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1 Introduction

The motor primitive idea is similar to the latent force model one. We want to use a set of templates
for basic motions in order to generate more complex ones. The analogy we can think of is the
generation of speech, in which phonemes are used to generate words and sentences.

Motor primitive model

Motor primitives employ the concept of autonomous dynamical system in which the independent
variable is first parameterized by a first order homogenous dynamical system. The output of this
system is used as the independent variable of the inducing force of a second order differential equa-
tion [2]. The first system is known as the canonical system and its form depends on the type of
movement that is to be represented: point attractive and limit cycle behaviors are the two most ba-
sic behaviors of nonlinear dynamical systems. In motor control these correspond to discrete and
rythmic movements.

Latent force model

The latent force model was first introduced in [1]. A set of coupled second order ordinary differential
equations was employed for human-balancing movement representation. Here we only review the
basic form for the covariance function in the Gaussian process formulation of the Latent force model.
More details and applications can be found in [1].

A set of D outputs {fd(t)}Dd=1 (where each of them describes the relative position of a particle wrt
to a set of reference points in a spring-damper-mass system) is represented by a Gaussian process
with covariance function,

kfdfd′ (t, t
′) =

Q∑
q=1

SqdSqd′
√
π`2q

8AdAd′ωdωd′
k

(q)
fdfd′

(t, t′),

with Ad the mass of system d, ωd the angular frequency, Sqd the relative strength of latent force
q over output d, `q the length-scale of the RBF covariance for the Gaussian process that describes
the latent force q and k(q)

fdfd′
(t, t′), the cross-covariance between the d-th and d′-th outputs under the

effect of the q-th latent force, and is given by

k
(q)
fdfd′

(t, t′) = hq(γ̃d′ , γd, t, t′) + hq(γd, γ̃d′ , t′, t) + hq(γd′ , γ̃d, t, t′) + hq(γ̃d, γd′ , t′, t)

− hq(γ̃d′ , γ̃d, t, t′)− hq(γ̃d, γ̃d′ , t′, t)− hq(γd′ , γd, t, t′)− hq(γd, γd′ , t′, t),
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where γd = αd + jωd, γ̃d = αd − jωd, and

hq(γd′ , γd, t, t′) =
1

γd + γd′
[Υq(γd′ , t′, t)− exp(−γdt)Υq(γd′ , t′, 0)] .

Υq(γd′ , t, t′) = 2 exp

(
`2qγ

2
d′

4

)
exp(−γd′(t− t′))︸ ︷︷ ︸

ψq(γd′ ,t,t
′)

− exp
(
− (t− t′)2

`2q

)
w(jz(t, t′))︸ ︷︷ ︸

υq(γd′ ,t,t
′)

− exp
(
− (t′)2

`2q

)
exp(−γd′t)w(−jz(0, t′))︸ ︷︷ ︸
ϕq(γd′ ,t,t

′)

= ψq(γd′ , t, t′)− υq(γd′ , t, t′)− ϕq(γd′ , t, t′),
and z(t, t′) = (t− t′)/`q − (`qγd′)/2. Note that z(t, t′) ∈ C, and w(jz) in the above equation, for
z ∈ C, denotes Faddeeva’s function w(jz) = exp(z2)erfc(z), where erfc(z) is the complex version
of the complementary error function, erfc(z) = 1 − erf(z) = 2√

π

∫∞
z

exp(−v2)dv. Faddeeva’s
function is usually considered the complex equivalent of the error function, since |w(jz)| is bounded
whenever the imaginary part of jz is greater or equal than zero, and is the key to achieving a good
numerical stability when computing Υq(γd′ , t, t′) and its gradients.

2 Switching forces

Figure 1 shows a cartoon representation of output zd(t) switching its behavior between points t0, t1,
t2 and t3. For each interval (ti−1, ti), only the latent force ui−1(t) is active.

t = t0 t = t1 t = t2 t = t3

u0(t) u1(t)
u2(t)

pd(t, t0, t1, u0)

pd(t, t1, t2, u1)

pd(t, t2, t3, u2)

zd(t)

Figure 1: A pictorial representation of the switching scenario for zd(t)

2.1 Definition of the model

Taking into account the initial conditions, the solution to the second order model is given as

yd(t) = yd(0)e−αdt

[
cos(ωdt) +

αd
ωd

sin(ωdt)
]

+ ẏd(0)
[
e−αdt

ωd
sin(ωdt)

]
+

Sd
Adωd

∫ t

0

e−αd(t−τ) sin[(t− τ)ωd]u(τ)dτ,
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where yd(0) and ẏd(0) are the initial conditions. This is the basic equation we need to use to express
the covariance function for the switching model. The uncertainty in this model is due to the latent
force u(t) and the initial conditions yd(0) and ẏd(0). For simplicity, we write the above equation as

yd(t) = cd(t)yd(0) + ed(t)ẏd(0) + fd(t), (1)

with

cd(t) = e−αdt

[
cos(ωdt) +

αd
ωd

sin(ωdt)
]

ed(t) =
[
e−αdt

ωd
sin(ωdt)

]
fd(t) =

Sd
Adωd

∫ t

0

e−αd(t−τ) sin[(t− τ)ωd]u(τ)dτ =
∫ t

0

Gd(t− τ)u(τ)dτ.

We’ll need also the velocity vd(t), which is is given as

vd(t) =
dyd(t)

dt
= gd(t)yd(0) + hd(t)ẏd(0) +md(t), (2)

with

gd(t) =
dcd(t)

dt
= −e−αdt sin(ωdt)

(
α2
d

ωd
+ ωd

)
hd(t) =

ded(t)
dt

= −e−αdt

[
αd
ωd

sin(ωdt)− cos(ωdt)
]

md(t) =
d
dt

(∫ t

0

Gd(t− τ)u(τ)dτ
)
.

Furthermore, we also need the acceleration, given as

ad(t) =
dvd(t)

dt
= rd(t)yd(0) + bd(t)ẏd(0) + wd(t), (3)

with

rd(t) =
dhd(t)

dt
= e−αdt

(
α2
d

ωd
+ ωd

)[
αd sin(ωdt)− ωd cos(ωdt)

]
bd(t) =

dgd(t)
dt

= e−αdt

[(
α2
d

ωd
− ωd

)
sin(ωdt)− 2αd cos(ωdt)

]
wd(t) =

d2

dt2

(∫ t

0

Gd(t− τ)u(τ)dτ
)
.

