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Abstract

In this paper, we propose a matrix-variate normal penalti gparse inverse co-
variances to couple multiple tasks. Learning multiple §oaetric) models can be
viewed as estimating a matrix of parameters, where rows ahums of the ma-
trix correspond to tasks and features, respectively. wilig the matrix-variate
normal density, we design a penalty that decomposes thedwlriance of matrix
elements into the Kronecker product of row covariance aridneo covariance,
which characterizes both task relatedness and featuresemiation. Several re-
cently proposed methods are variants of the special cagbsdbrmulation. To
address the overfitting issue and select meaningful taskfeatdre structures,
we include sparse covariance selection into our matrixaabregularization via
(1 penalties on task and feature inverse covariances. We iealfyirstudy the
proposed method and compare with related models in twowedt problems:
detecting landmines in multiple fields and recognizing fabetween different
subjects. Experimental results show that the proposedsinanrk provides an ef-
fective and flexible way to model various different struetof multiple tasks.

1 Introduction

Learning multiple tasks has been studied for more than adéejé 24, 11]. Research in the fol-

lowing two directions has drawn considerable interestrrliegg a common feature representation
shared by tasks [1, 12, 30, 2, 3, 9, 23], and directly inferthre relatedness of tasks [4, 26, 21, 29].
Both have a natural interpretation if we view learning nplétitasks as estimating a matrix of model
parameters, where the rows and columns correspond to tadkeatures. From this perspective,
learning the feature structure corresponds to discovéhi@gtructure of the columns in the param-
eter matrix, and modeling the task relatedness aims to fidditilize the relations among rows.

Regularization methods have shown promising results inirfqeither feature or task struc-
ture [1, 2, 12, 21]. In this paper we propose a new regulacaapproach and show how several
previous approaches are variants of special cases of it. k@peontribution is a matrix-normal
penalty with sparse inverse covariances, which provideamdwork for characterizing and cou-
pling the model parameters of related tasks. Following tlarisn normal density, we design a
penalty that decomposes the full covariance of matrix etémimto the Kronecker product of row
and column covariances, which correspond to task and featructures in multi-task learning. To
address overfitting and select task and feature structieecorporate sparse covariance selection
techniques into our matrix-normal regularization framewda ¢1 penalties on task and feature in-
verse covariances. We compare the proposed method tod-etatgels on two real-world data sets:
detecting landmines in multiple fields and recognizing $doetween different subjects.



2 Related Work

Multi-task learning has been an active research area foeitihan a decade [6, 24, 11]. For joint
learning of multiple tasks, connections need to be estaddiso couple related tasks. One direction
is to find a common feature structure shared by tasks. Aloisglitection, researchers proposed to
infer task structure via principal components [1, 12], ipeledent components [30] and covariance
[2, 3] in the parameter space, to select a common subsettofésd9, 23], as well as to use shared
hidden nodes in neural networks [6, 11]. Specifically, leagm shared feature covariance for model
parameters [2] is a special case of our proposed framewonkth® other hand, assuming models
of all tasks are equally similar is risky. Researchers rdgdregan exploring methods to infer the
relatedness of tasks. These efforts include using mixtofr€saussians [4] or Dirichlet processes
[26] to model task groups, encouraging clustering of tasksconvex regularization penalty [21],
identifying “outlier” tasks by robust t-processes [29]danferring task similarity from task-specific
features [8, 27, 28]. The present paper uses the matrix natemsity and/1-regularized sparse
covariance selection to specify a structured penalty, vpiovides a systematic way to characterize
and select both task and feature structures in multiplenpeiric models.

Matrix normal distributions have been studied in prob&p#ind statistics for several decades [13,
16, 18] and applied to predictive modeling in the Bayesitarditure. For example, the standard
matrix normal can serve as a prior for Bayesian variablectele in multivariate regression [9],
where MCMC is used for sampling from the resulting posterRecently, matrix normal distribu-
tions have also been used in nonparametric Bayesian apm®agespecially in learning Gaussian
Processes (GPs) for multi-output prediction [7] and callalive filtering [27, 28]. In this case, the
covariance function of the GP prior is decomposed as the é&ker product of a covariance over
functions and a covariance over examples. We note that thyigoped matrix-normal penalty with
sparse inverse covariances in this paper can also be viensedew matrix-variate prior, upon which
Bayesian inference can be performed. We will pursue thectlion in our future work.

