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1 Properties of the Relaxed Best-Response Envelope

Recall that the scalar-relaxed best-response envelope (SR-BE) is given by

rSR

α (q) , q(1)max {0, β∗(q)− α} , (1)

where
β∗(q) , max

a∈{1,...,m}
{βtp(q; a)} , (2)

is the optimal (unconstrained) tp-rate in hindsight under distribution q. Also, the CBE is

r∗γ(q) = q(1)β∗
γ(q), (3)

where

β∗
γ(q) , max

p∈∆(A)

{

∑

a∈A

p(a)βtp(q; a) : so that
∑

a∈A

p(a)βfp(q; a) ≤ γ

}

, (4)

is the optimal constrained tp-rate in hindsight under distribution q.
We prove the following lemmas, which state the properties of the SR-BE. The first one

is trivial.

Lemma 1.1.

1. For every α ≥ 0, rSR

α is a convex continuous function.

2. For every α ≥ 0, we have that 0 ≤ rSR

α (q) ≤ conv
(

r∗γ
)

(q) for all q ∈ ∆(Z).

Proof. Part 1 of the Lemma follows since rSR

α is a maximum of linear functions (which is
convex and continuous). The lower bound of Part 2 is trivial by definition of rSR

α . The
upper bound follows by the fact that rSR

α is a convex function which is nowhere larger than
r∗γ.
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In particular, this Lemma states that the SR-BE is always dominated from above by
the convex hull of the CBE. Recall, however, that the motivation for using the former is
computational.

The next lemma shows that the SR-BE is strictly above the value of the constrained
game at some point, unless the game is in some sense trivial. Hence, it do provide a
performance improvement over the constrained min-max solution. Recall that the value of
the constrained game in our case is

vΓ , min
q∈∆(Z)

r∗γ(q)

= min
q∈∆(Z)

{

q(1) max
p∈∆(A)

{

∑

a∈A

p(a)βtp(q; a) : so that
∑

a∈A

p(a)βfp(q; a) ≤ γ

}}

= 0.

Lemma 1.2. Suppose that

α∗ = max
q∈∆(Z)

(

β∗(q)− β∗
γ(q)

)

< 1. (5)

Then, there exists q ∈ ∆(Z) such that rSR

α∗(q) > vγ = 0.

Proof. Note that under condition (5), we have that there exists q ∈ ∆(Z) with q(1) > 0
such that

β∗(q) = 1 > max
q∈∆(Z)

(

β∗(q)− β∗
γ(q)

)

= α∗,

implying that for this q
rSR

α∗(q) = q(1)(β∗(q)− α∗) > 0.

We note that the condition of Lemma 1.2 is satisfied, unless the constrained optimal
tp-rate β∗

γ(q) is zero at some q for which the unconstrained optimal tp-rate is 1.

2 Proof of Theorem 5.1

Fix α ≥ α∗. We use approachability theory [2] (presented in detail in Section 5) to prove
this theorem. In particular, we consider an extension of Hart and Mas-Colell’s vector-
valued game formulation [3] (see Section 5.3), with the following vector-valued payoff of
the agent at time n:

mn ,
(

{Rα
n(a)}a∈A , Ln

)

∈ R
|A|+1,

where

Rα
k (a) , [fk(a)− fk(ak)− α] I {bk = 1} , a ∈ A, (6)

Lk , cγ(ak, zk),
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The average vector-valued payoff at time n is then

mn =
(

{

R
α

n(a)
}

a∈A
, Ln

)

, (7)

where

R
α

n(a) = q̄n(1)
[

βtp(q̄n; a)− β̄tp(n)− α
]

, a ∈ A; Ln = q̄n(0)[β̄fp(n)− γ]. (8)

Now, consider S = R
|A|+1
− ,

{

u ∈ R
|A|+1 : u ≤ 0

}

, which is the non-positive orthant

of R|A|+1. The set S is convex, and we now show that it is approachable. For this, let

m(p, q) =
(

{q(1) [βtp(q; a)− α]− r(p, q)}
a∈A , cγ(p, q)

