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Abstract

In this paper, we propose a matrix-variate normal penalty with sparse inverse co-
variances to couple multiple tasks. Learning multiple (parametric) models can be
viewed as estimating a matrix of parameters, where rows and columns of the ma-
trix correspond to tasks and features, respectively. Following the matrix-variate
normal density, we design a penalty that decomposes the fullcovariance of matrix
elements into the Kronecker product of row covariance and column covariance,
which characterizes both task relatedness and feature representation. Several re-
cently proposed methods are variants of the special cases ofthis formulation. To
address the overfitting issue and select meaningful task andfeature structures,
we include sparse covariance selection into our matrix-normal regularization via
ℓ1 penalties on task and feature inverse covariances. We empirically study the
proposed method and compare with related models in two real-world problems:
detecting landmines in multiple fields and recognizing faces between different
subjects. Experimental results show that the proposed framework provides an ef-
fective and flexible way to model various different structures of multiple tasks.

1 Introduction

Learning multiple tasks has been studied for more than a decade [6, 24, 11]. Research in the fol-
lowing two directions has drawn considerable interest: learning a common feature representation
shared by tasks [1, 12, 30, 2, 3, 9, 23], and directly inferring the relatedness of tasks [4, 26, 21, 29].
Both have a natural interpretation if we view learning multiple tasks as estimating a matrix of model
parameters, where the rows and columns correspond to tasks and features. From this perspective,
learning the feature structure corresponds to discoveringthe structure of the columns in the param-
eter matrix, and modeling the task relatedness aims to find and utilize the relations among rows.

Regularization methods have shown promising results in finding either feature or task struc-
ture [1, 2, 12, 21]. In this paper we propose a new regularization approach and show how several
previous approaches are variants of special cases of it. Thekey contribution is a matrix-normal
penalty with sparse inverse covariances, which provides a framework for characterizing and cou-
pling the model parameters of related tasks. Following the matrix normal density, we design a
penalty that decomposes the full covariance of matrix elements into the Kronecker product of row
and column covariances, which correspond to task and feature structures in multi-task learning. To
address overfitting and select task and feature structures,we incorporate sparse covariance selection
techniques into our matrix-normal regularization framework via ℓ1 penalties on task and feature in-
verse covariances. We compare the proposed method to related models on two real-world data sets:
detecting landmines in multiple fields and recognizing faces between different subjects.
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2 Related Work

Multi-task learning has been an active research area for more than a decade [6, 24, 11]. For joint
learning of multiple tasks, connections need to be established to couple related tasks. One direction
is to find a common feature structure shared by tasks. Along this direction, researchers proposed to
infer task structure via principal components [1, 12], independent components [30] and covariance
[2, 3] in the parameter space, to select a common subset of features [9, 23], as well as to use shared
hidden nodes in neural networks [6, 11]. Specifically, learning a shared feature covariance for model
parameters [2] is a special case of our proposed framework. On the other hand, assuming models
of all tasks are equally similar is risky. Researchers recently began exploring methods to infer the
relatedness of tasks. These efforts include using mixturesof Gaussians [4] or Dirichlet processes
[26] to model task groups, encouraging clustering of tasks via a convex regularization penalty [21],
identifying “outlier” tasks by robust t-processes [29], and inferring task similarity from task-specific
features [8, 27, 28]. The present paper uses the matrix normal density andℓ1-regularized sparse
covariance selection to specify a structured penalty, which provides a systematic way to characterize
and select both task and feature structures in multiple parametric models.

Matrix normal distributions have been studied in probability and statistics for several decades [13,
16, 18] and applied to predictive modeling in the Bayesian literature. For example, the standard
matrix normal can serve as a prior for Bayesian variable selection in multivariate regression [9],
where MCMC is used for sampling from the resulting posterior. Recently, matrix normal distribu-
tions have also been used in nonparametric Bayesian approaches, especially in learning Gaussian
Processes (GPs) for multi-output prediction [7] and collaborative filtering [27, 28]. In this case, the
covariance function of the GP prior is decomposed as the Kronecker product of a covariance over
functions and a covariance over examples. We note that the proposed matrix-normal penalty with
sparse inverse covariances in this paper can also be viewed as a new matrix-variate prior, upon which
Bayesian inference can be performed. We will pursue this direction in our future work.

