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Abstract

The !1 regularized Gaussian maximum likelihood estimator has been shown to
have strong statistical guarantees in recovering a sparse inverse covariance ma-
trix, or alternatively the underlying graph structure of a Gaussian Markov Random
Field, from very limited samples. We propose a novel algorithm for solving the re-
sulting optimization problem which is a regularized log-determinant program. In
contrast to other state-of-the-art methods that largely use first order gradient infor-
mation, our algorithm is based on Newton’s method and employs a quadratic ap-
proximation, but with some modifications that leverage the structure of the sparse
Gaussian MLE problem. We show that our method is superlinearly convergent,
and also present experimental results using synthetic and real application data that
demonstrate the considerable improvements in performance of our method when
compared to other state-of-the-art methods.

1 Introduction
Gaussian Markov Random Fields; Covariance Estimation. Increasingly, in modern settings statis-
tical problems are high-dimensional, where the number of parameters is large when compared to
the number of observations. An important class of such problems involves estimating the graph
structure of a Gaussian Markov random field (GMRF) in the high-dimensional setting, with appli-
cations ranging from inferring gene networks and analyzing social interactions. Specifically, given
n independently drawn samples {y1,y2, . . . ,yn} from a p-variate Gaussian distribution, so that
yi ∼ N (µ,Σ), the task is to estimate its inverse covariance matrix Σ−1, also referred to as the
precision or concentration matrix. The non-zero pattern of this inverse covariance matrix Σ−1 can
be shown to correspond to the underlying graph structure of the GMRF. An active line of work in
high-dimensional settings where p < n is thus based on imposing some low-dimensional structure,
such as sparsity or graphical model structure on the model space. Accordingly, a line of recent
papers [2, 8, 20] has proposed an estimator that minimizes the Gaussian negative log-likelihood reg-
ularized by the !1 norm of the entries (off-diagonal entries) of the inverse covariance matrix. The
resulting optimization problem is a log-determinant program, which is convex, and can be solved in
polynomial time.

Existing Optimization Methods for the regularized Gaussian MLE. Due in part to its importance,
there has been an active line of work on efficient optimization methods for solving the !1 regularized
Gaussian MLE problem. In [8, 2] a block coordinate descent method has been proposed which is
called the graphical lasso or GLASSO for short. Other recent algorithms proposed for this problem
include PSM that uses projected subgradients [5], ALM using alternating linearization [14], IPM an
inexact interior point method [11] and SINCO a greedy coordinate descent method [15].

For typical high-dimensional statistical problems, optimization methods typically suffer sub-linear
rates of convergence [1]. This would be too expensive for the Gaussian MLE problem, since the
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number of matrix entries scales quadratically with the number of nodes. Luckily, the log-determinant
problem has special structure; the log-determinant function is strongly convex and one can observe
linear (i.e. geometric) rates of convergence for the state-of-the-art methods listed above. However,
at most linear rates in turn become infeasible when the problem size is very large, with the number
of nodes in the thousands and the number of matrix entries to be estimated in the millions. Here
we ask the question: can we obtain superlinear rates of convergence for the optimization problem
underlying the !1 regularized Gaussian MLE?

One characteristic of these state-of-the-art methods is that they are first-order iterative methods that
mainly use gradient information at each step. Such first-order methods have become increasingly
popular in recent years for high-dimensional problems in part due to their ease of implementation,
and because they require very little computation and memory at each step. The caveat is that they
have at most linear rates of convergence [3]. For superlinear rates, one has to consider second-order
methods which at least in part use the Hessian of the objective function. There are however some
caveats to the use of such second-order methods in high-dimensional settings. First, a straight-
forward implementation of each second-order step would be very expensive for high-dimensional
problems. Secondly, the log-determinant function in the Gaussian MLE objective acts as a barrier
function for the positive definite cone. This barrier property would be lost under quadratic approxi-
mations so there is a danger that Newton-like updates will not yield positive-definite matrices, unless
one explicitly enforces such a constraint in some manner.

Our Contributions. In this paper, we present a new second-order algorithm to solve the !1 regular-
ized Gaussian MLE. We perform Newton steps that use iterative quadratic approximations of the
Gaussian negative log-likelihood, but with three innovations that enable finessing the caveats de-
tailed above. First, we provide an efficient method to compute the Newton direction. As in recent
methods [12, 9], we build on the observation that the Newton direction computation is a Lasso prob-
lem, and perform iterative coordinate descent to solve this Lasso problem. However, the naive ap-
proach has an update cost of O(p2) for performing each coordinate descent update in the inner loop,
which makes this resume infeasible for this problem. But we show how a careful arrangement and
caching of the computations can reduce this cost to O(p). Secondly, we use an Armijo-rule based
step size selection rule to obtain a step-size that ensures sufficient descent and positive-definiteness
of the next iterate. Thirdly, we use the form of the stationary condition characterizing the optimal
solution to then focus the Newton direction computation on a small subset of free variables, in a
manner that preserves the strong convergence guarantees of second-order descent.

Here is a brief outline of the paper. In Section 3, we present our algorithm that combines quadratic
approximation, Newton’s method and coordinate descent. In Section 4, we show that our algorithm
is not only convergent but superlinearly so. We summarize the experimental results in Section 5,
using real application data from [11] to compare the algorithms, as well as synthetic examples which
reproduce experiments from [11]. We observe that our algorithm performs overwhelmingly better
(quadratic instead of linear convergence) than the other solutions described in the literature.

2 Problem Setup
Let y be a p-variate Gaussian random vector, with distribution N (µ,Σ). We are given n indepen-
dently drawn samples {y1, . . . ,yn} of this random vector, so that the sample covariance matrix can
be written as

S =
1

n

n
∑

k=1

(yk − µ̂)(yk − µ̂)T , where µ̂ =
1

n

n
∑

i=1

yi. (1)

Given some regularization penalty λ > 0, the !1 regularized Gaussian MLE for the inverse covari-
ance matrix can be estimated by solving the following regularized log-determinant program:

arg min
X"0

{

− log detX + tr(SX) + λ‖X‖1

}

= arg min
X"0

f(X), (2)

where ‖X‖1 =
∑p

i,j=1 |Xij | is the elementwise !1 norm of the p × p matrix X . Our results
can be also extended to allow a regularization term of the form ‖λ ◦ X‖1 =

∑p
i,j=1 λij |Xij |,

i.e. different nonnegative weights can be assigned to different entries. This would include for
instance the popular off-diagonal !1 regularization variant where we penalize