The input space is divided in non-overlapping intervals [tq−1, tq]
Q
q=1 and for each one of these in-

tervals, only one force uq−1(t) out of Q forces is active, this is, there are {uq−1}Qq=1 forces. The
force uq−1(t) is activated after time tq−1 and desactivated after time tq . We can use the basic model
in the equation before to describe the contribution to the output due to the sequential activation of
these forces. An output zd(t) at a particular time instant t, in the interval (tq−1, tq), is expressed as

zd(t, tq−1, tq) = pd(t, tq−1, tq, uq−1), for 1 ≤ d ≤ D,
where pd(t, tq−1, tq, uq−1) uses the model for yd(t) in equation (1) as

pd(t, tq−1, tq, uq−1) = yd(t)
∣∣
tq−1

= cd(t− tq−1)yd(tq−1) + ed(t− tq−1)ẏd(tq−1)

+ fd(t, tq−1, tq, uq−1).

Notice that there are as many intervals {(tq−1, tq)}Qq=1 as latent forces {uq(t)}Qq=1. For simplicity,
we write zd(t, tq−1, tq) as zd(t). In the above equation, yd(t)

∣∣
tq−1

expresses that yd(t) has to be
evaluated with the initial condition specified at tq−1 and

fd(t, tq−1, tq, uq−1) =
∫ t−tq−1

0

Gd(t− tq−1 − τ)uq−1(τ)dτ. (4)
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Expression fd(t, tq−1, tq, uq−1) is a function of four arguments: the first argument, t, refers to
the independent variable inside the kernel smoothing function Gd(t − τ) and in the upper limit
of the convolution transform; the second argument, tq−1, and third argument tq specify the lower
and upper limits of the time interval for which the convolution is being computed and the fourth
argument, uq−1, specifies the latent force acting in this interval. Additionally, we define a similar
function for the velocity żd(t) as

żd(t, tq, tq−1) = ξd(t, tq−1, tq, uq−1), for 1 ≤ d ≤ D,
where

ξd(t, tq−1, tq, uq−1) = vd(t)
∣∣
tq−1

= gd(t− tq−1)yd(tq−1) + hd(t− tq−1)ẏd(tq−1)

+md(t, t, tq−1, tq, uq−1),

and md(t, tq−1, tq, uq−1) follows

md(t, tq−1, tq, uq−1) =
d
dt

(∫ t−tq−1

0

Gd(t− tq−1 − τ)uq−1(τ)dτ
)
. (5)

Again, for simplicity, we write żd(t, tq, tq−1) as żd(t). The initial conditions yd(tq−1) and ẏd(tq−1)
can be defined again in terms of zd(t) and żd(t)

yd(tq−1) = zd(tq−1) = pd(tq−1, tq−2, tq−1, uq−2),
ẏd(tq−1) = żd(tq−1) = ξd(tq−1, tq−2, tq−1, uq−2).

Without loss of generality, we assume that the initial conditions at t = t0 for all d, are parameters of
the model. This is yd(t0) and ẏd(t0) are parameters that need to be estimated. Eventually, we might
need to put a prior over them. A similar expression is obtained for the acceleration z̈d(t).

Example 1. Suppose we have Q = 3 as in figure 1. Then, the outputs zd(t) will be
given as zd(t, t0, t1) = pd(t, t0, t1, u0), zd(t, t1, t2) = pd(t, t1, t2, u1) and zd(t, t2, t3) =
pd(t, t2, t3, u2). Equally, the velocities żd(t) will follow żd(t, t0, t1) = ξd(t, t0, t1, u0),
żd(t, t1, t2) = ξd(t, t1, t2, u1) and żd(t, t2, t3) = ξd(t, t2, t3, u2). We also have the initial condi-
tions. For t0, the initial conditions are parameters yd(t0) and ẏd(t0). For the intervals starting at t1
and t2, the initial conditions are given as yd(t1) = pd(t1, t0, t1, u0) and yd(t2) = pd(t2, t1, t2, u1).
And for the velocities ẏd(t1) = ξd(t1, t1, t0, t1, u0) and ẏd(t2) = ξd(t2, t1, t2, u1).

2.2 Covariance for the outputs

In general, we need to compute the covariance cov[zd(t), zd′(t′)] for every time interval (tq−1, tq)
and for intervals (tq−1, tq) and (tq′−1, t

′
q). The covariance cov[zd(t), zd′(t′)] for time interval

(tq−1, tq) is given as

cov[zd(t), zd′(t′)] = cov
[
pd(t, tq−1, tq, uq−1), pd′(t′, tq−1, tq, uq−1)

]
. (6)

And the covariance cov[zd(t), zd′(t′)] for time intervals (tq−1, tq) and (tq′−1, t
′
q) is given as

cov[zd(t), zd′(t′)] = cov
[
pd(t, t, tq−1, tq, uq−1), pd′(t′, tq′−1, tq′ , uq′−1)

]
. (7)

2.2.1 Covariance for interval (tq−1, tq)

The covariance in equation (6), follows

cov{[cd(t− tq−1)yd(tq−1) + ed(t− tq−1)ẏd(tq−1) + fd(t, t, tq−1, tq, uq−1)]

[cd′(t
′ − tq−1)yd′(tq−1) + ed′(t

′ − tq−1)ẏd′(tq−1) + fd′(t
′, t′, tq−1, tq, uq−1)}

= cd(t− tq−1)cd′(t
′ − tq−1) cov{yd(tq−1)yd′(tq−1)}+ cd(t− tq−1)ed′(t

′ − tq−1) cov{yd(tq−1)ẏd′(tq−1)}
+cd(t− tq−1) cov{yd(tq−1)fd′(t

′, t′, tq−1, tq, uq−1)}+ ed(t− tq−1)cd′(t
′ − tq−1) cov{ẏd(tq−1)yd′(tq−1)}

+ed(t− tq−1)ed′(t
′ − tq−1) cov{ẏd(tq−1)ẏd′(tq−1)}+ ed(t− tq−1) cov{ẏd(tq−1)fd′(t

′, t′, tq−1, tq, uq−1)}
+cd′(t

′ − tq−1) cov{fd(t, t, tq−1, tq, uq−1)yd′(tq−1)}+ ed′(t
′ − tq−1) cov{fd(t, t, tq−1, tq, uq−1)ẏd′(tq−1)}