3 Matrix-Variate Normal Distributions

3.1 Definition

The matrix-variate normal distribution is one of the most widely studied matrix-variate distributions
[18, 13, 16]. Consider anm × p matrix W. Since we can vectorizeW to be amp × 1 vector,
the normal distribution on a matrixW can be considered as a multivariate normal distribution on a
vector ofmp dimensions. However, such an ordinary multivariate distribution ignores the special
structure ofW as anm × p matrix, and as a result, the covariance characterizing the elements of
W is of sizemp×mp. This size is usually prohibitive for modeling and estimation. To utilize the
structure ofW, matrix normal distributions assume that themp×mp covariance can be decomposed
as the Kronecker productΣ⊗Ω, and elements ofW follow:

V ec(W) ∼ N(V ec(M),Σ⊗Ω) (1)
whereΩ is anm ×m positive definite matrix indicating the covariance betweenrows ofW, Σ is
a p × p positive definite matrix indicating the covariance betweencolumns ofW, Σ ⊗ Ω is the
Kronecker product ofΣ andΩ, M is am× p matrix containing the expectation of each element of
W, andV ec is the vectorization operation which maps am× p matrix into amp× 1 vector. Due to
the decomposition of covariance as the Kronecker product, the matrix-variate normal distribution of
anm × p matrixW, parameterized by the meanM, row covarianceΩ and column covarianceΣ,
has a compact log-density [18]:

logP (W) = −mp

2
log(2π)− p

2
log(|Ω|)− m

2
log(|Σ|)− 1

2
tr{Ω−1(W −M)Σ−1(W −M)T } (2)

where| | is the determinant of a square matrix, andtr{} is the trace of a square matrix.

3.2 Maximum likelihood estimation (MLE)

Consider a set ofn samples{Wi}ni=1 where eachWi is am×p matrix generated by a matrix-variate
normal distribution as eq. (2). The maximum likelihood estimation (MLE) of meanM is [16]:

M̂ =
1

n

n
∑

i=1

Wi (3)
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The MLE estimators ofΩ andΣ are solutions to the following system:

{

Ω̂ = 1
np

∑n

i=1(Wi − M̂)Σ̂−1(Wi − M̂)T

Σ̂ = 1
nm

∑n

i=1(Wi − M̂)T Ω̂−1(Wi − M̂)
(4)

It is efficient to iteratively solve (4) until convergence, known as the “flip-flop” algorithm [16].

Also, Ω̂ andΣ̂ are not identifiable and solutions for maximizing the log density in eq. (2) are not
unique. If (Ω∗,Σ∗) is an MLE estimate for the row and column covariances, for anyα > 0,
(αΩ∗, 1

α
Σ

∗) will lead to the same log density and thus is also an MLE estimate. This can be seen
from the definition in eq. (1), where only the Kronecker productΣ⊗Ω is identifiable.

4 Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Regularization is a principled way to control model complexity [20]. Classical regularization penal-
ties (for single-task learning) can be interpreted as assuming a multivariate prior distribution on the
parameter vector and performing maximum-a-posterior estimation, e.g.,ℓ2 penalty andℓ1 penalty
correspond to multivariate Gaussian and Laplacian priors,respectively. For multi-task learning, it is
natural to use matrix-variate priors to design regularization penalties.

In this section, we propose a matrix-normal penalty with sparse inverse covariances for learning
multiple related tasks. In Section 4.1 we start with learning multiple tasks with a matrix-normal
penalty. In Section 4.2 we study how to incorporate sparse covariance selection into our framework
by further imposingℓ1 penalties on task and feature inverse covariances. In Section 4.3 we outline
the algorithm, and in Section 4.4 we discuss other useful constraints in our framework.

4.1 Learning with a Matrix Normal Penalty

Consider a multi-task learning problem withm tasks in ap-dimensional feature space. The training
sets are{Dt}mt=1, where each setDt containsnt examples{(x(t)

i , y
(t)
i )}nt

i=1. We want to learn
m models for them tasks but appropriately share knowledge among tasks. Modelparameters are
represented by anm× p matrixW, where parameters for a task correspond to a row.