∑

i#=j |Xij |, but not the
diagonal entries. The addition of such !1 regularization promotes sparsity in the inverse covariance
matrix, and thus encourages sparse graphical model structure. For further details on the background
of !1 regularization in the context of GMRFs, we refer the reader to [20, 2, 8, 15].
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3 Quadratic Approximation Method
Our approach is based on computing iterative quadratic approximations to the regularized Gaussian
MLE objective f(X) in (2). This objective function f can be seen to comprise of two parts, f(X) ≡
g(X) + h(X), where

g(X) = − log detX + tr(SX) and h(X) = λ‖X‖1. (3)

The first component g(X) is twice differentiable, and strictly convex, while the second part
h(X) is convex but non-differentiable. Following the standard approach [17, 21] to building a
quadratic approximation around any iterate Xt for such composite functions, we build the second-
order Taylor expansion of the smooth component g(X). The second-order expansion for the
log-determinant function (see for instance [4, Chapter A.4.3]) is given by log det(Xt + ∆) ≈
log detXt+tr(X−1

t ∆)− 1
2 tr(X−1

t ∆X−1
t ∆). We introduceWt = X−1

t and write the second-order
approximation ḡXt

(∆) to g(X) = g(Xt + ∆) as

ḡXt
(∆) = tr((S − Wt)∆) + (1/2) tr(Wt∆Wt∆) − log detXt + tr(SXt). (4)

We define the Newton directionDt for the entire objective f(X) can then be written as the solution
of the regularized quadratic program:

Dt = arg min
∆

ḡXt
(∆) + h(Xt + ∆). (5)

This Newton direction can be used to compute iterative estimates {Xt} for solving the optimization
problem in (2). In the sequel, we will detail three innovations which makes this resume feasible.
Firstly, we provide an efficient method to compute the Newton direction. As in recent methods [12],
we build on the observation that the Newton direction computation is a Lasso problem, and perform
iterative coordinate descent to find its solution. However, the naive approach has an update cost of
O(p2) for performing each coordinate descent update in the inner loop, which makes this resume
infeasible for this problem. We show how a careful arrangement and caching of the computations
can reduce this cost toO(p). Secondly, we use an Armijo-rule based step size selection rule to obtain
a step-size that ensures sufficient descent and positive-definiteness of the next iterate. Thirdly, we
use the form of the stationary condition characterizing the optimal solution to then focus the Newton
direction computation on a small subset of free variables, in a manner that preserves the strong
convergence guarantees of second-order descent. We outline each of these three innovations in the
following three subsections. We then detail the complete method in Section 3.4.

3.1 Computing the Newton Direction
The optimization problem in (5) is an !1 regularized least squares problem, also called Lasso [16]. It
is straightforward to verify that for a symmetric matrix∆ we have tr(Wt∆Wt∆) = vec(∆)T (Wt⊗
Wt) vec(∆), where ⊗ denotes the Kronecker product and vec(X) is the vectorized listing of the
elements of matrixX .

In [7, 18] the authors show that coordinate descent methods are very efficient for solving lasso type
problems. However, an obvious way to update each element of∆ to solve for the Newton direction
in (5) needsO(p2) floating point operations sinceQ := Wt⊗Wt is a p2×p2 matrix, thus yielding an
O(p4) procedure for approximating the Newton direction. As we show below, our implementation
reduces the cost of one variable update to O(p) by exploiting the structure of Q or in other words
the specific form of the second order term tr(Wt∆Wt∆). Next, we discuss the details.

For notational simplicity we will omit the Newton iteration index t in the derivations that follow.
(Hence, the notation for ḡXt

is also simplified to ḡ.) Furthermore, we omit the use of a separate
index for the coordinate descent updates. Thus, we simply use D to denote the current iterate
approximating the Newton direction and use D′ for the updated direction. Consider the coordinate
descent update for the variableXij , with i < j that preserves symmetry: D′ = D+µ(eie

T
j +eje

T
i ).

The solution of the one-variable problem corresponding to (5) yields µ:

arg min
µ

ḡ(D + µ(eie
T
j + eje

T
i )) + 2λ|Xij + Dij + µ|. (6)

As a matter of notation: we use xi to denote the i-th column of the matrix X . We expand the terms
appearing in the definition of ḡ after substituting D′ = D + µ(eie

T
j + eje

T
i ) for ∆ in (4) and omit

the terms not dependent on µ. The contribution of tr(SD′)− tr(WD′) yields 2µ(Sij −Wij), while
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the regularization term contributes 2λ|Xij + Dij + µ|, as seen from (6). The quadratic term can be
rewritten using tr(AB) = tr(BA) and the symmetry of D andW to yield:

tr(WD′WD′) = tr(WDWD) + 4µw
T
i Dwj + 2µ2(W 2

ij + WiiWjj). (7)
In order to compute the single variable update we seek the minimum of the following function of µ:

1

2
(W 2

ij + WiiWjj)µ
2 + (Sij − Wij + w

T
i Dwj)µ + λ|Xij + Dij + µ|. (8)

Letting a = W 2
ij +WiiWjj , b = Sij −Wij +w

T
i Dwj , and c = Xij +Dij the minimum is achieved

for:
µ = −c + S(c − b/a,λ/a), (9)

where S(z, r) = sign(z)max{|z| − r, 0} is the soft-thresholding function. The values of a and c
are easy to compute. The main cost arises while computing the third term contributing to coefficient
b, namely w

T
i Dwj . Direct computation requires O(p2) time. Instead, we maintain U = DW by

updating two rows of the matrix U for every variable update in D costing O(p) flops, and then
compute w

T
i uj using also O(p) flops. Another way to view this arrangement is that we maintain a

decomposition WDW =
∑p

k=1 wku
T
k throughout the process by storing the uk vectors, allowing

O(p) computation of update (9). In order to maintain the matrix U we also need to update two
coordinates of each uk when Dij is modified. We can compactly write the row updates of U as
follows: ui· ← ui· + µwj· and uj· ← uj· + µwi·, where ui· refers to the i-th row vector of U .

We note that the calculation of the Newton direction can be simplified if X is a diagonal ma-
trix. For instance, if we are starting from a diagonal matrix X0, the terms w

T
i Dwj equal

Dij/((X0)ii(X0)jj), which are independent of each other implying that we only need to update
each variable according to (9) only once, and the resultingD will be the optimum of (5). Hence, the
time cost of finding the first Newton direction is reduced from O(p3) to O(p2).

3.2 Computing the Step Size
Following the computation of the Newton direction Dt, we need to find a step size α ∈ (0, 1] that
ensures positive definiteness of the next iterate Xt + αDt and sufficient decrease in the objective
function.