+cov{fd(t, t, tq−1, tq, uq−1)fd′(t
′, t′, tq−1, tq, uq−1)}.
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The terms cov{yd(tq−1)yd′(tq−1)}, cov{yd(tq−1)ẏd′(tq−1)}, cov{ẏd(tq−1)yd′(tq−1)} and
cov{ẏd(tq−1)ẏd′(tq−1)} are obtained from the covariance already computed. These terms
are equivalent as kzd,zd′ (tq−1, tq−1) = cov{yd(tq−1)yd′(tq−1)}, kzd,żd′ (tq−1, tq−1) =
cov{yd(tq−1)ẏd′(tq−1)}, kżd,zd′ (tq−1, tq−1) = cov{ẏd(tq−1)yd′(tq−1)} and kżd,żd′ (tq−1, tq−1) =
cov{ẏd(tq−1)ẏd′(tq−1)}. The expressions cov{yd(tq−1)fd′(t′, t′, tq−1, tq, uq−1)},
cov{ẏd(tq−1)fd′(t′, t′, tq−1, tq, uq−1)}, cov{fd(t, t, tq−1, tq, uq−1)yd′(tq−1)} and
cov{fd(t, t, tq−1, tq, uq−1)ẏd′(tq−1)} are zero. This can be seen from the fact that terms
like yd(tq−1) are a obtained as a result of terms yd(tk−1) and fd(tk−1, tk−1, tk, uk), for k < q,
and the covariance between those terms with fd(t, tq−1, tq, uq−1) is zero. Finally, the term
cov{fd(t, tq−1, tq, uq−1)fd′(t′, tq−1, tq, uq−1)} is denoted as k(q−1)

fd,fd′
(t, t′).

In this way the covariance cov
[
pd(t, t, tq−1, tq, uq−1), pd′(t′, t′, tq−1, tq, uq−1)

]
is equal to

cd(t− tq−1)cd′(t′ − tq−1)kzd,zd′ (tq−1, tq−1) + cd(t− tq−1)ed′(t′ − tq−1)kzd,żd′ (tq−1, tq−1)

+ed(t− tq−1)cd′(t′ − tq−1)kżd,zd
(tq−1, tq−1) + ed(t− tq−1)ed′(t′ − tq−1)kżd,żd′ (tq−1, tq−1)

+ k
(q−1)
fd,fd′

(t, t′). (8)

The term kzd,zd′ (tq−1, tq−1) is equal to cov[zd(tq−1, tq−2, tq−1), zd′(tq−1, tq−2, tq−1)] and analog
expressions are obtained for kzd,żd′ (tq−1, tq−1), kżd,zd′ (tq−1, tq−1) and kżd,żd′ (tq−1, tq−1).

Example 1 (Continued). We continue with the example in figure 1. We need to compute the
covariance kzd,zd′ (t, t

′) in the intervals (t0, t1], (t1, t2] and (t2, t3]. For the covariance in the interval
(t0, t1], we have

cov[zd(t), zd′(t′)] = cov[pd(t, t0, t1, u0), pd′(t, t0, t1, u0)]

= cd(t− t0)cd′(t′ − t0)kzd,zd′ (t0, t0) + cd(t− t0)ed′(t′ − t0)kzd,żd′ (t0, t0)

+ ed(t− t0)cd′(t′ − t0)kżd,zd
(t0, t0) + ed(t− t0)ed′(t′ − t0)kżd,żd′ (t0, t0)

+ k
(0)
fd,fd′

(t, t′).

We assume the terms kzd,zd′ (t0, t0), kzd,żd′ (t0, t0), kżd,zd
(t0, t0) and kżd,żd′ (t0, t0) are parame-

ters that have to be estimated in the inference process. We also have access to cov[zd(t), żd′(t′)],
cov[żd(t), zd′(t′)] and cov[żd(t), żd′(t′)]. With these expressions we compute kzd,zd′ (t1, t1) =
cov[zd(t1), zd′(t1)], kzd,żd′ (t1, t1) = cov[zd(t1), żd′(t1)], kżd,zd

(t1, t1) = cov[żd(t1), zd′(t1)] and
kżd,żd′ (t1, t1) = cov[żd(t1), żd′(t1)], that are needed to compute the covariance in the next interval.

For the covariance in the interval (t1, t2], we have

cov[zd(t), zd′(t′)] = cov[pd(t, t1, t2, u1), pd′(t′, t1, t2, u1)], (9)

which follows the same form that equation (8)

cd(t− t1)cd′(t′ − t1)kzd,zd′ (t1, t1) + cd(t− t1)ed′(t′ − t1)kzd,żd′ (t1, t1)

+ ed(t− t1)cd′(t′ − t1)kżd,zd
(t1, t1) + ed(t− t1)ed′(t′ − t1)kżd,żd′ (t1, t1) + k

(1)
fd,fd′

(t, t′).

With the final expression for cov[zd(t, t1, t2), zd′(t′, t1, t2)], we compute kzd,zd′ (t2, t2) =
cov[zd(t2), zd′(t2)], kzd,żd′ (t2, t2) = cov[zd(t2), żd′(t2)], kżd,zd

(t2, t2) = cov[żd(t2), zd′(t2)] and
kżd,żd′ (t2, t2) = cov[żd(t2), żd′(t2)], that are needed to compute the covariance in the next interval.

We finally need the covariance for the interval (t2, t3]. This covariance is computed as

cov[zd(t), zd′(t′)] = cov[pd(t, t2, t3, u2), pd′(t′, t2, t3, u2)], (10)

given as

cd(t− t2)cd′(t′ − t2)kzd,zd′ (t2, t2) + cd(t− t2)ed′(t′ − t2)kzd,żd′ (t2, t2)

+ ed(t− t2)cd′(t′ − t2)kżd,zd
(t2, t2) + ed(t− t2)ed′(t′ − t2)kżd,żd′ (t2, t2) + k

(2)
fd,fd′

(t, t′).
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2.2.2 Covariance for intervals (tq−1, tq) and (tq′−1, t
′
q)

For the covariance in equation (7), we have two regimes

1. q > q′.

2. q < q′.