3 Matrix-Variate Normal Distributions
3.1 Definition

The matrix-variate normal distribution is one of the mosfiely studied matrix-variate distributions
[18, 13, 16]. Consider am x p matrix W. Since we can vectoriz& to be amp x 1 vector,
the normal distribution on a matriv can be considered as a multivariate normal distribution on a
vector of mp dimensions. However, such an ordinary multivariate distion ignores the special
structure of W as armm x p matrix, and as a result, the covariance characterizingldraents of
W is of sizemp x mp. This size is usually prohibitive for modeling and estirpati To utilize the
structure ofW, matrix normal distributions assume that thg x mp covariance can be decomposed
as the Kronecker produsl ® €2, and elements oW follow:

Vec(W) ~ NVec(M), X ® Q) 1)
whereQ is anm x m positive definite matrix indicating the covariance betweans of W, X is
ap x p positive definite matrix indicating the covariance betweetumns of W, 3 ® Q is the
Kronecker product ok and2, M is am x p matrix containing the expectation of each element of
W, andVec is the vectorization operation which mapsax p matrix into amp x 1 vector. Due to
the decomposition of covariance as the Kronecker produetytatrix-variate normal distribution of
anm x p matrix W, parameterized by the medd, row covariancé&? and column covariancg,
has a compact log-density [18]:

m m 1 _ _
log P(W) = — =L log(2m) — £ log(|2]) — 5 log(|Z) — 5tr{Q (W - M)S~ (W - M)"} (2)
where| | is the determinant of a square matrix, and} is the trace of a square matrix.
3.2 Maximum likelihood estimation (MLE)

Consider a set of sampled W }"_, where eacfW; is am x p matrix generated by a matrix-variate
normal distribution as eq. (2). The maximum likelihood estiion (MLE) of mearM is [16]:

R 1 &
M:E;Wi ©))



The MLE estimators of2 andX are solutions to the following system:

{ Q = LYL(Wi-MS H(W; - M) @)
S o= LS (W - M)TQ YW, — M)

Itis efficient to iteratively solve (4) until convergencedwn as the “flip-flop” algorithm [16].

Also, €2 and3: are not identifiable and solutions for maximizing the log lgnin eq. (2) are not
unique. If (Q*,X*) is an MLE estimate for the row and column covariances, for any 0,
(a©2*, L3*) will lead to the same log density and thus is also an MLE es#mahis can be seen
from the definition in eq. (1), where only the Kronecker prodt @ 2 is identifiable.

4 Learning Multiple Tasks with a Sparse Matrix-Normal Penalty

Regularization is a principled way to control model comiepR0]. Classical regularization penal-
ties (for single-task learning) can be interpreted as assymmultivariate prior distribution on the
parameter vector and performing maximum-a-posteriomegion, e.g./2 penalty and’1 penalty
correspond to multivariate Gaussian and Laplacian prniespectively. For multi-task learning, it is
natural to use matrix-variate priors to design regulai@@apenalties.

In this section, we propose a matrix-normal penalty withrspanverse covariances for learning
multiple related tasks. In Section 4.1 we start with leagminultiple tasks with a matrix-normal
penalty. In Section 4.2 we study how to incorporate sparsar@nce selection into our framework
by further imposing/1 penalties on task and feature inverse covariances. Indbett8 we outline
the algorithm, and in Section 4.4 we discuss other usefustcaimts in our framework.

4.1 Learning with a Matrix Normal Penalty

Consider a multi-task learning problem withtasks in go-dimensional feature space. The training
sets are{D,}}*,, where each sdD, containsn; examples{(xgt),ygt)) .. We want to learn

7=

m models for then tasks but appropriately share knowledge among tasks. Miadameters are
represented by am x p matrix W, where parameters for a task correspond to a row.