The last term in the matrix-variate normal density (2) provides a structure to couple the parameters
of multiple tasks as a matrixW: 1) we setM = 0, indicating a preference for simple models; 2)
them×m row covarianceΩ describes the similarity among tasks; 3) thep× p column covariance
matrixΣ represents a shared feature structure. This yields the following total lossL to optimize:

L =
m
∑

t=1

nt
∑

i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ tr{Ω−1

WΣ
−1

W
T } (5)

whereλ controls the strength of the regularization,(y
(t)
i ,x

(t)
i ) is the ith example in the training

set of thetth task,W(t, :) is the parameter vector of thetth task, andL() is a convex empirical
loss function depending on the specific model we use, e.g., squared loss for linear regression, log-
likelihood loss for logistic regression, hinge loss for SVMs, and so forth. WhenΩ andΣ are known
and positive definite, eq. (5) is convex w.r.t.W and thusW can be optimized efficiently [22].

Now we discuss a few special cases of (5) and how is previous work related to them. When we fix
Ω = Im andΣ = Ip, the penalty term can be decomposed into standardℓ2-norm penalties on the
m rows ofW. In this case, them tasks in (5) can be learned almost independently using single-task
ℓ2 regularization (but tasks are still tied by sharing the parameterλ).

When we fixΩ = Im, tasks are linked only by a shared feature covarianceΣ. This corresponds
to a multi-task feature learning framework [2, 3] which optimizes eq. (5) w.r.t.W andΣ, with an
additional constrainttr{Σ} ≤ 1 on the trace ofΣ to avoid settingΣ to infinity.

When we fixΣ = Ip, tasks are coupled only by a task similarity matrixΩ. This is used in a
recent clustered multi-task learning formulation [21], which optimizes eq. (5) w.r.t.W andΩ, with
additional constraints on the singular values ofΩ that are motivated and derived from task clustering.
A more recent multi-label classification model [19] essentially optimizesW in eq. (5) with a label
correlationΩ given as prior knowledge and empirical lossL as the max-margin hinge loss.
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We usually do not know task and feature structures in advance. Therefore, we would like to inferΩ
andΣ in eq. (5). Note that if we jointly optimizeW, Ω andΣ in eq. (5), we will always setΩ and
Σ to be infinity matrices. We can impose constraints onΩ andΣ to avoid this, but a more natural
way is to further expand eq. (5) to include all relevant termsw.r.t. Ω andΣ from the matrix normal
log-density (2). As a result, the total lossL is:

L =

m
∑

t=1

nt
∑

i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ [p log |Ω|+m log |Σ|+ tr{Ω−1

WΣ
−1

W
T }] (6)

Based on this formula, we can infer task structureΩ and feature structureΣ given the model pa-
rametersW, as the following problem:

min
Ω,Σ

p log |Ω|+m log |Σ|+ tr{Ω−1
WΣ

−1
W

T } (7)

This problem is equivalent to maximizing the log-likelihood of a matrix normal distribution as in
eq. (2), givenW as observations and expectationM fixed at0. Following Section 3.2, the MLE of
Ω andΣ can be obtained by the “flip-flop” algorithm:

{

Ω̂ = 1
p
WΣ̂

−1
W

T + ǫIm

Σ̂ = 1
m
W

T
Ω̂

−1
W + ǫIp

(8)

whereǫ is a small positive constant to improve numerical stability. As discussed in Section 3.2, only
Σ⊗Ω is uniquely defined, and̂Ω andΣ̂ are only identifiable up to an multiplicative constant. This
will not affect the optimization ofW using eq. (5), since onlyΣ⊗Ω matters for this purpose.

4.2 Sparse Covariance Selection in the Matrix-Normal Penalty

Consider the sparsity ofΩ−1 andΣ−1. WhenΩ has a sparse inverse, task pairs corresponding to
zero entries inΩ−1 will not be explicitly coupled in the penalty of (6). Similarly, a zero entry in
Σ

−1 indicates no direct interaction between the two corresponding features in the penalty. Also,
note that a clustering of tasks can be expressed by block-wise sparsity ofΩ−1.

Covariance selection aims to select nonzero entries in the Gaussian inverse covariance and discover
conditional independence between variables (indicated byzero entries in the inverse covariance) [14,
5, 17, 15]. The matrix-normal density in eq. (6) enables us toperform sparse covariance selection to
regularize and select task and feature structures.

Formally, we rewrite (6) to include two additionalℓ1 penalty terms on the inverse covariances:

L =

m
∑

t=1

nt
∑

i=1

L(y
(t)
i ,x

(t)
i ,W(t, :)) + λ[p log |Ω|+m log |Σ|+ tr{Ω−1

WΣ
−1

W
T }]

+ λΩ||Ω−1||ℓ1 + λΣ||Σ−1||ℓ1 (9)

where|| ||ℓ1 is the ℓ1-norm of a matrix, andλΩ andλΣ control the strength ofℓ1 penalties and
therefore the sparsity of task and feature structures.