)

(9)

denote the expected vector-valued payoff under the pair of mixed actions (p, q). We need
to show that for every q ∈ ∆(Z) there exists a p ∈ ∆(A) such that m(p, q) ∈ S, which is
a sufficient condition for approachability of convex sets (see Theorem 5.1). Fix q ∈ ∆(Z).
First note that, by our assumption that the constraints can always be satisfied, there exists
a p∗ ∈ ∆(A) such that cγ(p

∗, q) ≤ 0 and

r(p∗, q) = r∗γ(q)

= q(1)β∗
γ(q)

≥ q(1)(β∗(q)− max
q∈∆(Z)

[β∗(q)− β∗
γ(q)])

≥ q(1)(β∗(q)− α)

≥ q(1)(βtp(q; a)− α), ∀a ∈ A,

where the second inequality follows by the assumption that

α ≥ α∗ , max
q∈∆(Z)

(

β∗(q)− β∗
γ(q)

)

and the third inequality holds by (2). Thus m(p∗, q) ∈ S, and S is approachable. Also note
that the corresponding approachability algorithm attains rSR

α , since the approachability of
mn to S implies that (almost surely, for every strategy of the opponent)

lim sup
n→0

R
α

n(a) ≤ 0, ∀a ∈ A

and
lim sup

n→0
Ln ≤ 0,

which in turn implies by (8) that

lim sup
n→0

{

q̄n(1)
[

βtp(q̄n; a)− β̄tp(n)− α
]}

≤ 0, ∀a ∈ A

lim sup
n→0

{

q̄n(0)[β̄fp(n)− γ]
}

≤ 0.
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It remains to develop a more explicit version of this approachability algorithm and
show that it coincides with the CRM algorithm. Since S is approachable, Blackwell’s
approachability theorem ensures that for every u ∈ R

|A|+1 there exists a p ∈ ∆(A) such
that

u ·m(p, z) ≤ sup {u · s : u ∈ S} , ∀z ∈ Z;

see [4] and Corollary 5.1 in Appendix 5. Moreover, an approaching strategy is to choose at
stage n a mixed action p which corresponds to u = mn−1 − PS (mn−1) , where PS(v) is the
projection of v to S in the Euclidean distance. In our case, S is the non positive orthant
and therefore PS (mn−1) = [mn−1]−, implying that u = [mn−1]+ ∈ R

|A|+1
+ . As a result,

sup {u · s : s ∈ S} = 0. To summarize, an approaching strategy is to choose at time n a
mixed action p which satisfies:

[mn−1]+ ·m(p, z) ≤ 0, ∀z ∈ Z.

By using (7) and (9), this last condition is exactly the defining inequality for p in the CRM
algorithm:

{

∑

a∈A

[

R
α

n−1(a)
]

+

(

f(a)−
∑

a′∈A p(a′)f(a′)− α
)

≤ 0, ∀z = (f, 1) ∈ Z,
[

Ln−1

]

+

(
∑

a′∈A p(a′)f(a′)− γ
)

≤ 0, ∀z = (f,−1) ∈ Z,
(10)

Finally we note that, whenever
∑

a∈A

[

R
α

n−1(a)
]

+
> 0, this p can be found by solving

min
p∈Bn

max
f∈[0,1]m

∑

a∈A

f(a)
(

[

R
α

n−1(a)
]

+
− p(a)

)

/
∑

a′∈A

[

R
α

n−1(a
′)
]

+

= min
p∈Bn

max
f∈[0,1]m

∑

a∈A

f(a) (pαn(a)− p(a))

= min
p∈Bn

∑

a∈A:pαn(a)>p(a)

(pαn(a)− p(a)) ,

where

Bn ,

{

p ∈ ∆(A) :
[

Ln−1

]

+

(

∑

a′∈A

p(a′)f(a′)− γ

)

≤ 0, ∀z = (f,−1) ∈ Z

}

and

pαn(a) =

[

R
α

n−1(a)
]