The last term in the matrix-variate normal density (2) pd®4 a structure to couple the parameters
of multiple tasks as a matriwv: 1) we setM = 0, indicating a preference for simple models; 2)
them x m row covariance describes the similarity among tasks; 3) the p column covariance
matrix X represents a shared feature structure. This yields thewfiolf total lossC to optimize:

L=3"3" L <" W(t,) + Atr{Q W IWT} (5)

t=1 i=1

where A controls the strength of the regularizatiqmi(t),xgt)) is theith example in the training
set of thetth task, W (¢, :) is the parameter vector of théh task, andL() is a convex empirical
loss function depending on the specific model we use, e.gared loss for linear regression, log-
likelihood loss for logistic regression, hinge loss for S¥Mnd so forth. Whef and¥ are known
and positive definite, eq. (5) is convex w.M/ and thuswW can be optimized efficiently [22].

Now we discuss a few special cases of (5) and how is previouk retated to them. When we fix
Q =1,, andX = I,, the penalty term can be decomposed into stanéizrbrm penalties on the
m rows of W. In this case, then tasks in (5) can be learned almost independently usingesitagk
¢2 regularization (but tasks are still tied by sharing the paeter)).

When we fixQ2 = 1,,, tasks are linked only by a shared feature covaridfcerhis corresponds
to a multi-task feature learning framework [2, 3] which opizes eq. (5) w.r.tW and3, with an
additional constraint-{3} < 1 on the trace ok to avoid setting® to infinity.

When we fix2 = I, tasks are coupled only by a task similarity matfx This is used in a
recent clustered multi-task learning formulation [21],ig¥hoptimizes eq. (5) w.r.tW and(2, with
additional constraints on the singular value$xthat are motivated and derived from task clustering.
A more recent multi-label classification model [19] essahtioptimizesW in eq. (5) with a label
correlationQ? given as prior knowledge and empirical lasss the max-margin hinge loss.



We usually do not know task and feature structures in advaruerefore, we would like to infe
andX in eq. (5). Note that if we jointly optimiz&V, 2 andX in eq. (5), we will always sef and
3 to be infinity matrices. We can impose constraint<band X to avoid this, but a more natural
way is to further expand eq. (5) to include all relevant temrs. Q andX from the matrix normal
log-density (2). As a result, the total logss:

L= ZZL ", xD W (L, ) + A [plog |9 + mlog [B] + tr{Q"WE'WT}]  (6)
t=1i=1

Based on this formula, we can infer task structend feature structur® given the model pa-
rametersW, as the following problem:

min plog Q| + mlog|X[ + tr{Q'WE'wT} (7)

This problem is equivalent to maximizing the log-likeliltbof a matrix normal distribution as in

eq. (2), givenW as observations and expectativhfixed at0. Following Section 3.2, the MLE of
2 andX can be obtained by the “flip-flop” algorithm:

{ QO = 1W2 'W7T + e,

3 = ;WTQ 'W + I,

wheree is a small positive constant to improve numerical stabilty discussed in Section 3.2, only

> ® Q is uniquely defined, anf2 and3: are only identifiable up to an multiplicative constant. This
will not affect the optimization oW using eq. (5), since onl¥ ® € matters for this purpose.

(8)

4.2 Sparse Covariance Selection in the Matrix-Normal Pengy

Consider the sparsity a2 ! andX~!. WhenQ has a sparse inverse, task pairs corresponding to
zero entries i2 ! will not be explicitly coupled in the penalty of (6). Similgy a zero entry in

¥ ~! indicates no direct interaction between the two corresjpmnfibatures in the penalty. Also,
note that a clustering of tasks can be expressed by bloakspiarsity o2 1.

Covariance selection aims to select nonzero entries in thes§an inverse covariance and discover
conditional independence between variables (indicatextlyentries in the inverse covariance) [14,

5, 17, 15]. The matrix-normal density in eq. (6) enables ysetdorm sparse covariance selection to

regularize and select task and feature structures.