We adopt Armijo’s rule [3, 17] and try step-sizes α ∈ {β0,β1,β2, . . . }with a constant decrease rate
0 < β < 1 (typically β = 0.5) until we find the smallest k ∈ N with α = βk such that Xt + αDt

(a) is positive-definite, and (b) satisfies the following condition:
f(Xt + αDt) ≤ f(Xt) + ασ∆t, ∆t = tr(∇g(Xt)Dt) + λ‖Xt + Dt‖1 − λ‖Xt‖1 (10)

where 0 < σ < 0.5 is a constant. To verify positive definiteness, we use a Cholesky factorization
costingO(p3) flops during the objective function evaluation to compute log det(Xt +αDt) and this
step dominates the computational cost in the step-size computations. In the Appendix in Lemma 9
we show that for anyXt andDt, there exists a ᾱt > 0 such that (10) and the positive-definiteness of
Xt + αDt are satisfied for any α ∈ (0, ᾱt], so we can always find a step size satisfying (10) and the
positive-definiteness even if we do not have the exact Newton direction. Following the line search
and the Newton step update Xt+1 = Xt + αDt we efficiently compute Wt+1 = X−1

t+1 by reusing
the Cholesky decomposition of Xt+1.

3.3 Identifying which variables to update
In this section, we propose a way to select which variables to update that uses the stationary condition
of the Gaussian MLE problem. At the start of any outer loop computing the Newton direction, we
partition the variables into free and fixed sets based on the value of the gradient. Specifically, we
classify the (Xt)ij variable as fixed if |∇ijg(Xt)| < λ − ε and (Xt)ij = 0, where ε > 0 is small.
(We used ε = 0.01 in our experiments.) The remaining variables then constitute the free set. The
following lemma shows the property of the fixed set:
Lemma 1. For anyXt and the corresponding fixed and free sets Sfixed, Sfree, the optimized update
on the fixed set would not change any of the coordinates. In other words, the solution of the following
optimization problem is ∆ = 0:

arg min
∆

f(Xt + ∆) such that ∆ij = 0 ∀(i, j) ∈ Sfree.
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The proof is given in Appendix 7.2.3. Based on the above observation, we perform the inner loop
coordinate descent updates restricted to the free set only (to find the Newton direction). This reduces
the number of variables over which we perform the coordinate descent from O(p2) to the number
of non-zeros in Xt, which in general is much smaller than p2 when λ is large and the solution is
sparse. We have observed huge computational gains from this modification, and indeed in our main
theorem we show the superlinear convergence rate for the algorithm that includes this heuristic.

The attractive facet of this modification is that it leverages the sparsity of the solution and intermedi-
ate iterates in a manner that falls within a block coordinate descent framework. Specifically, suppose
as detailed above at any outer loop Newton iteration, we partition the variables into the fixed and
free set, and then first perform a Newton update restricted to the fixed block, followed by a Newton
update on the free block. According to Lemma 1 a Newton update restricted to the fixed block does
not result in any changes.

In other words, performing the inner loop coordinate descent updates restricted to the free set is
equivalent to two block Newton steps restricted to the fixed and free sets consecutively. Note further,
that the union of the free and fixed sets is the set of all variables, which as we show in the convergence
analysis in the appendix, is sufficient to ensure the convergence of the block Newton descent.

But would the size of free set be small? We initialize X0 to the identity matrix, which is indeed
sparse. As the following lemma shows, if the limit of the iterates (the solution of the optimization
problem) is sparse, then after a finite number of iterations, the iteratesXt would also have the same
sparsity pattern.
Lemma 2. Assume {Xt} converges to X∗. If for some index pair (i, j), |∇ijg(X∗)| < λ (so that
X∗

ij = 0), then there exists a constant t̄ > 0 such that for all t > t̄, the iterates Xt satisfy
|∇ijg(Xt)| < λ and (Xt)ij = 0. (11)

The proof comes directly from Lemma 11 in the Appendix. Note that |∇ijg(X∗)| < λ implying
X∗

ij = 0 follows from the optimality condition of (2). A similar (so called shrinking) strategy is
used in SVM or !1-regularized logistic regression problems as mentioned in [19]. In Appendix 7.4
we show in experiments this strategy can reduce the size of variables very quickly.

3.4 The Quadratic Approximation based Method
We now have the machinery for a description of our algorithm QUIC standing for QUadratic Inverse
Covariance. A high level summary of the algorithm is shown in Algorithm 1, while the the full
details are given in Algorithm 2 in the Appendix.

Algorithm 1: Quadratic Approximation method for Sparse Inverse Covariance Learning (QUIC)
Input : Empirical covariance matrix S, scalar λ, initialX0, inner stopping tolerance ε
Output: Sequence of Xt converging to arg minX"0 f(X), where

f(X) = − log detX + tr(SX) + λ‖X‖1.
1 for t = 0, 1, . . . do
2 ComputeWt = X−1

t .
3 Form the second order approximation f̄Xt

(∆) := ḡXt
(∆) + h(Xt + ∆) to f(Xt + ∆).

4 Partition the variables into free and fixed sets based on the gradient, see Section 3.3.
5 Use coordinate descent to find the Newton directionDt = arg min∆ f̄Xt

(Xt + ∆) over the
free variable set, see (6) and (9). (A Lasso problem.)

6 Use an Armijo-rule based step-size selection to get α s.t. Xt+1 = Xt + αDt is positive definite
and the objective value sufficiently decreases, see (10).

7 end

4 Convergence Analysis
In this section, we show that our algorithm has strong convergence guarantees. Our first main result
shows that our algorithm does converge to the optimum of (2). Our second result then shows that
the asymptotic convergence rate is actually superlinear, specifically quadratic.

4.1 Convergence Guarantee
We build upon the convergence analysis in [17, 21] of the block coordinate gradient descent method
applied to composite objectives. Specifically, [17, 21] consider iterative updates where at each
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iteration t they update just a block of variables Jt. They then consider a Gauss-Seidel rule:
⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . , (12)

whereN is the set of all variables and T is a fixed number. Note that the condition (12) ensures that
each block of variables will be updated at least once every T iterations. Our Newton steps with the
free set modification is a special case of this framework: we set J2t, J2t+1 to be the fixed and free sets
respectively. As outlined in Section 3.3, our selection of the fixed sets ensures that a block update
restricted to the fixed set would not change any values since these variables in fixed sets already
satisfy the coordinatewise optimality condition. Thus, while our algorithm only explicitly updates
the free set block, this is equivalent to updating variables in fixed and free blocks consecutively. We
also have J2t ∪ J2t+1 = N , implying the Gauss-Seidel rule with T = 3.