+
∑

a′∈A

[

R
α

n−1(a
′)
]

+

is the α-regret matching strategy.
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3 Adaptive Relaxation

Given a feasible α ≥ α∗, the CRM algorithm attains the SR-BE rSR

α . However, in practice,
it may be possible to attain rSR

α with α < α∗ if the opponent is not entirely adversarial.
In order to capitalize on this possibility, we propose to use an adaptive algorithm that
adjusts the value of α online. The idea is to start from some small initial value α0 ≥ 0
(possibly α0 = 0). At each time step n, we would like to use a parameter α = αn for
which inequality (10) can be satisfied. We remind that this inequality is always satisfied
when α ≥ α∗. If however α < α∗, the inequality may or may not be satisfied. In the
latter case, we increase α so that the condition is satisfied. We propose two possibilities
for the approximate adaptive search for parameter α, using an approximation parameter
ε > 0. Let αn be the relaxation parameter that is used at stage n. (i) Discretization. Each
time inequality (10) can not be satisfied, find the minimal integer K ≥ 1 such that for
αn = αn−1+Kε there exists a mixed action p ∈ ∆(A) required by (10). (ii) Binary search.
Set αb large enough, so that αb > α∗, and use a binary search on the interval [αn−1, αb] to
obtain αn such that (10) can be satisfied for it, while it can not satisfied for αn − ε.

The next theorem ensures that the adaptive CRM algorithm attains rSR

α with α ≤
α∗ + ε, where ε > 0 is the discretization parameter. Moreover, the theorem provides the
convergence rate of this algorithm.

Theorem 3.1. Suppose that the adaptive CRM algorithm uses an ε > 0 to discretize the

values of α. Let1 α∞ , lim supn→∞ αn ≤ α∗ + ε denote the posterior relaxation parameter

that the algorithm uses in the long term. Then, the algorithm attains rSR

α∞
. In particular,

for every δ > 0 and η > 0, there exists T > 0 such that

P
{

r̄n ≥ rSR

α∞
(q̄n)− δ and d(c̄n,Γ) ≤ δ

}

≥ 1− η, ∀n ≥ T,

for any strategy of the opponent, where

T =
8C2

δ4
ln

1

η
+

C

δ2

and C = 16(|A|+ 1).

Note that T does not depend explicitly on the discretization parameter ε. However,
this parameter controls the precision of the approximate adaptive search. Therefore, the
smaller is ε, the better is the precision, and the longer it takes to perform the search.
Finally, note that the adaptive CRM algorithm does not require the computation of the
optimal α∗, as it discovers it online.

Proof. We follow the proof of Theorem 5.1 and modify the convergence proof of the ap-
proachability algorithm for our adaptive case. Let

mαn

k ,
(

{Rαn

k (a)}
a∈A , Lk

)

∈ R
|A|+1.

1
We note that α∞ is a random variable.
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denote the vector payoff at time k ≤ n, using a relaxation parameter αn. The corresponding
average vector payoff at time n is then

mαn

n =
(

{

R
αn

n (a)
}

a∈A
, Ln

)

.

As in the proof of Theorem 5.1, S denotes the non-positive orthant of R|A|+1. Our goal is
to show that

d (mα∞

n , S) → 0

as n → ∞, almost surely. We proceed in the following stages.
Stage 1. Note that we surely have that

d (mαn

n , S) ≥ d (mαn+1

n , S) ≥ d (mα∞

n , S) , ∀n ≥ 1, (11)

since we only increase the relaxation parameter in the course of the algorithm. Thus, it is
sufficient to show that

d (mαn

n , S) → 0

almost surely. We prove this in the next stage.
Stage 2. Indeed, let

Xn , [d (mαn

n , S)]2 = ‖mαn

n − PS(m
αn

n )‖2 .