The case for which q = q′ was analized in the subsection before this one. We are interested in
computing the term cov

[
pd(t, t, tq−1, tq, uq−1), pd′(t′, t′, tq′−1, tq′ , uq′−1)

]
, for q > q′ and q < q′.

For q > q′, we have

cd(t− tq−1)cd′(t
′ − tq′−1) cov{yd(tq−1)yd′(tq′−1)}+ cd(t− tq−1)ed′(t

′ − tq′−1) cov{yd(tq−1)ẏd′(tq′−1)}
+cd(t− tq−1) cov{yd(tq−1)fd′(t

′,tq′−1, tq′ , uq′−1)}+ ed(t− tq−1)cd′(t
′ − tq′−1) cov{ẏd(tq−1)yd′(tq′−1)}

+ed(t− tq−1)ed′(t
′ − tq′−1) cov{ẏd(tq−1)ẏd′(tq′−1)}+ ed(t− tq−1) cov{ẏd(tq−1)fd′(t

′, tq′−1, tq, uq′−1)}
+cd′(t

′ − tq−1) cov{fd(t, tq−1,tq, uq−1)yd′(tq′−1)}+ ed′(t
′ − tq−1) cov{fd(t, tq−1, tq, uq−1)ẏd′(tq′−1)}

+ cov{fd(t, tq−1, tq, uq−1)fd′(t
′, tq′−1, tq′ , uq′−1)}.

The terms cov{yd(tq−1)yd′(tq′−1)}, cov{yd(tq−1)ẏd′(tq′−1)}, cov{ẏd(tq−1)yd′(tq′−1)} and
cov{ẏd(tq−1)ẏd′(tq′−1)} are obtained from the covariance already computed. The term
cov{fd(t, tq−1, tq, uq−1)fd′(t′, tq′−1, t

′
q, uq′−1)} is equal to zero, because there is no correlation

between uq−1 and uq′−1. Also, the covariances cd′(t′ − tq−1) cov{fd(t, tq−1, tq, uq−1)yd′(tq′−1)}
and ed′(t′−tq−1) cov{fd(t, tq−1, tq, uq−1)ẏd′(tq′−1)} are zero, since q > q′, there is no correlation
between force uq−1 and any force uk−1 for k <= q′ − 2. We can rewrite the above expression as

cd(t− tq−1)cd′(t
′ − tq′−1) cov{yd(tq−1)yd′(tq′−1)}+ cd(t− tq−1)ed′(t

′ − tq′−1) cov{yd(tq−1)ẏd′(tq′−1)}
+ed(t− tq−1)cd′(t

′ − tq′−1) cov{ẏd(tq−1)yd′(tq′−1)}+ ed(t− tq−1)ed′(t
′ − tq′−1) cov{ẏd(tq−1)ẏd′(tq′−1)}

+cd(t− tq−1) cov{yd(tq−1)fd′(t
′, tq′−1, tq′ , uq′−1)}+ ed(t− tq−1) cov{ẏd(tq−1)fd′(t

′, tq′−1, tq, uq′−1)}

Terms like cov{yd(tq−1)fd′(t′, t′, tq′−1, tq′ , uq′−1)} and cov{ẏd(tq−1)fd′(t′, t′, tq′−1, tq, uq′−1)}
requiere further analysis.

Let’s look in detail the term cov{yd(tq−1)fd′(t′, tq′−1, tq′ , uq′−1)}. This term is equal to

cov{yd(tq−1)fd′(t′, tq′−1, tq′ , uq′−1)} = cov
{
pd(tq−1, tq−2, tq−1, uq−2)fd′(t′, tq′−1, tq′ , uq′−1)

}
= cov

{[
cd(tq−1 − tq−2)yd(tq−2) + ed(tq−1 − tq−2)ẏd(tq−2)

+ fd(tq−1, tq−2, tq−1, uq−2)
]
fd′(t′, tq′−1, tq′ , uq′−1)

}
= cd(tq−1 − tq−2) cov{yd(tq−2)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸

A

+ ed(tq−1 − tq−2) cov{ẏd(tq−2)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸
B

+ cov{fd(tq−1, tq−2, tq−1, uq−2)fd′(t′, t′, tq′−1, tq′ , uq′−1)}.
The term cov{fd(tq−1, tq−2, tq−1, uq−2)fd′(t′, tq′−1, tq′ , uq′−1)} is only different from zero for
q = q′ + 1 and it would reduce to k̂(q′−1)

fd,fd′
(tq−1, t

′). For A and B, if q < q′ + 1, the terms in the
are zero because there is no correlation between forces uq′−1 and forces uq−2, for q < q′ + 1. For
q > q′ + 1, the term in A is equal to

cd(tq−1 − tq−2) cov
{[
cd(tq−2 − tq−3)yd(tq−3) + ed(tq−2 − tq−3)ẏd(tq−3)

+ fd(tq−2, tq−3, tq−2, uq−3)
]
fd′(t′, tq′−1, tq′ , uq′−1)

}
= cd(tq−1 − tq−2)cd(tq−2 − tq−3) cov{yd(tq−3)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸

A′

+ cd(tq−1 − tq−2)ed(tq−2 − tq−3) cov{ẏd(tq−3)fd′(t′, tq′−1, tq′ , uq′−1)}︸ ︷︷ ︸
B′

+ cd(tq−1 − tq−2) cov{fd(tq−2, tq−3, tq−2, uq−3)fd′(t′, tq′−1, tq′ , uq′−1)}.
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The last term in the above equation is different from zero for q = q′+ 2. Thus, this last term follows

cd(tq−1 − tq−2)k(q′−1)
fd,fd′

(tq−2, t
′).

