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1 Multivariate Bernoulli model

The multivariate Bernoulli (MVB) model ofK random variables has2K − 1 natural parameters [1].
Given the predictive variableX, these parameters are functions ofX, called conditional log odds
ratios. From the distribution of the MVB,fω(X) can be written as:

fω(x) = logOR(Yi, i ∈ ω|Yj = 0, j /∈ ω;X = x) (1)

Here, the odds ratios are calculated recursively

OR(Yi|X = x) =
P (Yi = 1|X = x)

1− P (Yi = 1|X = x)
, (2)

OR(Yi, i ∈ ω ∪ {k}|X = x) =
OR(Yi, i ∈ ω|Yk = 1, X = x)

OR(Yi, i ∈ ω|Yk = 0, X = x)
, with k /∈ ω (3)

The following two notations are useful in optimization and parameter tuning:

Sω(y;x) =
∑

κ⊆ω

yκfκ(x); Sω(x) =
∑

κ⊆ω

fκ(x); (4)

It follows from the definition of the conditional log odds ratio in (1) that

exp(Sω(x)) =
P (Yi = 1, i ∈ ω,andYj = 0, j ∈ Ω\ω|X = x)

P (Yi = 0, i ∈ Ω|X = x)
(5)

Then the normalization factor is:

exp(b(f(x))) = 1 +
∑

ω∈ΨK

exp(Sω(x)) (6)

In practice, theexp(b(f(x))) is calculated by the junction tree algorithm to avoid enumerating2K

possible values ofY , which is intractable in large graphs.

2 Dual of the proximal linearization problem

To solve the following objective of the proximal linearization problem

min
c

Lk +∇LT
k (c− ck) +

αk

2
‖c− ck‖

2 + λJ(c) (7)

we solve its dual problem as suggested in Liu and Ye [2]. LetZ = {v ∈ ΨK |‖cTv‖ = 0}, and
Z̄ = ΨK − Z be the complement. Definesv, v ∈ ΨK as:

sv ∈ Sv = {s = (sω)ω∈ΨK
| s ∈ R

p̃, ‖s‖ ≤ λpv, s
ω = 0 if ω ∈ Tv} (8)
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then the subgradient of (7) is:

∇L+ αk(c− ck) +
∑

v∈Z

sv +
∑

u∈Z̄

ru (9)

wheresv is the subgradient ofλpv‖cTv‖ for v ∈ Z andru is the subgradient foru ∈ Z̄:

ru = argmaxsu〈su, c〉, for u ∈ Z̄ (10)

The subgradientsv is in a unit ball of certain subspace ofR
p̃. These subspaces are not perpendicular

to each other. Thus,sv ’s are not separable, and closed form solution of (7) cannot be obtained. We
solve the proximal subproblem (7) by its smoothing and convex dual problem. Note (7) is equivalent
to:

min
c∈Rp̃

max
S∈S

φ(c, S) = ∇LT
k (c− ck) +

αk

2
‖c− ck‖

2 +
∑

v∈Ω

〈sv, c〉 (11)

whereS is a p̃ × |ΨK | matrix whose columns aresv. S = {S|S = (s1, . . . , sv, . . . , sΩ), sv ∈
Sv for v ∈ ΨK} is the feasible region ofS. Sinceφ(·, S) is lower semicontinuous andφ(c, ·) is
upper semicontinuous, there exists a saddle point and themax andmin are exchangeable. The
solution of minimizingφ(c, S) is:

c̃ = argmincφ(c, S) = ck −
1

αk

∇Lk −
1

αk

∑

v

sv (12)

Substitutẽc back into (11), we have the dual problem of (7) as:

max
S∈S

η(S) = −
1

2
‖
∑

v

sv‖
2 + (αkck −∇Lk)

T
∑

v

sv (13)

Following the proof in Liu and Ye [2], we can show thatη(S) is convex and Lipschitz continuous.
The differential isαk c̃e

T wheree ∈ R
p̃ is a vector of ones. Hence, (13) can be solved by existing

gradient methods.

3 B-spline

Given m knots, t0 ≤ t1 ≤ · · · ≤ tm−1, the B-spline basis functions of degreed are defined
recursively [3]:

bk,0 =

{

1; if tk ≤ t < tk+1

0; otherwise
, for k = 0, · · · ,m− 2

bk,l =
t− tk

tk+l − tk
bk,l−1(t) +

tk+l+1 − t

tk+l+1 − tk+1

bk+1,l−1(t), for k = 0, · · · ,m− d− 2; l = 0, · · · , d

Let Bk(·) = bk,d(·), then{Bk, k = 0, · · · ,m − d− 2} arem− d− 1 basis functions, which span
the functional spaceB. The B-spline curve inB is:

g(t) =

m−d−2
∑

k=0

ckBk(t) (14)

whereck’s are the control points to be estimated. In our simulation studies,ck ’s are assumed to be
one dimensional scalers for simplicity.