Further, the composite objectives in [17, 21] have the form F (x) = g(x) + h(x), where g(x)
is smooth (continuously differentiable), and h(x) is non-differentiable but separable. Note that in
our case, the smooth component is the log-determinant function g(X) = − log detX + tr(SX),
while the non-differentiable separable component is h(x) = λ‖x‖1. However, [17, 21] impose the
additional assumption that g(x) is smooth over the domain Rn. In our case g(x) is smooth over
the restricted domain of the positive definite cone Sp

++ . In the appendix, we extend the analysis
so that convergence still holds under our setting. In particular, we prove the following theorem in
Appendix 7.2:
Theorem 1. In Algorithm 1, the sequence {Xt} converges to the unique global optimum of (2).

4.2 Asymptotic Convergence Rate
In addition to convergence, we further show that our algorithm has a quadratic asymptotic conver-
gence rate.
Theorem 2. Our algorithm QUIC converges quadratically, that is for some constant 0 < κ < 1:

lim
t→∞

‖Xt+1 − X∗‖F

‖Xt − X∗‖2
F

= κ.

The proof, given in Appendix 7.3, first shows that the step size as computed in Section 3.2 would
eventually become equal to one, so that we would be eventually performing vanilla Newton updates.
Further we use the fact that after a finite number of iterations, the sign pattern of the iterates con-
verges to the sign pattern of the limit. From these two assertions, we build on the convergence rate
result for constrained Newton methods in [6] to show that our method is quadratically convergent.

5 Experiments
In this section, we compare our method QUIC with other state-of-the-art methods on both synthetic
and real datasets. We have implemented QUIC in C++, and all the experiments were executed on
2.83 GHz Xeon X5440 machines with 32G RAM and Linux OS.

We include the following algorithms in our comparisons:

• ALM: the Alternating Linearization Method proposed by [14]. We use their MATLAB source
code for the experiments.

• GLASSO: the block coordinate descent method proposed by [8]. We used their Fortran code
available from cran.r-project.org, version 1.3 released on 1/22/09.

• PSM: the Projected Subgradient Method proposed by [5]. We use the MATLAB source code
available at http://www.cs.ubc.ca/˜schmidtm/Software/PQN.html.

• SINCO: the greedy coordinate descent method proposed by [15]. The code can be downloaded
from https://projects.coin-or.org/OptiML/browser/trunk/sinco.

• IPM: An inexact interior point method proposed by [11]. The source code can be downloaded
from http://www.math.nus.edu.sg/˜mattohkc/Covsel-0.zip.

Since some of the above implementations do not support the generalized regularization term ‖λ ◦
X‖1, our comparisons use λ‖X‖1 as the regularization term.

The GLASSO algorithm description in [8] does not clearly specify the stopping criterion for the
Lasso iterations. Inspection of the available Fortran implementation has revealed that a separate

6



Table 1: The comparisons on synthetic datasets. p stands for dimension, ‖Σ−1‖0 indicates the
number of nonzeros in ground truth inverse covariance matrix, ‖X∗‖0 is the number of nonzeros in
the solution, and ε is a specified relative error of objective value. ∗ indicates the run time exceeds
our time limit 30,000 seconds (8.3 hours). The results show that QUIC is overwhelmingly faster
than other methods, and is the only one which is able to scale up to solve problem where p = 10000.

Dataset setting Parameter setting Time (in seconds)
pattern p ‖Σ−1‖0 λ ‖X∗‖0 ε QUIC ALM Glasso PSM IPM Sinco

chain 1000 2998 0.4 3028
10−2 0.30 18.89 23.28 15.59 86.32 120.0
10−6 2.26 41.85 45.1 34.91 151.2 520.8

chain 4000 11998 0.4 11998
10−2 11.28 922 1068 567.9 3458 5246
10−6 53.51 1734 2119 1258 5754 *

chain 10000 29998 0.4 29998
10−2 216.7 13820 * 8450 * *
10−6 986.6 28190 * 19251 * *

random 1000 10758
0.12 10414

10−2 0.52 42.34 10.31 20.16 71.62 60.75
10−6 1.2 28250 20.43 59.89 116.7 683.3

0.075 55830
10−2 1.17 65.64 17.96 23.53 78.27 576.0
10−6 6.87 * 60.61 91.7 145.8 4449

random 4000 41112
0.08 41910

10−2 23.25 1429 1052 1479 4928 7375
10−6 160.2 * 2561 4232 8097 *

0.05 247444
10−2 65.57 * 3328 2963 5621 *
10−6 478.8 * 8356 9541 13650 *

random 10000 91410
0.08 89652

10−2 337.7 26270 21298 * * *
10−6 1125 * * * * *

0.04 392786
10−2 803.5 * * * * *
10−6 2951 * * * * *

threshold is computed and is used for these inner iterations. We found that under certain conditions
the threshold computed is smaller than the machine precision and as a result the overall algorithm
occasionally displayed erratic convergence behavior and slow performance. Wemodified the Fortran
implementation of GLASSO to correct this error.

5.1 Comparisons on synthetic datasets
We first compare the run times of the different methods on synthetic data. We generate the two
following types of graph structures for the underlying Gaussian Markov Random Fields:

• Chain Graphs: The ground truth inverse covariance matrix Σ−1 is set to be Σ−1
i,i−1 = −0.5 and

Σ−1
i,i = 1.25.

• Graphs with Random Sparsity Structures: We use the procedure mentioned in Example 1 in [11]
to generate inverse covariance matrices with random non-zero patterns. Specifically, we first
generate a sparse matrix U with nonzero elements equal to ±1, set Σ−1 to be UT U and then add
a diagonal term to ensure Σ−1 is positive definite. We control the number of nonzeros in U so
that the resulting Σ−1 has approximately 10p nonzero elements.

Given the inverse covariance matrix Σ−1, we draw a limited number, n = p/2 i.i.d. samples, to sim-
ulate the high-dimensional setting, from the corresponding GMRF distribution. We then compare
the algorithms listed above when run on these samples.