The terms A′ and B′ follow the same form that the terms A and B. Again, if q < q′ + 2, then
the particular terms in are zeros. If, q > q′ + 2, the recursion repeats until the most inner term in
cov{yd(tq−n)fd′(t′, tq′−1, tq′ , uq′−1)} is such that q = q′ + n. A similar expression can analysis
can be made for the term B. The final covariance would then be equal to

cd(t− tq−1)cd′(t′ − tq′−1)kzd,zd′ (tq−1, tq′−1) + cd(t− tq−1)ed′(t′ − tq′−1)kzd,żd′ (tq−1, tq′−1)

+ed(t− tq−1)cd′(t′ − tq′−1)kżd,zd′ (tq−1, tq′−1) + ed(t− tq−1)ed′(t′ − tq′−1)kżd,żd′ (tq−1, tq′−1)

+cd(t− tq−1)f1(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,f ′d

(tq−n, t′)

+cd(t− tq−1)f2(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,f ′d

(tq−n, t′)

+ed(t− tq−1)f3(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,f ′d

(tq−n, t′)

+ed(t− tq−1)f4(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,f ′d

(tq−n, t′),

where f1(·), f2(·), f3(·) and f4(·) are functions of the form∑
x(tq−1 − tq−2)x(tq−2 − tq−3) . . . x(tq−n+1 − tq−n),

with x being equal to cd, ed, gd or hd, depending on the case. To compute the exact form of the
expression f1(·), f2(·), f3(·) and f4(·) we use the following set of rules

– After a cd(·) term, only cd(·) and ed(·) terms follow.

– After a ed(·) term, only gd(·) and hd(·) terms follow.

– After a gd(·) term, only cd(·) and ed(·) terms follow.

– After a hd(·) term, only hd(·) and gd(·) terms follow.

Figures 2, 3, 4 and 5 show examples of the kind of recursions that are generated. In all figures,
red indicates a term like cd(·), blue indicates a term like ed(·), green indicates a term like gd(·) and
purple indicates hd(·).

cd(t− tq−1)

cd(tq−1 − tq−2)

cd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

ed(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 2: This figure represents the innermost covariances involved when computing the term A′

For q′ > q we can make a similar analysis (not presented here).
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cd(t− tq−1)

ed(tq−1 − tq−2)

gd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

hd(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 3: This figure represents the innermost covariances involved when computing the term B′

ed(t− tq−1)

gd(tq−1 − tq−2)

cd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

ed(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 4: This figure represents the innermost covariances involved when computing the term C′

Example 1 (Continued). We continue with the example in figure 1. First, we compute the covari-
ance between intervals (t1, t2] and (t0, t1]. For this covariance we have

cov[zd(t), zd′(t′)] = cov
[
pd(t, t1, t2, u1), pd′(t′, t0, t1, u0)

]
.

This covariance is equal to

cd(t− t1)cd′(t′ − t0) cov{yd(t1)yd′(t0)}+ cd(t− t1)ed′(t′ − t0) cov{yd(t1)ẏd′(t0)}
+ed(t− t1)cd′(t′ − t0) cov{ẏd(t1)yd′(t0)}+ ed(t− t1)ed′(t′ − t0) cov{ẏd(t1)ẏd′(t0)}

+cd(t− t1) cov{yd(t1)fd′(t′, t0, t1, u0)}+ ed(t− t1) cov{ẏd(t1)fd′(t′, t0, t1, u0)},
which reduces to

cd(t− t1)cd′(t′ − t0)kzd,zd′ (t1, t0) + cd(t− t1)ed′(t′ − t0)kzd,żd′ (t1, t0)

+ed(t− t1)cd′(t′ − t0)kżd,zd′ (t1, t0) + ed(t− t1)ed′(t′ − t0)kżd,żd′ (t1, t0)

+cd(t− t1)k(0)
fd,fd′

(t1, t′) + ed(t− t1)k(0)
md,fd′

(t1, t′).
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ed(t− tq−1)

hd(tq−1 − tq−2)

gd(tq−2 − tq−3)

cd(tq−3 − tq−4)

cd(tj+1 − tj) cd(tj+1 − tj)

hd(tq−2 − tq−3)

ed(tq−3 − tq−4)

ed(tj+1 − tj)

ed(tj+1 − tj)

gd(tq−3 − tq−4)

gd(tj+1 − tj) gd(tj+1 − tj)

hd(tq−3 − tq−4)

hd(tj+1 − tj) hd(tj+1 − tj)

k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′)k
(j−1)
fd,fd′ (tj, t

′) k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)k
(j−1)
md,fd′ (tj, t

′)

Figure 5: This figure represents the innermost covariances involved when computing the term D′

Now we compute the covariance between intervals (t2, t3] and (t0, t1]. For this covariance we have

cov[zd(t), zd′(t′)] = cov
[
pd(t, t, t2, t3, u2), pd′(t′, t′, t0, t1, u0)

]
.

We then have

cd(t− t2)cd′(t′ − t0) cov{yd(t2)yd′(t0)}+ cd(t− t2)ed′(t′ − t0) cov{yd(t2)ẏd′(t0)}
+ed(t− t2)cd′(t′ − t0) cov{ẏd(t2)yd′(t0)}+ ed(t− t2)ed′(t′ − t0) cov{ẏd(t2)ẏd′(t0)}

+cd(t− t2) cov{yd(t2)fd′(t′, t0, t1, u0)}+ ed(t− t2) cov{ẏd(t2)fd′(t′, t0, t1, u0)}.
Using yd(t2) = zd(t2, t1, t2) and ẏd(t2) = żd(t2.t1, t2),

yd(t2) = zd(t2, t1, t2) = pd(t2, t1, t2, u1) = cd(t2 − t1)yd(t1) + ed(t2 − t1)ẏd(t1) + fd(t2, t1, t2, u1)
ẏd(t2) = żd(t2, t1, t2) = ξd(t2, t1, t2, u1) = gd(t2 − t1)yd(t1) + hd(t2 − t1)ẏd(t1) +md(t2, t1, t2, u1),

we have for cov{yd(t2)fd′(t′, t′, t0, t1, u0)} and cov{ẏd(t2)fd′(t′, t′, t0, t1, u0)}
cov{yd(t2)fd′(t′, t0, t1, u0)} = cd(t2 − t1) cov{yd(t1)fd′(t′, t0, t1, u0)}

+ ed(t2 − t1) cov{ẏd(t1)fd′(t′, t0, t1, u0)}
cov{ẏd(t2)fd′(t′, t′, t0, t1, u0)} = gd(t2 − t1) cov{yd(t1)fd′(t′, t0, t1, u0)}

+ hd(t2 − t1) cov{ẏd(t1)fd′(t′, t0, t1, u0)}.
Furthermore,

yd(t1) = zd(t1, t0, t1) = pd(t1, t0, t1, u0) = cd(t1 − t0)yd(t0) + ed(t1 − t0)ẏd(t0) + fd(t1, t0, t1, u0)
ẏd(t1) = żd(t2, t1, t2) = ξd(t1, t0, t1, u0) = gd(t1 − t0)yd(t0) + hd(t1 − t0)ẏd(t0) +md(t1, t0, t1, u0).