We let eachfω(x) wherex = (x1, · · · , xp)
′ be inB0⊕B1⊕· · ·⊕Bp. Here,B0 is a space of constant

functions andBj , j = 1 · · · , p is a B-spline functional space on domainxj ∈ Xj . Therefore,

fω(x) = cω0 +

p
∑

j=1

gj(xj) (15)

wheregj(xj) ∈ Bj are defined in (14).
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4 Tuning

For i-th data point(y(i), x(i)), denoteSω
i = Sω(x(i)), then the normalization factor of thei-th data

is bi = b(f(x(i))) = log (1 +
∑

ω expSω
i ). The mean of the augmented responseY(i) in the MVB

model is:

µ(i) = E[Y(i)|x(i), f ] = (µ1(i), · · · , µκ(i), · · · , µΩ(i)) (16)

whereµκ(i) =
∂bi
∂fκ

=

∑

ω∈Tκ
expSω

i

exp bi
(17)

The|ΨK | × |ΨK | covariance matrix of the augmented response is:

W (i) = var(Y(i)|x(i), f) (18)

where the(α, β)-th element ofW (i) is:

Wα,β(i) =
∂2bi

∂fα(∂fβ)T
=

∑

ω∈Tα∩Tβ
expSω

i

exp bi
− µα(i) · µβ(i) (19)

LetRv be ap̃× p̃ diagonal matrix whose(i, i)-th element is 1 ifci 6= 0. Then, thev-th group penalty
J(fTv ) can be written as:

J(fTv ) = pv

√

∑

ω∈Tv

‖fω‖2 = pv‖Rvc‖ (20)

NoteRv is symmetric andRv ·Rv = Rv, direct calculation yields the derivative and Hessian of the
penalty term:

∂J

∂c
=

∑

v:Rvc 6=0

pv
Rvc

‖Rvc‖
(21)

∂2J

∂c∂cT
=

∑

v:Rvc 6=0

pvJv =
∑

v:Rvc 6=0

pv
Rv

(

‖Rvc‖
2I − c · cT

)

Rv

‖Rvc‖3
(22)

whereJv
.
= (Rv(‖Rvc‖

2I − c · cT )Rv)/‖Rvc‖
3. Denote the grand design matrix as:

D =
(

D(1)T · · · D(n)T
)T

(23)

whereD(i) =











x(i)T 0 · · · 0
0 x(i)T · · · 0
...

...
. . .

...
0 0 · · · x(i)T











(24)

Suppose there areN non-zero elements ofc at location{a1, . . . , aN}. LetD̃ be the matrix composed
by thea1, . . . , aN th column ofD. Then, the Hessian matrix ofIλis:

∂2Iλ
∂c∂cT

=
∂2L

∂c∂cT
+ λ

∂2J

∂c∂cT
= D̃TWD̃ + λ

∑

v:Rvc 6=0

pvJv (25)

LetH be then|ΨK | × n|ΨK | influence matrix that implies

fλ,ǫ − fλ ≈ Hǫ (26)

whereǫ is a small perturbation onY; fλ = Dcλ is the estimated function value with tuning param-
eterλ; andfλ,ǫ is the estimated function value with the perturbation. Then, the analysis of the first
order Taylor expansion of∂Iλ

∂c
(Y + ǫ, cλ,ǫ) leads to the formulation ofH as follows (refer to Xiang

and Wahba [4] and Ma [5] Chapter 3 for more details)

H = D̃
( ∂2Iλ
∂c∂cT

)−1

D̃T = D̃
(

D̃TWD̃ + λ
∑

v:Rvc 6=0

pvJv

)−1

D̃T (27)
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The(i, j)-th q × q submatrix ofH is

H(i, j) = D̃(i)T
( ∂2Iλ
∂c∂cT

)−1

D̃(j) (28)

LetQ(i) = I −H(i, i)W (i) for i = 1, . . . , n, define the generalized average matrix, denoted asQ̄,
of {Q(i), i = 1, . . . , n} as follows

Q̄ = (δ − γ)Iq×q + γ · eeT =









δ γ · · · γ
γ δ · · · γ
...

...
. . .

...
γ γ · · · δ









(29)

wheree is the unit vector of lengthq and

δ =
1

nq
∑n

i=1
tr(Q(i))

, γ =
1

nq(q − 1)

[

eTQ(i)e− tr(Q(i))
]

(30)

Let H̄ be the generalized average of{H(i, i), i = 1, · · · , n}, the GACV score is

GACV (λ) = OBS(λ) +
1

n

n
∑

i=1

Y(i)T Q̄−1H̄
(

Y(i)− µ(i)
)

(31)

where

OBS(λ) =
1

n

[

− Y(i)T fλ(x(i)) + b(fλ(x(i)))
]

(32)

is the observed log-likelihood.

The degrees of freedom of multivariate Bernoulli data is generally difficult to obtain. But we can
have a good approximation from GACV [6] as

d̂f(λ) =

n
∑

i=1

Y(i)T Q̄−1H̄
(

Y(i)− µ(i)
)

(33)

So the BGACV score can be defined as

BGACV (λ) = OBS(λ) +
1

n

log n

2

n
∑

i=1

Y(i)T Q̄−1H̄
(

Y(i)− µ(i)
)

(34)

For the model selection criteria AIC, the degree of freedom is approximated by the number of non-
zerocjk ’s in the group penalty.
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