We can use the minimum-norm sub-gradient defined in Lemma 5 in Appendix 7.2 as the stopping
condition, and computing it is easy because X−1 is available in QUIC. Table 1 shows the results
for timing comparisons in the synthetic datasets. We vary the dimensionality from 1000, 4000 to
10000 for each dataset. For chain graphs, we select λ so that the solution had the (approximately)
correct number of nonzero elements. To test the performance of algorithms on different parameters
(λ), for random sparse pattern we test the speed under two values of λ, one discovers correct number
of nonzero elements, and one discovers 5 times the number of nonzero elements. We report the time
for each algorithm to achieve ε-accurate solution defined by f(Xk) − f(X∗) < εf(X∗). Table 1
shows the results for ε = 10−2 and 10−6, where ε = 10−2 tests the ability for an algorithm to get a
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good initial guess (the nonzero structure), and ε = 10−6 tests whether an algorithm can achieve an
accurate solution. Table 1 shows that QUIC is consistently and overwhelmingly faster than other
methods, both initially with ε = 10−2, and at ε = 10−6. Moreover, for p = 10000 random pattern,
there are p2 = 100 million variables, the selection of fixed/free sets helps QUIC to focus only on
very small part of variables, and can achieve an accurate solution in about 15 minutes, while other
methods fails to even have an initial guess within 8 hours. Notice that our λ setting is smaller
than [14] because here we focus on the λ which discovers true structure, therefore the comparison
between ALM and PSM are different from [14].

5.2 Experiments on real datasets
We use the real world biology datasets preprocessed by [11] to compare the performance of our
method with other state-of-the-art methods. The regularization parameter λ is set to 0.5 according
to the experimental setting in [11]. Results on the following datasets are shown in Figure 1: Estrogen
(p = 692), Arabidopsis (p = 834), Leukemia (p = 1, 225), Hereditary (p = 1, 869). We plot the
relative error (f(Xt) − f(X∗))/f(X∗) (on a log scale) against time in seconds. On these real
datasets, QUIC can be seen to achieve super-linear convergence, while other methods have at most
a linear convergence rate. Overall QUIC can be ten times faster than other methods, and even more
faster when higher accuracy is desired.
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(a) Time for Estrogen, p = 692
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(b) Time for Arabidopsis, p = 834
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(c) Time for Leukemia, p = 1, 255
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(d) Time for hereditarybc, p = 1, 869

Figure 1: Comparison of algorithms on real datasets. The results show QUIC converges faster than
other methods.
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7 Appendix

7.1 Algorithm

We present the detailed algorithm description as Algorithm 2.

Algorithm 2: Quadratic Approximation method for Sparse Inverse Covariance Learning (QUIC)
Input : Empirical covariance matrix S, scalar λ, initialX0, inner stopping tolerance ε, parameters

0 < σ < 0.5, 0 < β < 1
Output: Sequence of Xt converging to arg minX"0 f(X), where

f(X) = − log detX + tr(SX) + λ‖X‖1.
1 ComputeW0 = X−1

0 .
2 for t = 0, 1, . . . do
3 D = 0, U = 0
4 while not converged do
5 Partition the variables into fixed and free sets:
6 Sfixed := {(i, j) | |∇ijg(Xt)| < λ − ε and (Xt)ij = 0}, Sfree := N \ Sfixed.
7 for (i, j) ∈ Sfree do
8 a = w2

ij + wiiwjj

9 b = sij − wij + w
T
·iu·j

10 c = xij + dij

11 µ = −c + S(c − b/a,λ/a)
12 dij ← dij + µ
13 ui· ← ui· + µwj·
14 uj· ← uj· + µwi·

15 end
16 end
17 for α = 1,β,β2, . . . do
18 Compute the Cholesky factorization LLT = Xt + αD.
19 if Xt + αD 12 0 then
20 continue
21 end
22 Compute f(Xt + αD) from L and Xt + αD
23 if f(Xt + αD) ≤ f(Xt) + ασ [tr(∇g(Xt)D) + λ‖Xt + D‖1 − λ‖X‖1] then
24 break
25 end
26 end
27 Xt+1 = Xt + αD
28 ComputeWt+1 = X−1

t+1 reusing the Cholesky factor.
29 end

7.2 Convergence guarantee (Proof of Theorem 1)

In this section, we prove that Algorithm 2 converges to the global optimum. Our proof is based
on the proof in [17], which was developed for coordinate gradient descent methods. [17] considers
composite objectives of the form

F (x) = g(x) + h(x), (13)

where g(x) is sufficiently smooth (continuously differentiable) and h(x) is non-differentiable but
separable. Recall, that in our case, g(X) = − log detX + tr(SX) and h(X) = λ‖X‖1. In [17] it
is assumed that g(X) is smooth over the domain Rn. In our case g(X) is smooth over the restricted
domain of the positive definite cone S++

n . We extend the analysis so that convergence still holds
under our setting.
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7.2.1 Notation

In the following arguments, capital letters such as X, X̄,A are p × p matrices, and I is the identity
matrix. f(X) is our objective function defined by (2). As is standard [13], the domain of the convex
function − log det is extended to Sp (p × p symmetric matrices) by

− log detX =

{

−
∑n

i=1 log(λi(X)), if X 2 0
∞, otherwise

where λi(X) is the ith eigenvalue of X . We use ‖X‖2 to define the induced two norm of a matrix,
and ‖D‖F to denote the 2-norm of vec(D), which is equal to the Frobenius norm of the matrix D.

We are only dealing with symmetric matrices, and therefore we restrict our attention to the upper
triangular indices denoted by N ≡ {(i, j) | 1 ≤ i ≤ j ≤ p}. The matrix function g(X) can be
viewed as an R|N | → R function operating on the vector containing the upper triangular elements
of X . The gradient ∇g(X) accordingly becomes an R|N | vector, while the Hessian ∇2g(X) =
X−1 ⊗ X−1 can be represented by an R|N |×|N | matrix. We emphasize that we will treat any
symmetric matrix as its vectorization of the upper diagonal elements, for example, we will denote
vec(D)T∇2g(X) vec(D) by DT∇2g(X)D.

For any X 2 0, we define

DJ (X) ≡ arg min
D:Dij=0
∀(i,j)/∈J

∇g(X)T D +
1

2
DT∇2g(X)D + λ‖X + D‖1, (14)

where J ⊆ N is any index set, and in particular DN (X) takes the minimum over all variables.

We use X1,X2, . . . to denote the sequence of matrices generated by our algorithm, where each
Xt+1 is updated from Xt by

Xt+1 = Xt + αtDJt
(Xt),

where Jt is the index set selected at the kth iteration, and αt is the step size which is the maximum
value among {1,β,β2, . . . } which satisfies

f(Xt + αDt) < f(Xt) + ασ∆t, (15)
where 0.5 > σ > 0 is a constant and

∆t ≡ ∆Jt
(Xt) ≡ ∇g(Xt)

T Dt + λ‖Xt + Dt‖1 − λ‖Xt‖1.

We use Dt ≡ DJt
(Xt) for simplicity.

Following the setting in [17], the index sets J1, J2, . . . need to satisfy
⋃

j=0,...,T−1

Jt+j ⊇ N ∀t = 1, 2, . . . (16)

for some fixed T . Our algorithm satisfies (16) as mentioned in Section 4.1: we set J1, J3, . . . to be
the fixed sets, and J2, J4, . . . to be the free sets and T = 3 will suffice.