Based on the new regularization formula (9), estimatingW givenΩ andΣ as in (5) is not affected,
while inferringΩ andΣ givenW, previously shown as (7), becomes a new problem:

min
Ω,Σ

p log |Ω|+m log |Σ|+ tr{Ω−1
WΣ

−1
W

T }+ λΩ

λ
||Ω−1||ℓ1 +

λΣ

λ
||Σ−1||ℓ1 (10)

As in (8), we can iteratively optimizeΩ andΣ until convergence, as follows:
{

Ω̂ = argminΩ p log |Ω|+ tr{Ω−1(WΣ
−1

W
T )}+ λΩ

λ
||Ω−1||ℓ1

Σ̂ = argmin
Σ

m log |Σ|+ tr{Σ−1(WT
Ω̂

−1
W)}+ λΣ

λ
||Σ−1||ℓ1

(11)

Note that both equations in (11) areℓ1 regularized covariance selection problems, for which efficient
optimization has been intensively studied [5, 17, 15]. For example, we can use graphical lasso [17]
as a basic solver and consider (11) as anℓ1 regularized “flip-flop” algorithm:

{

Ω̂ = glasso( 1
p
WΣ̂

−1
W

T , λΩ

λ
)

Σ̂ = glasso( 1
m
W

T
Ω̂

−1
W, λΣ

λ
)
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Finally, an annoying part of eq. (9) is the presence of two additional regularization parametersλΩ

andλΣ. Due to the property of matrix normal distributions that only Σ ⊗Ω is identifiable, we can
safely reduce the complexity of choosing regularization parameters by considering the restriction:

λΩ = λΣ (12)

The following lemma proves that restrictingλΩ andλΣ to be equal in eq. (9) will not reduce the
space of optimal modelsW we can obtain. As a result, we eliminate one regularization parameter.

Lemma 1. SupposeW∗ belongs to a minimizer(W∗,Ω∗,Σ∗) for eq. (9) with some arbitrary
choice ofλ, λΩ andλΣ > 0. Then,W∗ must also belong to a minimizer for eq. (9) with certain
choice ofλ′, λ′

Ω andλ′

Σ such thatλ′

Ω = λ′

Σ. Proof of lemma 1 is provided in Appendix A.

4.3 The Algorithm

Based on the regularization formula (9), we study the following algorithm to learning multiple tasks:

1) EstimateW by solving (5), usingΩ = Im andΣ = Ip;

2) InferΩ andΣ in (9) (by solving (11) until convergence), using the estimatedW from step 1);

3) EstimateW by solving (5), using the inferredΩ andΣ from step 2).

One can safely iterate over steps 2) and 3) and convergence toa local minimum of eq. (9) is guaran-
teed. However, we observed that a single pass yields good results1. Steps 1) and 3) are linear in the
number of data points and step 2) is independent of it, so the method scales well with the number
of samples. Step 2) needs to solveℓ1 regularized covariance selection problems as (11). We use the
state of the art technique [17], but more efficient optimization for large covariances is still desirable.

4.4 Additional Constraints

We can have additional structure assumptions in the matrix-normal penalty. For example, consider:

Ωii = 1 i = 1, 2, . . . ,m (13)

Σjj = 1 j = 1, 2, . . . , p (14)

In this case, we ignore variances and restrict our attentionto correlation structures. For example,
off-diagonal entries of task covarianceΩ characterize the task similarity; diagonal entries indicate
different amounts of regularization on tasks, which may be fixed as a constant if we prefer tasks to be
equally regularized. Similar arguments apply to feature covarianceΣ. We include these restrictions
by converting inferred covariance(s) into correlation(s)in step 2) of the algorithm in Section 4.3. In
other words, the restrictions are enforced by a projection step.

If one wants to iterative over steps 2) and 3) of the algorithmin Section 4.3 until convergence, we
may consider the constraints

Ωii = c1 i = 1, 2, . . . ,m (15)

Σjj = c2 j = 1, 2, . . . , p (16)

with unknown quantitiesc1 andc2, and consider eq. (9) in step 2) as aconstrained optimization
problem w.r.t.W, Ω, Σ, c1 andc2, instead of using a projection step. As a result, the “flip-flop”
algorithm in (11) needs to solveℓ1 penalized covariance selection with equality constraints(15)
or (16), where the dual block coordinate descent [5] and graphical lasso [17] are no longer directly
applicable. In this case, one can solve the two steps of (11) as determinant maximization problems
with linear constraints [25], but this is inefficient. We will study this direction (efficient constrained
sparse covariance selection) in the future work.