Then we get cov{yd(t1)fd′(t′, t0, t1, u0)} = k
(0)
fd,fd′

(t1, t′) and cov{ẏd(t1)fd′(t′, t0, t1, u0)} =

k
(0)
md,fd′

(t1, t′). Putting all these expressions together, we get

cd(t− t2)cd′(t′ − t0)kzd,zd′ (t2, t0) + cd(t− t2)ed′(t′ − t0)kzd,żd′ (t2, t0)

+ed(t− t2)cd′(t′ − t0)kżd,zd′ (t2, t0) + ed(t− t2)ed′(t′ − t0)kżd,żd′

+cd(t− t2)cd(t2 − t1)k(0)
fd,fd′

(t1, t′) + cd(t− t2)ed(t2 − t1)k(0)
md,fd′

(t1, t′)

+ed(t− t2)gd(t2 − t1)k(0)
fd,fd′

(t1, t′) + ed(t− t2)hd(t2 − t1)k(0)
md,fd′

(t1, t′)

Next we compute the covariance between intervals (t2, t3] and (t1, t2]. For this covariance we have

cov[zd(t), zd′(t′)] = cov
[
pd(t, t2, t3, u2), pd′(t′, t1, t2, u1)

]
9



We have

cd(t− t2)cd′(t′ − t1)kzd,zd′ (t2, t1) + cd(t− t2)ed′(t′ − t1)kzd,żd′ (t2, t1)

+ed(t− t2)cd′(t′ − t1)kżd,zd′ (t2, t1) + ed(t− t2)ed′(t′ − t1)kżd,żd′ (t2, t1)

+cd(t− t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ ed(t− t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}.
The covariance cov{yd(t2)fd′(t′, t1, t2, u1)} = k

(1)
fd,f ′d

(t2, t′) and cov{ẏd(t2)fd′(t′, t1, t2, u1)} =

k
(1)
md,f ′d

(t2, t′). Then, the complete covariance would be equal to

cd(t− t2)cd′(t′ − t1)kzd,zd′ (t2, t1) + cd(t− t2)ed′(t′ − t1)kzd,żd′ (t2, t1)

+ed(t− t2)cd′(t′ − t1)kżd,zd′ (t2, t1) + ed(t− t2)ed′(t′ − t1)kżd,żd′ (t2, t1)

+cd(t− t2)k(1)
fd,f ′d

(t2, t′) + ed(t− t2)k(1)
md,f ′d

(t2, t′).

Suppose we need to compute the covariance between the intervals (t4, t5] and (t1, t2]. For this q = 4
and q′ = 1. The covariance is given as

cov{[cd(t− t4)yd(t4) + ed(t− t4)ẏd(t4) + fd(t, t4, t5, u4)]

[cd′(t′ − t1)yd′(t1) + ed′(t′ − t1)ẏd′(t1) + fd′(t′, t1, t2, u1)}
= cd(t− t4)cd′(t′ − t1) cov{yd(t4)yd′(t1)}+ cd(t− t4)ed′(t′ − t1) cov{yd(t4)ẏd′(t1)}
+ed(t− t4)cd′(t′ − t1) cov{ẏd(t4)yd′(t1)}+ ed(t− t4)ed′(t′ − t1) cov{ẏd(t4)ẏd′(t1)}

+cd(t− t4) cov{yd(t4)fd′(t′, t1, t2, u1)}+ ed(t− t4) cov{ẏd(t4)fd′(t′, t1, t2, u1)}
We need to compute the covariances cov{yd(t4)fd′(t′, t1, t2, u1)} and
cov{ẏd(t4)fd′(t′, t1, t2, u1)}. The expression for yd(t4) is

yd(t4) = zd(t4, t3, t4) = pd(t4, t3, t4, u3) = cd(t4 − t3)yd(t3) + ed(t4 − t3)ẏd(t3) + fd(t4, t3, t4, u3)
ẏd(t4) = żd(t4, t3, t4) = ξd(t4, t3, t4, u3) = gd(t4 − t3)yd(t3) + hd(t4 − t3)ẏd(t3) +md(t4, t3, t4, u3)

Then the covariances cov{yd(t4)fd′(t′, t1, t2, u1)} and cov{ẏd(t4)fd′(t′, t1, t2, u1)} are equal to

cd(t4 − t3) cov{yd(t3)fd′(t′, t1, t2, u1)}+ ed(t4 − t3) cov{ẏd(t3)fd′(t′, t1, t2, u1)},
gd(t4 − t3) cov{yd(t3)fd′(t′, t1, t2, u1)}+ hd(t4 − t3) cov{ẏd(t3)fd′(t′, t1, t2, u1)}.

At the same time, in the above expression, we have that yd(t2) and ẏd(t2) follow

yd(t3) = cd(t3 − t2)yd(t2) + ed(t3 − t2)ẏd(t2) + fd(t3, t2, t3, u2)
ẏd(t3) = gd(t3 − t2)yd(t2) + hd(t3 − t2)ẏd(t2) +md(t3, t2, t3, u2)

Then, we can write the expression for cov{yd(t4)fd′(t′, t1, t2, u1)} as

cd(t4 − t3)
[
cd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ ed(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}]

+ ed(t4 − t3)
[
gd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ hd(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}].

The expression for cov{ẏd(t4)fd′(t′, t1, t2, u1)} would follow

gd(t4 − t3)
[
cd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ ed(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}]

+ hd(t4 − t3)
[
gd(t3 − t2) cov{yd(t2)fd′(t′, t1, t2, u1)}+ hd(t3 − t2) cov{ẏd(t2)fd′(t′, t1, t2, u1)}].

