Multilinear Subspace Regression: An Orthogonal Tensor Decomposition Approach

Qibin Zhao\(^1\), Cesar F. Caiafa\(^2\), Danilo P. Mandic\(^3\), Liqing Zhang\(^4\), Tonio Ball\(^5\), Andreas Schulze-Bonhage\(^5\), and Andrzej Cichocki\(^1\)

\(^1\) Brain Science Institute, RIKEN, Japan
\(^2\) IAR, CONICET, Argentina
\(^3\) Imperial College, UK
\(^4\) Shanghai Jiao Tong University, China
\(^5\) Albert-Ludwigs-University, Germany

NIPS 2011

Presented by Qibin Zhao

POSTER: W043
LABSP: http://www.bsp.brain.riken.jp/
Multilinear regression and applications

- **Tensor** representation of multidimensional data
 - EEG, ECoG (spatial, temporal, frequency, epoch,...)
 - Physical meaning - ease of interpretation

- From multivariate to multi-way array processes - partial least squares (PLS)

- Prediction of ECoG from scalp EEG recorded simultaneously

- Standard PLS applied on **matricization** of both X and Y
 - Small sample size problem
 - Overfitting problem (high dimension of subspace basis)
 - Lack of physical interpretation for loadings

X = Scalp EEG Tensor regression model Y = Intracranial ECoG
Proposed approach

Objective function

\[
\min_{\{P^{(n)}, Q^{(m)}\}} \left\| X - [G; t, P^{(1)}, \ldots, P^{(N-1)}] \right\|^2 + \left\| Y - [D; t, Q^{(1)}, \ldots, Q^{(M-1)}] \right\|^2 \\
\text{s. t. } \{P^{(n)T}P^{(n)}\} = I_{L_n+1}, \quad \{Q^{(m)T}Q^{(m)}\} = I_{K_m+1},
\]

Extension of PLS to higher-order tensor data - HOPLS

- **Goal:** to predict a tensor \(Y \) from a tensor \(X \)
- **Approach:** to extract the common latent variables

Properties:
- **Flexible multilinear regression framework**
- **Projection on tensor subspace basis**
- **Efficient optimization algorithm using HOOI on the \(n \)-mode cross-covariance tensor**
Key advantages

Small sample size

Robustness against overfitting and noise

HOPLS: better prediction performance and enhanced robustness to noise

Stability of the performance of HOPLS, NPLS and PLS for a varying number of latent vectors under different noise conditions

POSTER: W043