7.2.2 Lemmas

Our first lemma establishes that our iterates are in the set mI 6 X 6 MI for some positive
constantsm andM .
Lemma 3. The level set U = {X | f(X) < f(X0) and X ∈ Sp

++} is contained in the set {X |
mI 6 X 6 MI} for positive constants m,M > 0.

Proof. First, we prove that X 6 MI for all X ∈ U . The fact that S 7 0 and X 2 0 implies
tr(SX) ≥ 0 and ‖X‖1 > 0. Therefore we have

f(X0) > f(X) ≥ − log detX + λ‖X‖1 (17)
Since ‖X‖2 is the largest eigenvalue of X , we have − log detX ≥ −p log(‖X‖2). In addition,
‖X‖1 ≥ tr(X) ≥ ‖X‖2. We combine these two facts and (17) to arrive at

f(X0) > −p log(‖X‖2) + λ‖X‖2.
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Since −p log x + λx is unbounded as x increases, there must exist an M that depends on X0 such
that ‖X‖2 ≤ M .

Next, we prove thatmI 6 X for all X ∈ U . We denote the smallest eigenvalue of X by a and use
the upper bound on the other eigenvalues to get:

f(X0) > f(X) > − log detX ≥ − log a − (p − 1) log M, (18)

which shows thatm = e−f(X0)M−(p−1) is a lower bound for a.

Lemma 4. There exists a unique minimizer X∗ for (2).

Proof. According to Lemma 3, the level set is contained in the compact set S = {X | mI 6
X 6 MI}, where ∇2f(X) = X−1 ⊗ X−1, ∇2f(X) 7 M−2I . From Weierstrass’ Theorem, any
continuous function in a compact set attains its minimum. In addition, f(X) is strongly convex in
the compact set, so the minimizer X∗ is unique.

Lemma 5. X∗ is the optimal solution of (2) if and only if

gradS
ij f(X∗) = 0 ∀i, j,

where the minimum-norm sub-gradient gradS
ij f(X) is defined by

gradS
ij f(X) =







∇ijg(X) + λ if Xij > 0,
∇ijg(X) − λ if Xij < 0,
sign(∇ijg(X))max(|∇ijg(X)|− λ, 0) if Xij = 0.

Proof. The optimality condition for f(X) is that for all (i, j) ∈ N

∇ijg(X)







= −λ if Xij > 0,
= λ if Xij < 0,
∈ [−λ λ] if Xij = 0.

(19)

It is easy to prove that (19) holds if and only if gradS
ij f(X) = 0 for all i, j. Notice that in our case

∇g(X) = S − X−1 therefore

gradS
ijf(X) =







(S − X−1)ij + λ if Xij > 0,
(S − X−1)ij − λ if Xij < 0,
sign((S − X−1)ij)max(|(S − X−1)ij |− λ, 0) if Xij = 0.

Lemma 6. For any index set J ⊆ N , DJ(X) = 0 if and only if gradS
ij f(X) = 0 for all (i, j) ∈ J .

Proof. DJ (X) = 0 if and only if D = 0 satisfy the optimality condition of (14). The condition can
be written as (19) with (i, j) ∈ J . This is the same as (19) for a subset of indexes. Follow the same
argument we can prove that this condition is equivalent to gradS

ij f(X) = 0 for all (i, j) ∈ J .

Lemma 7. ∆J (X) in the line search condition (15) satisfies

∆J(X) = ∇g(X)T DJ(X) + λ‖X + DJ (X)‖1 − λ‖X‖1 ≤ −DJ (X)T∇2g(X)DJ (X)., (20)

and consequently,
∆J(X) ≤ −m‖DJ (X)‖2

F (21)
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Proof. For simplicity, and since there can be no confusion, we drop index J . By definition of D in
(14), ∀α ∈ [0, 1]:

∇g(X)T D+
1

2
DT∇2g(X)D+λ‖X+D‖1 ≤ ∇g(X)T (αD)+

1

2
α2DT∇2g(X)D+λ‖X+αD‖1.

(22)
Since ‖ · ‖1 is a norm, the following holds for all α ≥ 0:

λ‖X + αD‖1 = λ‖α(X + D) + (1 − α)X‖1 ≤ λα‖X + D‖1 + λ(1 − α)‖X‖1. (23)

Combining (22) and (23) yields:

∇g(X)T D+
1

2
DT∇2g(X)D+λ‖X+D‖1 ≤ α∇g(X)T D+

1

2
α2DT∇2f(X)D+λα‖X+D‖1+λ(1−α)‖X‖1.

Therefore

(1 − α)∇g(X)T D + (1 − α)λ‖X + D‖1 − (1 − α)λ‖X‖1 +
1

2
(1 − α2)DT∇2g(X)D ≤ 0.

Divide both sides by 1 − α to get:

∇g(X)T D + λ‖X + D‖1 − λ‖X‖1 +
1

2
(1 + α)DT∇2g(X)D ≤ 0.

By setting α ↑ 1, we have

∇g(X)T D + λ‖X + D‖1 − λ‖X‖1 ≤ −DT∇2g(X)D,

which proves (20). Combine with Lemma 3 to get (21).

Lemma 8. For any convergent subsequence Xst
→ X̄ ,

Dst
≡ DJst

(Xst
) → 0.

Proof. The objective value is monotonically decreasing and bounded below, therefore f(Xst
) can-

not go to negative infinity, so f(Xst
) − f(Xst+1

) → 0. From (15), we have αst
∆st

→ 0.

We proceed to prove by contradiction. If Dst
does not converge to 0, then there exist an infinite

index set T ⊆ {s1, s2, . . .} and δ > 0 such that ‖Dt‖F > δ for all t ∈ T . We will work in this
index set T in what follows.

Let αt denote the line search step size which satisfies (15), by our line search procedure αt

β will not
satisfy (15), so we have:

f(Xt + (
αt

β
)Dt) − f(Xt) ≥ σ(

αt

β
)∆t. (24)

IfXt + αt

β Dt is not positive definite, then we define f(Xt + αt

β Dt) to be∞, so (24) still holds. We
have

σ∆t ≤
g(Xt + (αt

β )Dt) − g(Xt) + λ‖Xt + αt

β Dt‖1 − λ‖Xt‖1

αt

β

≤
g(Xt + (αt

β )Dt) − g(Xt) + (αt

β )λ‖Xt + Dt‖1 + (1 − αt

β )λ‖Xt‖1 − λ‖Xt‖1

αt

β

(by (23))

=
g(Xt + (αt

β )Dt) − g(Xt)
αt

β

+ λ‖Xt + Dt‖1 − λ‖Xt‖1,∀t ∈ T .