From the expression for yd(t2) and ẏd(t2), we get cov{yd(t2)fd′(t′, t1, t2, u1)} = k
(1)
fd,fd′

(t2, t′)

and cov{ẏd(t2)fd′(t′, t1, t2, u1)} = k
(1)
md,fd′

(t2, t′). The total covariance then would be equal to

cd(t− t4)cd′(t′ − t1)kzd,zd′ (t4, t1) + cd(t− t4)ed′(t′ − t1)kzd,żd′ (t4, t1)

+ ed(t− t4)cd′(t′ − t1)kżd,zd′ (t4, t1) + ed(t− t4)ed′(t′ − t1)kżd,żd′ (t4, t1)

+ cd(t− t4)
[
cd(t4 − t3)

[
cd(t3 − t2)k(1)

fd,fd′
(t2, t′) + ed(t3 − t2)k(1)

md,fd′
(t2, t′)

]
+ ed(t4 − t3)

[
gd(t3 − t2)k(1)

fd,fd′
(t2, t′) + hd(t3 − t2)k(1)

md,fd′
(t2, t′)

]]
+ ed(t− t4)

[
gd(t4 − t3)

[
cd(t3 − t2)k(1)

fd,fd′
(t2, t′) + ed(t3 − t2)k(1)

md,fd′
(t2, t′)

]
+ hd(t4 − t3)

[
gd(t3 − t2)k(1)

fd,fd′
(t2, t′) + hd(t3 − t2)k(1)

md,fd′
(t2, t′)

]]
.
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Reorganizing, we get
cd(t− t4)cd′(t′ − t1)kzd,zd′ (t4, t1) + cd(t− t4)ed′(t′ − t1)kzd,żd′ (t4, t1)

+ ed(t− t4)cd′(t′ − t1)kżd,zd′ (t4, t1) + ed(t− t4)ed′(t′ − t1)kżd,żd′ (t4, t1)

+ cd(t− t4)
[
cd(t4 − t3)cd(t3 − t2) + ed(t4 − t3)gd(t3 − t2)

]
k

(1)
fd,fd′

(t2, t′)

+ cd(t− t4)
[
cd(t4 − t3)ed(t3 − t2) + ed(t4 − t3)hd(t3 − t2)

]
k

(1)
md,fd′

(t2, t′)

+ ed(t− t4)
[
gd(t4 − t3)cd(t3 − t2) + hd(t4 − t3)gd(t3 − t2)

]
k

(1)
fd,fd′

(t2, t′)

+ ed(t− t4)
[
gd(t4 − t3)ed(t3 − t2) + hd(t4 − t3)hd(t3 − t2)

]
k

(1)
md,fd′

(t2, t′).
Or in a more familiar expression,

cd(t− t4)cd′(t′ − t1)kzd,zd′ (t4, t1) + cd(t− t4)ed′(t′ − t1)kzd,żd′ (t4, t1)

+ ed(t− t4)cd′(t′ − t1)kżd,zd′ (t4, t1) + ed(t− t4)ed′(t′ − t1)kżd,żd′ (t4, t1)

+ cd(t− t4)f1(t4, t3, t2)k(1)
fd,fd′

(t2, t′) + cd(t− t4)f2(t4, t3, t2)k(1)
md,fd′

(t2, t′)

+ ed(t− t4)f3(t4, t3, t2)k(1)
fd,fd′

(t2, t′) + ed(t− t4)f4(t4, t3, t2)k(1)
md,fd′

(t2, t′).

where, f1(t4, t3, t2) = cd(t4 − t3)cd(t3 − t2) + ed(t4 − t3)gd(t3 − t2), f2(t4, t3, t2) = cd(t4 −
t3)ed(t3−t2)+ed(t4−t3)hd(t3−t2), f3(t4, t3, t2) = gd(t4−t3)cd(t3−t2)+hd(t4−t3)gd(t3−t2)
and f4(t4, t3, t2) = gd(t4 − t3)ed(t3 − t2) + hd(t4 − t3)hd(t3 − t2).

2.3 Covariances between outputs and latent functions

For inference purposes, we’ll also need the cross-covariances between the ouputs zd(t, tq−1, tq) and
the latent forces uq′−1(t′). If q′ > q, then this covariance is zero. We are left with the cases q′ = q
and q′ < q.

2.3.1 Covariance between zd(t, tq−1, tq) and uq′−1(t′), with q′ = q

We have
cov[zd(t, tq−1, tq), uq−1(t′)] = cov [pd(t, tq−1, tq, uq−1)uq−1(t′)] ,

which is given as
cd(t− tq−1) cov [yd(tq−1)uq−1(t)] + ed(t− tq−1) cov [ẏd(tq−1)uq−1(t)]

+ cov [fd(t, tq−1, tq, uq−1)uq−1(t′)] .
From the above equation, the only term different from zero is cov [fd(t, tq−1, tq, uq−1)uq−1(t′)] =
kfd,uq−1(t, t′). Then, we have cov [pd(t, tq−1, tq, uq−1)uq−1(t′)] = kfd,uq−1(t, t′).

2.3.2 Covariance between zd(t, tq−1, tq) and uq′−1(t′), with q′ < q

We have
cov[zd(t, tq−1, tq), uq′−1(t′)] = cov [pd(t, tq−1, tq, uq−1)uq′−1(t′)] .

It would be
cd(t− tq−1) cov [yd(tq−1)uq′−1(t′)] + ed(t− tq−1) cov [ẏd(tq−1)uq′−1(t′)]

+ cov [fd(t, tq−1, tq, uq−1)uq′−1] .
Being q strictly greater than q′, we only need to compute cov [yd(tq−1)uq′−1(t′)] and
cov [ẏd(tq−1)uq′−1(t′)]. For the first term, we have

cov [yd(tq−1)uq′−1(t′)] = cov
[(
cd(tq−1 − tq−2)yd(tq−2) + ed(tq−1 − tq−2)ẏd(tq−2)

+ fd(tq−1, tq−2, tq−1, uq−2)
)
uq′−1(t′)

]
= cd(tq−1 − tq−2) cov [yd(tq−2)uq′−1(t′)]︸ ︷︷ ︸

A

+ ed(tq−1 − tq−2) cov [ẏd(tq−2)uq′−1(t′)]︸ ︷︷ ︸
B

+ cov [fd(tq−1, tq−2, tq−1, uq−2)uq′−1(t′)] .
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The terms A and B, repeat again in a recursion similar to the ones in section 2.2.2. The final
expression is then equal to

cd(t− tq−1)f1(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,uq′−1

(tq−n, t′)

+cd(t− tq−1)f2(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,uq′−1

(tq−n, t′)

+ed(t− tq−1)f3(tq−1, tq−1, . . . , tq−n)k(q′−1)
fd,uq′−1

(tq−n, t′)

+ed(t− tq−1)f4(tq−1, tq−1, . . . , tq−n)k(q′−1)
md,uq′−1

(tq−n, t′),

where f1(·), f2(·), f3(·) and f4(·) are again functions of the form∑
x(tq−1 − tq−2)x(tq−2 − tq−3) . . . x(tq−n+1 − tq−n),

with x being equal to cd, ed, gd or hd, depending on the case.

