus the
clairvoyant greedy solution, and not (1− 1/e)OPT . Unless specified, results are for L = 5.

B Simulation: Additional Details

Lazy Algorithm. For our experiments, we use a lazy version of LSBGREEDY which does not eval-
uate every possible article for selection at each slot. In essence, we replace Lines 7-12 in Algorithm
1 with the CELF algorithm [14]. Note that Lines 7-12 optimize for a non-submodular objective due
to the variance term (Line 9), meaning the theoretical guarantees of CELF no longer apply. Nonethe-
less, this leads to a dramatic speedup in computational performance with no noticeable difference in
solution quality. We also use CELF to optimize for RankLinUCB and Multiplicative Weighting.

Simulation Results. Figure 4 shows our results. The right column shows results as parameters are
varied. The top two results are identical the right column in Figure 2. We see that Multiplicative
Weighting benefits from higher β, and that ε-Greedy does not seem very affected by the choice of ε.

Multiplicative Weighting (MW) does not employ exploration and so runs the risk of diverging away
from w∗ instead of converging. When MW diverges, it typically converges to a corner in the space
of preference vectors (i.e., one component in wt is 1 and the rest are 0). This is due to the fact that
the most liked topic by the user will receive exponentially greater weighting as a result of the MW
update rule (see [9] for details). One reason that MW performs best using larger β is that larger
values of β correspond to smaller updates. This causes MW to diverge more slowly.
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Figure 5: User study interace.

In several settings, we observe that RankLinUCB matches or nearly matches the performance of
LSBGREEDY. It remains an open question to determine how best to characterize the difficulty of
problem instances to determine when LSBGREEDY enjoys a clear advantage over RankLinUCB.

C User Study: Additional Details

Interleaved Evaluation. For each day, we generate an interleaving of recommendations from two
policies. Algorithm 2 describes our interleaving algorithm, which is similar to previously proposed
interleaving algorithms for evaluating retrieval functions via user feedback [19]. In contrast to previ-
ous approaches, Algorithm 2 allows the two retrieval policies to change their recommendations given
the recommendations of the other policy, which is crucial for policies that make selections based on
incremental coverage. As a paired evaluation, interleaving offers the following advantages:

• Interleaving is a blind test that preserves fairness in the sense that both polices own approximately
the same number of results amongst the top ` for all ` = 1, . . . , L.

• The available articles on different days may contain differing amounts of interesting information to
different users. Interleaving allows us to couple the two algorithms together on each day to control
for a various extraneous sources of variation.

• One alternative is to show results from the same day for two consecutive iterations, with the two
policies alternating per iteration. However, with a budget of ten iterations, this would reduce the
learning period of each policy to five days. Interleaving allows each policy to learn over all ten days.
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Algorithm 2 Interleaving algorithm for combining recommendations from two greedy policies.
1: input: recommender polices F , G
2: input: set of articles A
3: A← ∅, nF ← 0, nG ← 0
4: for ` = 1, . . . , L do
5: aF ← argmaxa∈A\A F (A ∪ {a}) //policy F computes its greedy recommedation
6: aG ← argmaxa∈A\AG(A ∪ {a}) //policy G computes its greedy recommedation
7: if aF = aG then
8: A← A ∪ {aF }, nF ← nF + 1, nG ← nG + 1 //the two policies share ownership of this result
9: else if nF < nG then

10: A← A ∪ {aF }, nF ← nF + 1 //policy F owns this result
11: else if nG < nF then
12: A← A ∪ {aG}, nG ← nG + 1 //policy G owns this result
13: else
14: if randombit = 1 then
15: A← A ∪ {aF }, nF ← nF + 1 //policy F owns this result
16: else
17: A← A ∪ {aG}, nG ← nG + 1 //policy G owns this result
18: end if
19: end if
20: end for
21: return A

• Another alternative is to show results for twenty days, with five articles per day, and each algorithm
running for ten days. Again both algorithms would recommend from the same day for consecutive
days. However, preliminary experiments suggest that the number of days causes more user fatigue
than showing more articles per day (with respect to our user study). Furthermore, it is unclear what
the effect is of repeatedly showing articles from the same day.

After each each day, the user’s feedback is collected and given to the two competing algorithms. The
policies only receive feedback corresponding to results that they own. The reward for each slot is a
binary variable corresponding to whether or not the user liked the article. To avoid stability issues,
we allow both policies to observe all feedback during the first two days of each evaluation.

User Interface. Figure 5 shows a snapshot of the decision pane in our user interface (with the
preview pane displaying article content located to the right). Articles are shown to the user one by
one, and the user is told to either click the check (like) or cross (dislike) depending on whether they
are interested in reading the article in detail given the articles already shown that day. The study is
designed to take approximately 20 minutes.

Dimensionality Reduction. We performed dimensionality reduction by creating 18 genres, labeled
relevant articles and trained a model via linear regression for each genre. We then represent coverage
for each genre i as

Fi(A) = 1−
∏
`

(
1− π>i φ(a(`)|A(1:`−1))

)
,

where πi denotes the learned linear regression model for genre i, and φ(a|A) denotes the component-
wise probabilistic coverage of the lower-level features (generated using LDA in our setting), i.e.

φ(a|A) = a

(
1−

∏
a′∈A

(1− a′)

)
.

Although this new definition of Fi is no longer a set function (and thus does not enjoy the same
theoretical properties), we observe that it performs well in practice. Designing more principled yet
effective dimensionality reduction models is an important direction for future work.

Algorithm Parameter Settings. We set αt = 1/t for LSBGREEDY, α = 0.6/t for RankLinUCB,
and β = 0.5 for MW as according to [9]. Because our user study lasts for only 10 iterations, we
found that decreasing the emphasis on exploration over time for LSBGREEDY and RankLinUCB
provided some performance gains. We kept the learning rate for MW constant, since decreasing the
learning rate over time did not seem to improve performance. This also allows us to make a more
meaningful comparison with previous work [9].
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