By the definition of∆t we can replace the last two terms and get

σ∆t ≤
g(Xt + (αt

β )Dt) − g(Xt)
αt

β

+ ∆t −∇g(Xt)
T Dt,

(1 − σ)(−∆t) ≤
g(Xt + (αt

β )Dt) − g(Xt)
αt

β

−∇g(Xt)
T Dt

13



By (21) in Lemma 7,

(1 − σ)m‖Dt‖
2
F ≤

g(Xt + (αt

β )Dt) − g(Xt)
αt

β

−∇g(Xt)
T Dt

(1 − σ)m‖Dt‖F ≤
g(Xt + (αt

β )‖Dt‖F
Dt

‖Dt‖F
) − g(Xt)

‖Dt‖F
αt

β

−∇g(Xt)
T Dt

‖Dt‖F
.

Set α̂t = αt

β ‖Dt‖F , and since ‖Dt‖F > δ for all t ∈ T we have

(1 − σ)mδ ≤
g(Xt + α̂t

Dt

‖Dt‖F
) − g(Xt)

α̂t
−

∇g(Xt)T Dt

‖Dt‖F
. (25)

By (21),
−αt∆t ≥ αtm‖Dt‖

2
F ≥ mαt‖Dt‖F δ,

and {αt∆t}t → 0, so {αt‖Dt‖F }t → 0, so {α̂k}t → 0. Since Dt

‖Dt‖F
is in the compact 1-norm

ball, there exists a subset T̄ ⊂ T such that { Dt

‖Dt‖F
}T̄ → D̄, so

(1 − σ)mδ ≤
g(Xt + α̂tD̄) − g(Xt)

α̂t
−∇g(Xt)

T D̄. (26)

Our algorithm guarantees that Xt is positive definite. Also Xt + α̂tD̄ is positive definite when
α̂t → 0. So taking limit of (26) as t ∈ T̄ and k → ∞ on (25), we have

(1 − σ)mδ ≤ ∇g(X̄)T D̄ −∇g(X̄)T D̄ = 0,

a contradiction, finishing the proof.

Lemma 9. For any X 2 0 and symmetric D, there exists an ᾱ > 0 such that for all α < ᾱ, (1)
X + αD 2 0 and (2) X + αD satisfies the line search condition (15).

Proof. First, when α < σn(X)/‖D‖2 (σn(X) stands for the smallest eigen-value ofX), ‖αD‖2 <
σn(X), so X + αD 2 0.

Second,

f(X + αD) − f(X) = g(X + αD) − g(X) + λ‖X + αD‖1 − λ‖X‖1

≤ g(X + αD) − g(X) + αλ(‖X + D‖1 − ‖X‖1) by (23)
= α∆ + o(α).

It follows that for a fixed 0 < σ < 1, when α is sufficiently small, the line search condition must
hold.

7.2.3 Proof of Lemma 1

Since the fixed set Sfixed is defined by

Sfixed := {(i, j) | |∇ijg(Xt)| < λ − ε and (Xt)ij = 0},

so gradS
ij f(Xt) = 0 for all (i, j) ∈ Sfixed. From Lemma 6, this impliesDSfixed

= 0, therefore the
solution of the following optimization problem is ∆ = 0:

arg min
∆

f(Xt + ∆) such that ∆ij = 0 ∀(i, j) ∈ Sfree.

7.2.4 Main proof

Theorem 3. Our algorithm QUIC converges to a unique global optimum.
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Proof. Assume a subsequence {Xt}T converges to X̄ . Since the choice of the index set Jt selected
at each step is finite, we can further assume that Jt = J̄0 for all t ∈ T . From Lemma 8,DJ̄0

(Xt) →
0. By the continuity of ∇f(X) and ∇2f(X), it is easy to show DJ̄0

(Xt) → DJ̄0
(X̄). Therefore

DJ̄0
(X̄) = 0.

Furthermore, {DJ̄0
(Xt)}t → 0 and ‖Xt − Xt+1‖F ≤ ‖DJ̄0

(Xt)‖F , so {Xt+1}t also converges to
X̄ . By further subsetting of T we can assume that Jt+1 = J̄1 for all t ∈ T . By the same argument
we can prove {DJt+1

(Xt)}t → 0, so DJ̄1
(X̄) = 0. Similarly, we can show that DJ̄i

(X̄) = 0 ∀i =
0, . . . , T −1 can be assumed for an appropriate subset of T . According to Lemma 6 and assumption
(16), X̄ is a stationary point:

gradS
ij f(X̄) = 0 ∀i, j.

Moreover, by Lemma 4, there exists a unique optimal point, so the sequence {Xt} generated by our
algorithm must converge to the global optimum.

7.3 Quadratic Convergence Rate

7.3.1 Existing results for Newton method on Bounded constrain

The convergence rate of Newton method on bounded constrained minimization has been studied in
[10] and [6]. Here we briefly mention their results.

Assume we want to solve a constrained minimization problem

min
x∈Ω

F (x),

where Ω is a nonempty subset of Rn and F : Rn → R has a second derivative ∇2F (x). Then
beginning from x0, a natural extension of Newton method is to compute xk+1 by

xk+1 = arg min
x∈Ω

∇F (xk)T (x − xk) +
1

2
(x − xk)T∇2F (xk)(x − xk). (27)

For simplicity, we assume F is strictly convex and has a unique minimizer x∗ in Ω. Then the
following theorem holds
Theorem 4. Assume F is strictly convex, has a unique minimizer x∗ in Ω, and∇2F (x) is Lipschitz
continuous, then for all x0 sufficiently close to x∗, the sequence {xk} generated by (27) converges
quadratically to x∗.

This theorem is proved in [6].

7.3.2 Proof for the quadratic convergence of QUIC

Again we consider the composite objectives as (13), and g(X) has Lipschitz continuous second
order derivatives. Assume X∗ is the optimal solution, then we can divide the indexes into

P = {(i, j) | ∇ijg(X∗) = −λ}, N = {(i, j) | ∇ijg(X∗) = λ}, Z = {(i, j) | −λ < ∇ijg(X∗) < λ}.
(28)

Notice that X∗
ij ≥ 0 for all (i, j) ∈ P , X∗

ij ≤ 0 for all (i, j) ∈ N and X∗
ij = 0 for all (i, j) ∈ Z.

Lemma 10. If the second order derivative of g(·) is Lipschitz continuous, then when Xt is close
enough to X∗, the line search condition (15) will be satisfied with step size α = 1.