5 Empirical Studies

In this section, we present our empirical studies on a landmine detection problem and a face recog-
nition problem, where multiple tasks correspond to detecting landmines at different landmine fields
and classifying faces between different subjects, respectively.

1Further iterations over step 2) and 3) will not dramaticallychange model estimation. Also, early stopping
as regularization might also lead to better generalizability.

5



5.1 Data Sets and Experimental Settings

The landmine detection data setfrom [26] contains examples collected from different landmine
fields. Each example in the data set is represented by a9-dimensional feature vector extracted from
radar imaging, which includes moment-based features, correlation-based features, an energy ratio
feature and a spatial variance feature. As a binary classification problem, the goal is to predict
landmines (positive class) or clutter (negative class). Following [26], we jointly learn19 tasks from
landmine fields1−10 and19−24 in the data set. As a result, the model parametersW are a19×10
matrix, corresponding to19 tasks and10 coefficients (including the intercept) for each task.

The distribution of examples is imbalanced in each task, with a few dozen positive examples and
several hundred negative examples. Therefore, we use the average AUC (Area Under the ROC
Curve) over19 tasks as the performance measure. We vary the size of the training set for each task
as30, 40, 80 and160. Note that we intentionally keep the training sets small because the need for
cross-task learning diminishes as the training set becomeslarge relative to the number of parameters
being learned. For each training set size, we randomly select training examples for each task and
the rest is used as the testing set. This is repeated30 times. Task-average AUC scores are collected
over30 runs, and mean and standard errors are reported. Note that for small training sizes (e.g.,30
per task) we often have some task(s) that donot have any positive training sample. It is interesting
to see how well multi-task learning handles this case.

The face recognition data setis the Yale face database, which contains165 images of15 subjects.
The11 images per subject correspond to different configurations in terms of expression, emotion,
illumination, and wearing glasses (or not), etc. Each imageis scaled to32 × 32 pixels. We use the
first 8 subjects to construct8×7

2 = 28 binary classification tasks, each to classify two subjects.We
vary the size of the training set as3, 5 and7 images per subject. We have30 random runs for each
training size. In each run, we randomly select the training set and use the rest as the testing set. We
collect task-average classification errors over30 runs, and report mean and standard errors.

Choice of features is important for face recognition problems. In our experiments, we use orthogonal
Laplacianfaces [10], which have been shown to provide better discriminative power than Eigenfaces
(PCA), fisherfaces (LDA) and Laplacianfaces on several benchmark data sets. In each random run,
we extract30 orthogonal Laplacianfaces using the selected training setof all 8 subjects2, and conduct
experiments of all28 classification tasks in the extracted feature space.

5.2 Models and Implementation Details

We use the logistic regression loss as the empirical lossL in (9). We compare the following models.

STL: learnℓ2 regularized logistic regression for each task separately.
MTL-C : clustered multi-task learning [21], which encourages task clustering in regularization. As
discussed in Section 4.1, this is related to eq. (5) with onlya task structureΩ.
MTL-F : multi-task feature learning [2], which corresponds to fixing the task covarianceΩ asIm
and optimizing (6) with only the feature covarianceΣ.

In addition, we also study various different configurationsof the proposed framework:

MTL( Im& Ip): learnW using (9) withΩ andΣ fixed as identity matricesIm andIp.
MTL( Ω& Ip): learnW and task covarianceΩ using (9), with feature covarianceΣ fixed asIp.
MTL( Im&Σ): learnW and feature covarianceΣ using (9), with task covarianceΩ fixed asIm.
MTL( Ω&Σ): learnW, Ω andΣ using (9), inferring both task and feature structures.
MTL( Ω&Σ)Ωii=Σjj=1: learnW, Ω andΣ using (9), with restrictedΩ andΣ as (13) and (14).
MTL( Ω&Σ)Ωii=1: learnW, Ω andΣ using (9), with restrictedΩ as (13) and freeΣ. Intuitively,
free diagonal entries inΣ are useful when features are of different importance, e.g, components
extracted as orthogonal Laplacianfaces usually capture decreasing amounts of information [10].