We show below that Xn almost surely converges to zero. Using the fact that

mαn

n =
n− 1

n
mαn

n−1 +
1

n
mαn

n ,

we obtain

Xn = ‖mαn

n − PS(m
αn

n )‖2

≤
∥

∥mαn

n − PS(m
αn

n−1)
∥

∥

2

=

∥

∥

∥

∥

n− 1

n
mαn

n−1 +
1

n
mαn

n − PS(m
αn

n−1)

∥

∥

∥

∥

2

=

∥

∥

∥

∥

n− 1

n

(

mαn

n−1 − PS(m
αn

n−1)
)

+
1

n

(

mαn

n − PS(m
αn

n−1)
)

∥

∥

∥

∥

2

=

(

n− 1

n

)2
∥

∥mαn

n−1 − PS(m
αn

n−1)
∥

∥

2
+

1

n2

∥

∥mαn

n − PS(m
αn

n−1)
∥

∥

2

+2
n− 1

n2

(

mαn

n−1 − PS(m
αn

n−1)
)

·
(

mαn

n − PS(m
αn

n−1)
)

≤

(

n− 1

n

)2
∥

∥m
αn−1

n−1 − PS(m
αn−1

n−1 )
∥

∥

2
+

1

n2

∥

∥mαn

n − PS(m
αn

n−1)
∥

∥

2

+2
n− 1

n2

(

mαn

n−1 − PS(m
αn

n−1)
)

·
(

mαn

n − PS(m
αn

n−1)
)

,
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where the last inequality follows by (11). Multiplying this inequality by n2 and rearranging
yields

n2Xn − (n− 1)2Xn−1 ≤
∥

∥mαn

n − PS(m
αn

n−1)
∥

∥

2

+2(n− 1)
(

mαn

n−1 − PS(m
αn

n−1)
)

·
(

mαn

n − PS(m
αn

n−1)
)

≤ C + 2(n− 1)
(

mαn

n−1 − PS(m
αn

n−1)
)

·
(

mαn

n − PS(m
αn

n−1)
)

,(12)

where the last inequality follows since the vector payoff is bounded, implying that

∥

∥mαn

n − PS(m
αn

n−1)
∥

∥

2
≤ C, ∀n ≥ 1,

for some constant C > 0 (independent of n).
An explicit expression for C can be easily obtained in terms of the corresponding bounds

on the reward and cost functions. In our case, we have that rmax = 1 and cmax = 1.
Therefore, we have that

∥

∥mαn

n − PS(m
αn

n−1)
∥

∥

2
≤ (|A|+ 1)max

{

4 (rmax + α∗)2 , 4 (cmax + γ)2
}

≤ 16(|A|+ 1) , C, (13)

where the second inequality follows since we have that α∗ ≤ rmax = 1 and γ ≤ cmax = 1.
Summing both sides of inequality (12) for k = 1, ..., n, the left-hand side telescopes to

n2Xn. Therefore, we have that

Xn ≤
C

n
+

2

n

n
∑

k=1

k − 1

n

(

mαk

k−1 − PS(m
αk

k−1)
)

·
(

mαk

k − PS(m
αk

k−1)
)

Now, recall that the mixed action pk used by the algorithm at time k satisfies the separation
condition

(

mαk

k−1 − PS(m
αk

k−1)
)

·
(

mαk(pk, z)− PS(m
αk

k−1)
)

≤ 0, ∀z ∈ Z,

where
mαk(p, z) ,

(

{r(a, z)− r(p, z)− αk}a∈A , {ci(p, q)− γi}
`

i=0

)

.

Hence, it follows that

Xn ≤
C

n
+

2

n

n
∑

k=1

(

mαk

k−1 − PS(m
αk

k−1)
)

· (mαk

k −mαk(pk, zk))

,
C

n
+

2

n

n
∑

k=1

Yk. (14)

To complete the proof, we show that {Yn} is a bounded martingale difference sequence, im-
plying that its average almost surely converges to zero. Indeed, by the payoff boundedness
assumption, we have that

|Yn| ≤ C, ∀n ≥ 1.
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Also, let Fn , σ (a1, z1, ..., an, zn) denote the corresponding filtration. We then have that

E [Yn | Fn−1] = E
[(

mαn

n−1 − PS(m
αn

n−1)
)

· (mαn

n −mαn(pn, zn))
∣

∣ Fn−1

]

=
(

mαn

n−1 − PS(m
αn

n−1)
)

· E (mαn(an, zn)−mαn(pn, zn) | Fn−1)

= 0.