Proof. To simplify the notation, here we denote Xt by X , Dt by D, and ∆t by ∆. We bound the
decrease in objective function value by the following argument. First, define

g̃(t) = g(X + tD),

so g̃′′(t) = DT∇2g(X + tD)D. From the Lipschitz continuity of ∇2g(·), we have

‖∇2g(X + tD) −∇2g(X)‖ ≤ tL‖D‖,

where L is the Lipschitz constant. By definition

|g̃′′(t) − g̃′′(0)| = |DT (∇2g(X + tD) −∇2g(X))D| ≤ tL‖D‖3.
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Therefore we can upper bound g̃′′(t) by

g̃′′(t) ≤ g̃′′(0) + tL‖D‖3 = DT∇2g(X)D + tL‖D‖3.

Integrate both sides to get

g̃′(t) ≤ g̃′(0) + tDT∇2g(X)D +
1

2
t2L‖D‖3 = ∇g(X)T D + tDT∇2g(X)D +

1

2
t2L‖D‖3.

Integrating both sides again, we have

g̃(t) ≤ g̃(0) + t∇g(X)T D +
1

2
t2DT∇2g(X)D +

1

6
t3L‖D‖3.

Taking t = 1 the inequality becomes

g(X + D) = g̃(1) ≤ g(X) + ∇g(X)T D +
1

2
DT∇2g(X)D +

1

6
L‖D‖3

g(X + D) + λ‖X + D‖1 ≤ g(X) + λ‖X‖1 + (∇g(X)T D + λ‖X + D‖1 − λ‖X‖1) +
1

2
DT∇2g(X)D +

1

6
L‖D‖3,

so

f(X + D) ≤ f(X) + ∆ +
1

2
DT∇2g(X)D +

1

6
L‖D‖3

≤ f(X) +
1

2
∆ −

1

6

L

m
‖D‖∆ (by (20) and (21) in Lemma 7)

= f(X) + (
1

2
−

1

6

L

m
‖D‖)∆.

And from Lemma 8 we have Dk → 0, therefore when k is large enough, ( 1
2 − 1

6
L
m‖Dk‖) will be

larger than σ (0 < σ < 0.5), so the line search condition holds with step size 1.

Lemma 11. Assume that the sequence {Xt} converges to the global optimum X∗. There exists a
t̄ > 0 such that

(Xt)ij







≥ 0 if (i, j) ∈ P
≤ 0 if (i, j) ∈ N
= 0 if (i, j) ∈ Z

(29)

for all t > t̄.

Proof. We prove the case for (i, j) ∈ P by contradiction, the other two cases can be handled
similarly. Assume that there exists an infinite subsequence {Xst

} such that (Xst
)ij < 0. We

consider the update fromXst−1 toXst
. From Lemma 10, we can assume that st is large enough so

that the step size equals 1, therefore Xst
= Xst−1 + dst

. Note that Dst
is the optimal solution of

min
D

∇g(Xst−1)
T D +

1

2
DT∇2g(Xst−1)D + ‖X + D‖1 − ‖X‖1. (30)

Since (Xst
)ij = (Xst−1)ij + (Dst

)ij < 0, from the optimality condition of (30) we have

(∇g(Xst−1) + ∇2g(Xst−1)(Dst
))ij = λ. (31)

Since Dst
converges to 0, (31) implies that {∇ijg(Xst−1)} will converge to λ. However, by the

definition of P , ∇ijg(X∗) = −λ, and by the continuity of ∇g we get that {∇ijg(Xt)} converges
to∇ijg(X∗) = −λ, a contradiction finishing the proof for the case with (i, j) ∈ P in (29).

Lemma 12. Assume Xt → X∗. There exists a t̄ > 0 such that variables in P or N will not be
selected as fixed set (denoted by Sfixed) after t > t̄. That is,

Sfixed ⊂ Z = N \ (P ∪ N).
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Proof. Since Xt converges to X∗ and ∇g(·) is continuous, ∇g(Xt) will converge to ∇g(X∗).
Therefore, ∇ijg(Xt) converges to −λ if (i, j) ∈ P and to λ if (i, j) ∈ N . Since we select fixed set
by testing whether (Xt)ij = 0 and

−λ + ε < ∇ijg(Xt) < λ − ε,

when k is large enough |∇ijg(Xt)−∇ijg(X∗)| will be smaller than ε, then all variables in P or N
will not be selected in the fixed set.

Theorem 5. {Xt} generated by our algorithm QUIC converges asymptotic quadratically to X∗

when t is large enough.

Proof. First, if we the index sets P,N and Z (related to the optimal solution) are given, solving (2)
is the same as solving the following constrained minimization problem.

min
X

− log det(X) + tr(SX) +
∑

(i,j)∈P

λXij −
∑

(i,j)∈N

λXij

s.t. Xij ≥ 0 ∀(i, j) ∈ P, (32)
Xij ≤ 0 ∀(i, j) ∈ N,

Xij = 0 ∀(i, j) ∈ Z.

Next we claim that when k is large enough, our algorithm is equivalent to applying the Newton
method in Section 7.3.1 to minimize (32). Since the objective function values of (32) and (2) are the
same if we restrict variables to follow the sign patterns in (32), to prove the equivalence it suffices
to show:

1. The sign of the optimal solution for the original sub-problem (5) will always be the same as (32)
after a finite number of iterations. This is the result of Lemma 11.

2. The fixed set selection does not affect the Newton sub-problem. This can be proved by Lemma
12 because at each iteration the fixed set Sfixed ⊂ Z, and Z is the set which always satisfies
(Dt)Z = 0 after t large enough. So we will never fix the wrong variables (choose variables in P
or N in the fixed set) after t is large enough.

Moreover, Lemma 10 shows the step size will always be 1 when t large enough. Therefore our
algorithm is equivalent to the Newton method in Section 7.3.1, which converges quadratically to the
optimal solution of (32). Since the revised problem (32) and our original problem (2) has the same
minimum, our algorithm converges quadratically to the optimum of (2) when the iteration t is large
enough.

7.4 Size of free sets in experiments

In Figure 2, we plot the size of the free set versus iterations for Hereditarybc dataset. Starting from a
total of 18692 = 3, 493, 161 variables, the size of the free set progressively drops, in fact to less than
120, 000 in the very first iteration. We can see the super-linear convergence of QUIC even more
clearly when we plot it against the number of iterations.
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Figure 2: Size of free sets and objective value versus iterations (Hereditarybc dataset). There are
total 3, 493, 161 variables, but the size of free set reduce to less than 120, 000 in one iteration, and
become about 20, 000 at the end.
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