We use conjugate gradients [22] to optimizeW in (5), and inferΩ andΣ in (11) using graphical
lasso [17] as the basic solver. Regularization parametersλ andλΩ = λΣ are chosen by3-fold cross

2For experiments with3 images per subject, we can only extract23 Laplacianfaces, which is limited by the
size of training examples (3× 8 = 24) [10].
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Avg AUC Score 30 samples 40 samples 80 samples 160 samples
STL 64.85(0.52) 67.62(0.64) 71.86(0.38) 76.22(0.25)

MTL-C [21] 67.09(0.44) 68.95(0.40) 72.89(0.31) 76.64(0.17)
MTL-F [2] 72.39(0.79) 74.75(0.63) 77.12(0.18) 78.13(0.12)

MTL(Im&Ip) 66.10(0.65) 69.91(0.40) 73.34(0.28) 76.17(0.22)
MTL(Ω&Ip) 74.88(0.29) 75.83(0.28) 76.93(0.15) 77.95(0.17)
MTL(Im&Σ) 72.71(0.65) 74.98(0.32) 77.35(0.14) 78.13(0.14)
MTL(Ω&Σ) 75.10(0.27) 76.16(0.15) 77.32(0.24) 78.21(0.17)∗

MTL(Ω&Σ)Ωii=Σjj=1 75.31(0.26)∗ 76.64(0.13)∗ 77.56(0.16)∗ 78.01(0.12)
MTL(Ω&Σ)Ωii=1 75.19(0.22) 76.25(0.14) 77.22(0.15) 78.03(0.15)

Table 1: Average AUC scores (%) on landmine detection: means(and standard errors) over30
random runs. For each column, the best model is marked with∗ and competitive models (by paired
t-tests) are shown inbold.

validation within the range[10−7, 103]. The model in [21] uses4 regularization parameters, and we
consider3 values for each parameter, leading to34 = 64 combinations chosen by cross validation.

5.3 Results on Landmine Detection

The results on landmine detection are shown in Table 1. Each row of the table corresponds to a
model in our experiments. Each column is a training sample size. We have30 random runs for each
sample size. We use task-average AUC score as the performance measure and report the mean and
standard error of this measure over30 random runs. The best model is marked with∗, and models
displayed in bold fonts are statistically competitive models (i.e. not significantly inferior to the best
model in a one-sided paired t-test withα = 0.05).

Overall speaking, MTL(Ω&Σ) and MTL(Ω&Σ)Ωii=Σjj=1 lead to the best prediction performance.
For small training sizes, restrictedΩ andΣ (Ωii = Σjj = 1) offer better prediction; for large
training size (160 per task), freeΩ andΣ give the best performance. The best model performs
better than MTL-F [2] and much better than MTL-C [21] with small training sets.

MTL(Im&Ip) performs better than STL, i.e., even the simplest couplingamong tasks (by sharingλ)
can be helpful when the size of training data is small. Consider the performance of MTL(Ω&Ip) and
MTL(Im&Σ), which learn either a task structure or a feature structure. When the size of training
samples is small (i.e.,30 or 40), coupling by task similarity is more effective, and as the training size
increases, learning a common feature representation is more helpful. Finally, consider MTL(Ω&Σ),
MTL(Ω&Σ)Ωii=Σjj=1 and MTL(Ω&Σ)Ωii=1. MTL(Ω&Σ)Ωii=Σjj=1 imposes a strong restriction
and leads to better performance when the training size is small. MTL( Ω&Σ) is more flexible and
performs well given large numbers of training samples. MTL(Ω&Σ)Ωii=1 performs similarly to
MTL(Ω&Σ)Ωii=Σjj=1, indicating no significant variation of feature importancein this problem.