Thus, {Yn,Fn} is a bounded martingale difference sequence, and the claim follows.
Stage 3. Finally, we use the Hoeffding-Azuma inequality to obtain polynomial conver-

gence rate. In particular, for any δ > 0, it holds that

P {d (mα∞

n , S) ≤ δ} ≥ P {d (mαn

n , S) ≤ δ} = P
{

Xn ≤ δ2
}

≥ P

{

C

n
+

2

n

n
∑

k=1

Yk ≤ δ2

}

= P

{

n
∑

k=1

Yk ≤

(

δ2 −
C

n

)

n

2

}

≥ 1− exp

(

−

[(

δ2 − C
n

)

n
2

]2

2nC2

)

≥ 1− exp

(

−
δ4n

8C2
+

δ2

8C

)

,

where the first inequality follows by (11), the second inequality follows by (14), and the
third inequality holds by the Hoeffding-Azuma inequality. For a given η > 0, we thus
require

exp

(

−
δ4n

8C2
+

δ2

8C

)

≤ η,

which yields

n ≥
8C2

δ4
ln

1

η
+

C

δ2
, T

as required. This completes the proof of the Theorem.

4 Computational Aspects

In this section we discuss the computational issues related to the program

α∗ , max
q∈∆(Z)

(

β∗(q)− β∗
γ(q)

)

. (15)

where β∗ and β∗
γ are given in (2) and (4), respectively.

We propose below possible methods for the approximate (offline) computation of α∗.
First note that we can write (15) as:

α∗ = max
a∈A

max
q∈∆(Z)

min
p∈∆(A): βfp(q;p)≤γ

(βtp(q; a)− βtp(q; p)) ,
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where βtp(q; p) ,
∑

a∈A p(a)βtp(q; a) and βfp(q; p) ,
∑

a∈A p(a)βfp(q; a). Now, the inner
minimization problem (which is in fact a linear program) can be expressed using Lagrange
multipliers λ ∈ R

`
+ as follows:

min
p∈∆(A): βfp(q;p)≤γ

{βtp(q; a)− βtp(q; p)} = min
p∈∆(A)

sup
λ≥0

{βtp(q; a)− βtp(q; p) + λ (βfp(q; p)− γ)}

= sup
λ≥0

min
p∈∆(A)

{βtp(q; a)− βtp(q; p) + λ (βfp(q; p)− γ)}

= sup
λ≥0

min
a′∈A

{βtp(q; a)− βtp(q; a
′) + λ (βfp(q; a

′)− γ)} ,

where the second equality holds due to the strong duality of the linear program, and the
third equality follows since the argument of the minimization is a linear function of p.
Thus, (15) takes the following form:

α∗ = max
a∈A

sup
λ≥0

max
q∈∆(Z)

min
a′∈A

{βtp(q; a)− βtp(q; a
′) + λ (βfp(q; a

′)− γ)} . (16)

We note that the resulting maximization problem over λ (or over q, if we exchange the
max with sup) is not convex in general and therefore may lack efficient algorithms for its
solution. Below we propose two solution approaches.

Observe that the inner term

max
q∈∆(Z)

min
a′∈A

{βtp(q; a)− βtp(q; a
′) + λ (βfp(q; a

′)− γ)}

can be easily transformed into a standard linear programming problem as is usually done
when computing a value of a repeated game. We are thus left with the maximization prob-
lem on λ ≥ 0, which can be solved numerically, using discretization. Another possibility is
to solve directly (16) which can be easily transformed into the following bilinear program:

max t

s.t. λ ≥ 0

q ∈ ∆(Z)

βtp(q; a)− βtp(q; a
′) + λ (βfp(q; a

′)− γ) ≥ t, ∀a′ ∈ A.