Formally, we rewrite (6) to include two addition@l penalty terms on the inverse covariances:

L= ZZL D, x W(t,:)) + Alplog |2 + mlog |B| + tr{Q'WE'WT}|
t=1 1=1
+ 27 la + 22|27l 9)
where|| ||¢1 is the£1-norm of a matrix, and\o and Ax, control the strength of1 penalties and
therefore the sparsity of task and feature structures.

Based on the new regularization formula (9), estima¥igiven2 andX as in (5) is not affected,
while inferringQ and3> given W, previously shown as (7), becomes a new problem:

Ao

min plog |©2] + mlog| 8| + tr{ Q' WETWT} 4 Z2||0° 1||ﬂ+—2||z*1||a (10)

As in (8), we can iteratively optimiz€ andX until convergence, as follows:
{ Q = argming plog|Q|+tr{Q ' (WETWT)} + 22(1Q-1||4

¥ = argming mlog|E|+tr{E"Y(WIQ W)} + 22 ||=-1||,
Note that both equationsin (11) aferegularized covariance selection problems, for whichieffic
optimization has been intensively studied [5, 17, 15]. Bamaple, we can use graphical lasso [17]
as a basic solver and consider (11) aghregularized “flip-flop” algorithm:
{ (:] = glasso(%Wﬁ)ile, Aa)

3 = glasso(ZWTQIW, 2Az)

(11)
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Finally, an annoying part of eq. (9) is the presence of twatamthl regularization parametehs,
and)\y. Due to the property of matrix normal distributions thatyoBl ® € is identifiable, we can
safely reduce the complexity of choosing regularizatiorapeeters by considering the restriction:

Aq = A (12)

The following lemma proves that restricting, and As, to be equal in eq. (9) will not reduce the
space of optimal modeMV we can obtain. As a result, we eliminate one regularizatemameter.

Lemma 1. SupposeW* belongs to a minimizefW*, 2*, ¥*) for eq. (9) with some arbitrary
choice of\, \q andAy > 0. Then,W* must also belong to a minimizer for eq. (9) with certain
choice of\', A\, and )y, such that\i, = A§,. Proof of lemma 1 is provided in Appendix A.

4.3 The Algorithm

Based on the regularization formula (9), we study the folt@nalgorithm to learning multiple tasks:
1) EstimateW by solving (5), using2 = I,,, andX = I,;;

2) InferQ andX in (9) (by solving (11) until convergence), using the estieddW from step 1);

3) EstimateéW by solving (5), using the inferre@ andX: from step 2).

One can safely iterate over steps 2) and 3) and convergeadedtal minimum of eq. (9) is guaran-

teed. However, we observed that a single pass yields goatidesSteps 1) and 3) are linear in the
number of data points and step 2) is independent of it, so #thad scales well with the number
of samples. Step 2) needs to solleregularized covariance selection problems as (11). Wehgse t
state of the art technique [17], but more efficient optimaafor large covariances is still desirable.

4.4 Additional Constraints

We can have additional structure assumptions in the matiixaal penalty. For example, consider:
Qii = 1 i:1,2,...,m (13)
Ejj =1 j:1,2,...,p (14)

In this case, we ignore variances and restrict our atteritiaorrelation structures. For example,

off-diagonal entries of task covarian€echaracterize the task similarity; diagonal entries ingica

different amounts of regularization on tasks, which may xedfias a constant if we prefer tasks to be

equally regularized. Similar arguments apply to featureadanceX. We include these restrictions

by converting inferred covariance(s) into correlatiomis3tep 2) of the algorithm in Section 4.3. In
other words, the restrictions are enforced by a projectiep.s

If one wants to iterative over steps 2) and 3) of the algorithr8ection 4.3 until convergence, we
may consider the constraints

Qii = C i:1,2,...,m (15)

Ejj = C32 j:1,2,...,p (16)
with unknown quantitieg; andc,, and consider eq. (9) in step 2) as@nstrained optimization
problem w.r.t. W, Q, X, ¢; andcs, instead of using a projection step. As a result, the “flippflo
algorithm in (11) needs to solv& penalized covariance selection with equality constraihfy
or (16), where the dual block coordinate descent [5] andigcaplasso [17] are no longer directly
applicable. In this case, one can solve the two steps of @ dgterminant maximization problems
with linear constraints [25], but this is inefficient. We xgtudy this direction (efficient constrained
sparse covariance selection) in the future work.