5.4 Results on Face Recognition

Empirical results on face recognition are shown in Table 2, with the best model in each column
marked with∗ and competitive models displayed in bold. MTL-C [21] performs even worse than
STL. One possible explanation is that, since tasks are to classify faces between different subjects,
there may not be a clustered structure over tasks and thus a cluster norm will be inappropriate.
In this case, using a task similarity matrix may be more appropriate than clustering over tasks.
In addition, MTL(Ω&Σ)Ωii=1 shows advantages over other models, especially if given relatively
sufficient training data (5 or 7 per subject). Compared to MTL(Ω&Σ), MTL(Ω&Σ)Ωii=1 imposes
restrictions on diagonal entries of task covarianceΩ: all tasks seem to be similarly difficult and
should be equally regularized. Compared to MTL(Ω&Σ)Ωii=Σjj=1, MTL(Ω&Σ)Ωii=1 allows the
diagonal entries of feature covarianceΣ to capture varying degrees of importance of Laplacianfaces.
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Avg Classification Errors 3 samples per class 5 samples per class 7 samples per class
STL 10.97(0.46) 7.62(0.30) 4.75(0.35)

MTL-C [21] 11.09(0.49) 7.87(0.34) 5.33(0.34)
MTL-F [2] 10.78(0.60) 6.86(0.27) 4.20(0.31)

MTL(Im&Ip) 10.88(0.48) 7.51(0.28) 5.00(0.35)
MTL(Ω&Ip) 9.98(0.55) 6.68(0.30) 4.12(0.38)
MTL(Im&Σ) 9.87(0.59) 6.25(0.27) 4.06(0.34)
MTL(Ω&Σ) 9.81(0.49) 6.23(0.29) 4.11(0.36)

MTL(Ω&Σ)Ωii=Σjj=1 9.67(0.57)∗ 6.21(0.28) 4.02(0.32)
MTL(Ω&Σ)Ωii=1 9.67(0.51)∗ 5.98(0.29)∗ 3.53(0.34)∗

Table 2: Average classification errors (%) on face recognition: means (and standard errors) over30
random runs. For each column, the best model is marked with∗ and competitive models (by paired
t-tests) are shown inbold.

6 Conclusion

We propose a matrix-variate normal penalty with sparse inverse covariances to couple multiple tasks.
The proposed framework provides an effective and flexible way to characterize and select both task
and feature structures for learning multiple tasks. Several recently proposed methods can be viewed
as variants of the special cases of our formulation and our empirical results on landmine detection
and face recognition show that we consistently outperform previous methods.

Acknowledgement: this work was funded in part by the National Science Foundation under grant
NSF-IIS0911032 and the Department of Energy under grant DESC0002607.

Appendix A

Proof of Lemma 1.

We prove lemma 1 by construction. Given an arbitrary choice of λ, λΩ andλΣ > 0 in eq. (9) and an
optimal solution(W∗,Ω∗,Σ∗), we want to prove thatW∗ also belongs to an optimal solution for
eq. (9) with certainλ′, λ′

Ω andλ′

Σ s.t.λ′

Ω = λ′

Σ. Let’s constructλ′, λ′

Ω andλ′

Σ as follows:

(λ′, λ′

Ω, λ
′

Σ) = (λ,
√

λΩλΣ,
√

λΩλΣ) (17)

We denote the objective function in eq. (9) withλ, λΩ and λΣ as Objλ,λΩ,λΣ(W,Ω,Σ).
Also, we denote the objective function with our constructedparametersλ′, λ′

Ω and λ′

Σ as
Objλ

′,λ′

Ω
,λ′

Σ(W,Ω,Σ).

For any(W,Ω,Σ), we further construct an invertible (i.e., one-to-one) transform as follows:

(W′,Ω′,Σ′) = (W,

√

λΣ

λΩ
Ω,

√

λΩ

λΣ
Σ) (18)

The key step in our proof is that, by construction, the following equality always holds:

Objλ,λΩ,λΣ(W,Ω,Σ) = Objλ
′,λ′

Ω
,λ′

Σ(W′,Ω′,Σ′) (19)

To see this, notice that eq. (9) consists of three parts. The first part is the empirical loss on training
examples, depending only onW (and training data). The second part is the log-density of matrix
normal distributions, which depends onW andΣ⊗Ω. The third part is the sum of twoℓ1 penalties.
The equality in eq. (19) stems from the fact that all three parts of eq. (9) are not changed: 1)W′ =
W so the first part remains unchanged; 2)Σ

′⊗Ω
′ = Σ⊗Ω so the second part of the matrix normal

log-density is the same; 3) by our construction, the third part is not changed.

Based on this equality, if (W∗,Ω∗,Σ∗) minimizes Objλ,λΩ,λΣ(), we have that

(W∗,
√

λΣ

λΩ

Ω
∗,
√

λΩ

λΣ

Σ
∗) minimizesObjλ

′,λ′

Ω
,λ′

Σ(), whereλ′ = λ andλ′

Ω = λ′

Σ =
√
λΩλΣ.
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