This program should be solved for each a ∈ A, and then the maximum should be taken.
However, we are not aware of efficient algorithms for solving this program.

5 Approachability Theory

The approachability problem, introduced by Blackwell in [2], may be considered as a
generalization of the basic online decision problem to vector rewards, taking values in R

I .
At each time step n = 1, 2, ..., the agent selects his action an ∈ A, observes the action
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zn ∈ Z chosen by the opponent, and obtains a vector reward mn = m(an, zn) ∈ R
I . We

denote by

m̄n ,
1

n

n
∑

k=1

mn

the average reward obtained by the player up to time n, as before.
In the approachability problem, we consider a set S ⊆ R

I , and ask if there exists a
policy for the player that will bring the average reward m̄n to S (asymptotically, almost
surely) no matter what the opponent actions are. More formally, we have the following
classical definition of approachable sets due to Blackwell [2].

Definition 5.1 (Approachable Set). Let S ⊆ R
I be a closed set. The set S is approachable

by the player if there exist a policy π such that d(m̄n, S) → 0 almost surely as n → ∞, for

any policy σ of the opponent. Here, r̄n is the average reward obtained using π up to time

n, and d(·, ·) is Euclidian distance.

5.1 Approachability Theorem and Algorithms

Next, we present the original formulation of Blackwell’s Theorem which provides us with
necessary and sufficient conditions for approachability of convex sets. To this end, for any
p ∈ ∆(A) denote by C(p) the convex hull of the points {m(p, z)}z∈Z . Similarly, for any
q ∈ ∆(Z) denote by T (q) the convex hull of the points {m(a, q)}a∈A.

Theorem 5.1. Let S be any closed convex set. Then, the following statements are equiv-

alent:

1. S is approachable.

2. For every q ∈ ∆(Z) there exists p ∈ ∆(A) such that m(p, q) ∈ S.

3. For every x /∈ S, there exists p ∈ ∆(A) such that

(x− PS(x)) · (m(p, z)− PS(x)) ≤ 0, ∀z ∈ Z,

where PS(x) is the projection of x to S in the Euclidean distance.

Below we state a corollary to this theorem, which is a simple manipulation of condition
(3) above.

Corollary 5.1. A closed convex set S is approachable if and only if for every u ∈ R
I there

exists p ∈ ∆(A) such that

u ·m(p, z) ≤ w(u) , sup {u · y : y ∈ S} , ∀z ∈ Z.

In case of a general set S, Blackwell showed in [2] that in fact conditions 2 and 3 of
Theorem 5.1 are, respectively, a necessary and a sufficient condition for approachability.
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Theorem 5.2. Let S ⊆ R
I be a given closed set.

1. If condition 3 of Theorem 5.1 holds, then S is approachable.

2. If S is approachable, then condition 2 of Theorem 5.1 holds.

Recently, Spinat in [6] proved a necessary and sufficient condition for approachability
of general sets.

Theorem 5.3. A closed set S is approachable if and only if it contains a set which satisfies

condition 3 of Theorem 5.1.

In fact, this Theorem suggests that the study of approachability should focus on the sets
which satisfy condition 3 of Theorem 5.1, the so-called B-sets. This is true since, by this
Theorem, any approachability algorithm for B-sets is also the approachability algorithm
for any approachable set.

Approachability algorithms (i.e. algorithms that actually approach a given approach-
able closed set S) require that condition 3 of Theorem 5.1 be satisfied for S. Thus, they
are applicable to convex sets or, more generally, to B-sets. The first such algorithm is
directly based on Blackwell’s theorem, in particular on condition (3), and is presented as
Algorithm 1. See Figure 1 for geometric interpretation of this algorithm.