5 Empirical Studies

In this section, we present our empirical studies on a landrdetection problem and a face recog-
nition problem, where multiple tasks correspond to detgdiandmines at different landmine fields
and classifying faces between different subjects, reamhet

Further iterations over step 2) and 3) will not dramaticatiyange model estimation. Also, early stopping
as regularization might also lead to better generalizgbili



5.1 Data Sets and Experimental Settings

The landmine detection data sefrom [26] contains examples collected from different larigen
fields. Each example in the data set is representeddbgtimensional feature vector extracted from
radar imaging, which includes moment-based featureselation-based features, an energy ratio
feature and a spatial variance feature. As a binary claasdit problem, the goal is to predict
landmines (positive class) or clutter (negative class)lofing [26], we jointly learn19 tasks from
landmine fieldd — 10 and19 — 24 in the data set. As a result, the model paramé@rare a19 x 10
matrix, corresponding td9 tasks and 0 coefficients (including the intercept) for each task.

The distribution of examples is imbalanced in each taskh wifew dozen positive examples and
several hundred negative examples. Therefore, we use #rage/ AUC (Area Under the ROC
Curve) overl9 tasks as the performance measure. We vary the size of thenfyaet for each task
as30, 40,80 and160. Note that we intentionally keep the training sets smalkse the need for
cross-task learning diminishes as the training set bectangsrelative to the number of parameters
being learned. For each training set size, we randomly sekEning examples for each task and
the rest is used as the testing set. This is repedididnes. Task-average AUC scores are collected
over30 runs, and mean and standard errors are reported. Note thsah&dl training sizes (e.g30

per task) we often have some task(s) thandbhave any positive training sample. It is interesting
to see how well multi-task learning handles this case.

The face recognition data sets the Yale face database, which contaifis images ofl5 subjects.
The 11 images per subject correspond to different configuratinrieims of expression, emotion,
illumination, and wearing glasses (or not), etc. Each imagealed t32 x 32 pixels. We use the
first 8 subjects to construé§—7 = 28 binary classification tasks, each to classify two subjedts.
vary the size of the training set 8s5 and7 images per subject. We hagé random runs for each
training size. In each run, we randomly select the traingtgasd use the rest as the testing set. We
collect task-average classification errors aMeruns, and report mean and standard errors.

Choice of features is important for face recognition praideln our experiments, we use orthogonal
Laplacianfaces [10], which have been shown to provide béiseriminative power than Eigenfaces
(PCA), fisherfaces (LDA) and Laplacianfaces on several berack data sets. In each random run,
we extracB0 orthogonal Laplacianfaces using the selected trainingfsets subject$, and conduct
experiments of al8 classification tasks in the extracted feature space.

5.2 Models and Implementation Details

We use the logistic regression loss as the empiricallass(9). We compare the following models.

STL: learn/2 regularized logistic regression for each task separately.

MTL-C : clustered multi-task learning [21], which encouragek @astering in regularization. As
discussed in Section 4.1, this is related to eq. (5) with artlgsk structur€.

MTL-F : multi-task feature learning [2], which corresponds torfixithe task covarianc® asI,,
and optimizing (6) with only the feature covariante
In addition, we also study various different configuratiofthe proposed framework:

MTL( L,,&1,): learnW using (9) with§2 andX fixed as identity matricek,, andl,,.

MTL( Q&1,): learnW and task covarianc® using (9), with feature covariance fixed asl,.
MTL( L,,& X): learnW and feature covarianc@ using (9), with task covariand@ fixed asl,,, .
MTL( Q& X): learnW, © andX using (9), inferring both task and feature structures.

MTL( 2&X)q,,=x,,;=1: learnW, £2 andX using (9), with restricte? andX as (13) and (14).