Example 1 (continued). We continue with the example. We want to compute the following terms

cov[zd(t, t0, t1), u0(t′)] cov[zd(t, t0, t1), u1(t′)] cov[zd(t, t0, t1), u2(t′)]

cov[zd(t, t1, t2), u0(t′)] cov[zd(t, t1, t2), u1(t′)] cov[zd(t, t1, t2), u2(t′)]

cov[zd(t, t2, t3), u0(t′)] cov[zd(t, t2, t3), u1(t′)] cov[zd(t, t2, t3), u2(t′)]

From the above analysis, the terms cov[zd(t, t0, t1), u1(t′)], cov[zd(t, t0, t1), u2(t′)]
and cov[zd(t, t1, t2), u2(t′)] are zero. Furthermore, the terms cov[zd(t, t0, t1), u0(t′)],
cov[zd(t, t1, t2), u1(t′)] and cov[zd(t, t2, t3), u2(t′)] are

cov[zd(t, t0, t1), u0(t′)] = kfd,u0(t, t′)

cov[zd(t, t1, t2), u1(t′)] = kfd,u1(t, t′)

cov[zd(t, t2, t3), u2(t′)] = kfd,u2(t, t′).

We are left with the terms cov[zd(t, t1, t2), u0(t′)], cov[zd(t, t2, t3), u0(t′)] and
cov[zd(t, t2, t3), u1(t′)]. The term cov[zd(t, t1, t2), u0(t′)] follows as

cov[zd(t, t1, t2), u0(t′)] = cov{[pd(t, t1, t2, u1)]u0(t′)}
= cov{[cd(t− t1)yd(t1) + ed(t− t1)ẏd(t1) + fd(t, t1, t2, u1)]u0(t′)}
= cd(t− t1) cov [yd(t1)u0(t′)] + ed(t− t1) cov [ẏd(t1)u0(t′)] .

The terms cov [yd(t1)u0(t′)] and cov [ẏd(t1)u0(t′)] are

cov [yd(t1)u0(t′)] = cov [(cd(t1 − t0)yd(t0) + ed(t1 − t0)ẏd(t0) + fd(t1, t0, t1, u0))u0(t′)]

= kfd,u0(t1, t′)

cov [ẏd(t1)u0(t′)] = cov [(gd(t1 − t0)yd(t0) + hd(t1 − t0)ẏd(t0) +md(t1, t0, t1, u0))u0(t′)]

= kmd,u0(t1, t′).

The final covariance is then

cov[zd(t, t1, t2), u0(t′)] = cd(t− t1)kfd,u0(t1, t′) + ed(t− t1)kmd,u0(t1, t′).

Now, we compute the term cov[zd(t, t2, t3), u0(t′)], which will be given as

cov[zd(t, t2, t3), u0(t′)] = cov{[pd(t, t, t2, t3, u2)]u0(t′)}
= cov{[cd(t− t2)yd(t2) + ed(t− t2)ẏd(t2) + fd(t, t2, t3, u2)]u0(t′)}
= cd(t− t2) cov [yd(t2)u0(t′)] + ed(t− t2) cov [ẏd(t2)u0(t′)] .

The term cov [yd(t2)u0(t′)] follows

cov[yd(t2), u0(t′)] = cov{pd(t2, t1, t2, u1)u0(t′)}
= cd(t2 − t1) cov[yd(t1)u0(t′)] + ed(t2 − t1) cov[ẏd(t1)u0(t′)].
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The term cov [ẏd(t2)u0(t′)] follows

cov[ẏd(t2), u0(t′)] = cov{ξd(t2, t1, t2, u1)u0(t′)}
= gd(t2 − t1) cov[yd(t1)u0(t′)] + hd(t2 − t1) cov[ẏd(t1)u0(t′)]

Putting together all these terms, the covariance cov[zd(t, t2, t3), u0(t′)] is given as

cov[zd(t, t2, t3), u0(t′)] = cd(t− t2) [cd(t2 − t1)kfd,u0(t1, t′) + ed(t2 − t1)kmd,u0(t1, t′)]

+ ed(t− t2) [gd(t2 − t1)kfd,u0(t1, t′) + hd(t2 − t1)kmd,u0(t1, t′)] .

Or in a more familiar form

cov[zd(t, t2, t3), u0(t′)] = cd(t− t2)f1(t2, t1)kfd,u0(t1, t′) + cd(t− t2)f2(t2, t1)kmd,u0(t1, t′)

+ ed(t− t2)f3(t2, t1)kfd,u0(t1, t′) + ed(t− t2)f4(t2, t1)kmd,u0(t1, t′),

where f1(t2, t1) = cd(t2 − t1), f2(t2, t1) = ed(t2 − t1), f3(t2, t1) = gd(t2 − t1) and f4(t2, t1) =
hd(t2 − t1).
Finally, we compute cov[zd(t, t2, t3), u1(t′)] as

cov[zd(t, t2, t3), u1(t′)] = cov{pd(t, t2, t3, u2)u1(t′)}
= cov{[cd(t− t2)yd(t2) + ed(t− t2)ẏd(t2) + fd(t, t2, t3, u2)]u1(t′)}
= cd(t− t2)kfd,u1(t2, t′) + ed(t− t2)kmd,u1(t2, t′).

3 Covariance for the velocities and accelerations

To get expressions for the covariances cov
[
zd(t), żd′(t′)

]
(Position - Velocity), cov

[
żd(t), zd′(t′)

]
(Velocity - Position), cov

[
żd(t), żd′(t′)

]
(Velocity - Velocity), cov

[
zd(t), z̈d′

]
(Position - Accel-

eration), cov
[
z̈d(t), zd′(t′)

]
(Acceleration - Position), cov

[
żd(t), z̈d′

]
(Velocity - Acceleration),

cov
[
z̈d(t), żd′(t′)

]
(Acceleration - Velocity) and cov

[
z̈d(t), z̈d′(t′)

]
(Acceleration - Acceleration),

we take the appropiate number of derivatives with respect to t and t′ [3].
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