Algorithm 1 Blackwell’s Approachability Algorithm

1. If m̄n−1 ∈ S, then choose arbitrary action an.

2. If m̄n−1 /∈ S, use a mixed action pn ∈ ∆(A), such that

u ·m(pn, z) ≤ w (u) , ∀z ∈ Z,

where u = u(m̄n−1) , m̄n−1 − PS (m̄n−1). Such a pn exists by Corollary 5.1.

Note that Blackwell’s algorithm uses a function u : RI \ S → R
I to define the ap-

proachability direction, where u(x) is the vector starting from the closest point s ∈ S to x,
and ending in x. Hart and Mas-Colell [4] proposed a more general class of approachabil-
ity algorithms, by introducing a general class of directional mappings u, with the certain
regularity properties.

5.2 Blackwell’s Approachability Formulation of Regret Minimiza-

tion

One of the first applications of approachability theory was proposed by Blackwell in [1].
In this work, the regret minimization problem was formulated as a special case of the
approachability problem to a corresponding convex set. In particular, the following game
with vector-valued rewards was defined in [1]. Recall that, at time n, the agent chooses
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m̄n−1

PS(m̄n−1)

u(m̄n−1)

S

∑
a
pn(a)r(a, zn)

E[m̄n|m̄n−1]

Figure 1: Geometric Interpretation of Approachability

an, the opponent chooses zn, the agent obtains rn = r(an, zn) ∈ R. Now, the vector-valued
reward at time n, mn ∈ R × ∆(Z), is defined as mn = (rn,1(zn)) , where 1(z) is the
probability distribution concentrated on z. Note that the average reward for this game is

m̄n ,
1

n

n
∑

k=1

mk = (r̄n, q̄n) .

Finally, let
S = {(r, q) ∈ R×∆(Z) : r ≥ r∗(q)} ,

where r∗ is the best-response envelope (BE). It is easy to see that S is convex approachable
set, implying that Blackwell’s algorithm can be used to approach it. Therefore, Blackwell’s
algorithm for this set is a no-regret algorithm for the original regret minimization problem.
We note that this algorithm is implicit in the sense that it requires a computation of the
projection PS, and the complexity of this computation depends on the structure of the set
S.

An extension of Blackwell’s formulation to the constrained setting was proposed in [5].
In particular, instantaneous cost cn was included in the vector-valued reward, that is

m̄n = (r̄n, c̄n, q̄n) ∈ R
1+` ×∆(Z).

Accordingly, the set S is defined as:

S =
{

(r, c, q) ∈ R
1+` ×∆(Z) : r ≥ r∗Γ(q), c ∈ Γ

}

,

where r∗Γ is the constrained best-response envelope CBE . In this case, S is non-convex

since r∗Γ is non-convex function. Moreover, it was shown in [5] that it is not approachable
in general, implying that r∗Γ need not be attainable. However, the convex hull conv (r∗Γ) of
r∗Γ was shown to be attainable.
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5.3 Regret Matching

An alternative vector-valued game formulation for the regret minimization problem was
proposed by Hart and Mas-Colell in [3]. Let

Rk(a) , r(a, zk)− rk, a ∈ A,

denote the instantaneous regret at time k. The average regret at time n is then

Rn(a) = r(a, q̄n)− r̄n,

Now consider the following vector-valued payoff of the agent at time n:

mn , {Rn(a)}a∈A ∈ R
|A|.

The average vector-valued payoff at time n is then

mn =
{

Rn(a)
}

a∈A
.

Finally, define
S = R

|A|
− ,

{

u ∈ R
|A| : u ≤ 0

}

,

which is the non positive orthant of R|A|. S is a convex set, and it can be easily proved
(using Theorem 5.1) that it is approachable by the agent. The advantage of this formulation
is the fact that the corresponding no-regret algorithm is a simple regret matching strategy
pn, which is given by:

pn(a) =

[

Rn−1(a)
]

+
∑

a′∈A

[

Rn−1(a′)
]

+

.

That is, pn prescribes to play according to probabilities that are proportional to the (pos-
itive) regrets. In fact, a whole class of such no-regret algorithms was proposed in [4] based
on a general class of approachability direction mappings.
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