MTL( 2& X)q,,—1: learnW, € andX using (9), with restricted as (13) and fre&. Intuitively,
free diagonal entries i are useful when features are of different importance, exgponents
extracted as orthogonal Laplacianfaces usually captunedsing amounts of information [10].

We use conjugate gradients [22] to optim¥é in (5), and infer2 andX in (11) using graphical
lasso [17] as the basic solver. Regularization paramatarslA\q = Ay, are chosen bg-fold cross

2For experiments with images per subject, we can only extrast_aplacianfaces, which is limited by the
size of training examples3(x 8 = 24) [10].



Avg AUC Score

30 samples | 40 samples |

80 samples | 160 samples]

STL 64.85(0.52)| 67.62(0.64)] 71.86(0.38)| 76.22(0.25)

MTL-C [21] 67.09(0.44) | 68.95(0.40)| 72.89(0.31)| 76.64(0.17)
MTL-F [2] 72.39(0.79)| 74.75(0.63)| 77.12(0.18)| 78.13(0.12)
MTL(L,.&1,) 66.10(0.65)| 69.91(0.40)| 73.34(0.28)| 76.17(0.22)
MTL(Q&T,) 74.88(0.29)| 75.83(0.28)| 76.93(0.15)| 77.95(0.17)
MTL(L,.&3) 72.71(0.65)| 74.98(0.32)| 77.35(0.14)| 78.13(0.14)
MTL(Q&X) 75.10(0.27)| 76.16(0.15)| 77.32(0.24)| 78.21(0.17)
MTL(Q8 )0, —x,,—1 | 75.31(0.26) | 76.64(0.13) | 77.56(0.16) | 78.01(0.12)
MTL(Q&%)g, 1 | 75.19(0.22)] 76.25(0.14)| 77.22(0.15)| 78.03(0.15)

Table 1: Average AUC scores (%) on landmine detection: méang standard errors) ovaf
random runs. For each column, the best model is marked*védtid competitive models (by paired
t-tests) are shown ibold.

validation within the rangél0~7, 103]. The model in [21] use$ regularization parameters, and we
consider values for each parameter, leadingsto= 64 combinations chosen by cross validation.

5.3 Results on Landmine Detection

The results on landmine detection are shown in Table 1. Eawhof the table corresponds to a
model in our experiments. Each column is a training sampke $e haved0 random runs for each
sample size. We use task-average AUC score as the perfoemaeasure and report the mean and
standard error of this measure od@rrandom runs. The best model is marked witland models
displayed in bold fonts are statistically competitive migdee. not significantly inferior to the best
model in a one-sided paired t-test with= 0.05).

Overall speaking, MTLQ& X) and MTLQ& X)q,,—x;,=1 lead to the best prediction performance.
For small training sizes, restrict&d and X (2;; = X;; = 1) offer better prediction; for large
training size {60 per task), free2 and X give the best performance. The best model performs
better than MTL-F [2] and much better than MTL-C [21] with dhteining sets.

MTL(1,,&1,) performs better than STL, i.e., even the simplest cougimgng tasks (by sharing
can be helpful when the size of training data is small. Cagrdige performance of MTI(2&1,,) and
MTL(I,,&X), which learn either a task structure or a feature structwhen the size of training
samples is small (i.e30 or 40), coupling by task similarity is more effective, and as ttadrting size
increases, learning a common feature representation s nedpful. Finally, consider MTLQ& ),
MTL(Q2&X)q,,=s,,=1 and MTLQ& X)q,,=1. MTL(Q2& X)q,,—x,, =1 iImposes a strong restriction
and leads to better performance when the training size il.sMaL( Q& X) is more flexible and
performs well given large numbers of training samples. MI&X)q,,—1 performs similarly to
MTL(22&X)q,,—s,,=1, indicating no significant variation of feature importameehis problem.

5.4 Results on Face Recognition

Empirical results on face recognition are shown in Table 2h whe best model in each column
marked with* and competitive models displayed in bold. MTL-C [21] penfiereven worse than
STL. One possible explanation is that, since tasks are ssifyafaces between different subjects,
there may not be a clustered structure over tasks and thusstecchorm will be inappropriate.
In this case, using a task similarity matrix may be more appabe than clustering over tasks.
In addition, MTL£2& ¥)q,,—1 shows advantages over other models, especially if givertively
sufficient training data or 7 per subject). Compared to MTOE& X)), MTL(22& X)q,,—1 imposes
restrictions on diagonal entries of task covariafeall tasks seem to be similarly difficult and
should be equally regularized. Compared to MR&(X)q,,—x =1, MTL(£2&X)q,,—1 allows the
diagonal entries of feature covariardo capture varying degrees of importance of Laplacianfaces



| Avg Classification Errorg 3 samples per clasp 5 samples per class 7 samples per clasp

STL 10.97(0.46) 7.62(0.30) 7.75(0.35)
MTL-C [21] 11.09(0.49) 7.87(0.34) 5.33(0.34)
MTL-F [2] 10.78(0.60) 6.86(0.27) 4.20(0.31)
MTL(T,,&1,) 10.88(0.48) 7.51(0.28) 5.00(0.35)
MTL(Q&T,) 9.98(0.55) 6.68(0.30) 74.12(0.38)
MTL(L,&>) 9.87(0.59) 6.25(0.27) 7.06(0.34)
MTL(Q&Y) 9.81(0.49) 6.23(0.29) 4.11(0.36)
MTL(Q& )0, —x,,—1 9.67(0.57) 6.21(0.28) 4.02(0.32)
MTL(Q& D)0, 1 9.67(0.51) 5.98(0.29) 3.53(0.34)

Table 2: Average classification errors (%) on face recogmitmeans (and standard errors) o¥er
random runs. For each column, the best model is marked*vétid competitive models (by paired
t-tests) are shown ihold.

6 Conclusion

We propose a matrix-variate normal penalty with sparserge/eovariances to couple multiple tasks.
The proposed framework provides an effective and flexiblg toaharacterize and select both task
and feature structures for learning multiple tasks. Sévecantly proposed methods can be viewed
as variants of the special cases of our formulation and ounirégzal results on landmine detection
and face recognition show that we consistently outperfammipus methods.

Acknowledgement this work was funded in part by the National Science Foundainder grant
NSF-11S0911032 and the Department of Energy under grant@@iB82607.

Appendix A

Proof of Lemma 1.

We prove lemma 1 by construction. Given an arbitrary chofcg 0 andAy > 01in eq. (9) and an
optimal solution(W*, Q*, 3*), we want to prove tha¥v* also belongs to an optimal solution for
eq. (9) with certain\’, A, and\§; s.t. A\ = A§.. Let’s construct\’, A, and\y; as follows:

(/\/7 IQ’ /Z) = (A VAAs, VAeAs) a7)

We denote the objective function in eq. (9) with \q and Ay as Obj* e =(W,Q, %),
Also, we denote the objective function with our construcfetameters\’, A\, and A, as
ObjN 2o s (W, Q, 2.

For any(W, Q, 3), we further construct an invertible (i.e., one-to-onejsfarm as follows:

(W, %) = (W, /220, /225 (18)
Aq Ax

The key step in our proof is that, by construction, the follogvequality always holds:
Obj* 22 (W, Q, 8) = Obj* e Xs (W', 0 5 (19)

To see this, notice that eq. (9) consists of three parts. Tétepfart is the empirical loss on training
examples, depending only AV (and training data). The second part is the log-density dfima
normal distributions, which depends 8% andX ® Q. The third part is the sum of twl penalties.
The equality in eq. (19) stems from the fact that all threespaireq. (9) are not changed: W’ =
W so the first part remains unchanged}?)2 Q' = X ® Q2 so the second part of the matrix normal
log-density is the same; 3) by our construction, the thind isanot changed.

Based on this equality, if (W* Q* X*) minimizes Obj**2*=(), we have that
(W, /3207, /32 5%) minimizesOb;* X5 (), whereX = X andAg, = Ay = VAo s,
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