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Abstract

A striking aspect of cortical neural networks is the divergence of a relatively small
number of input channels from the peripheral sensory apparatus into a large num-
ber of cortical neurons, an over-complete representation strategy. Cortical neurons
are then connected by a sparse network of lateral synapses. Here we propose that
such architecture may increase the persistence of the representation of an incom-
ing stimulus, or a percept. We demonstrate that for a family of networks in which
the receptive field of each neuron is re-expressed by its outgoing connections, a
represented percept can remain constant despite changing activity. We term this
choice of connectivity REceptive FIeld REcombination (REFIRE) networks. The
sparse REFIRE network may serve as a high-dimensional integrator and a biolog-
ically plausible model of the local cortical circuit.

1 Introduction

Two salient features of cortical networks are the numerous recurrent lateral connections within a
cortical area and the high ratio of cortical cells to sensory input channels. In their seminal study
[1], Olshausen and Field argued that such architecture may subserve sparse over-complete represen-
tations, which maximize representation accuracy while minimizing the metabolic cost of spiking.
In this framework, lateral connections between neurons with correlated receptive fields mediate ex-
plaining away of the sensory input features[2]. With the exception of an Ising-like generative model
for the lateral connections [3] and a mutual information maximization approach [4], most theoretical
work on lateral connections did not focus on the representation over-completeness [5] and references
therein.

Here, we propose that over-complete representations on recurrently connected networks offer a so-
lution to a long-standing puzzle in neuroscience, that of maintaining a stable sensory percept in the
absence of time-invariant persistent activity (rate of action potential discharge). In order for sensory
percepts to guide actions, their duration must extend to behavioral time scales, hundreds of millisec-
onds or seconds if not more. However, many cortical neurons exhibit time-varying activity even
during working memory tasks [6, 7] and references therein. If each neuron codes for orthogonal
directions in stimulus space, any change in the activity of neurons would cause a distortion in the
network representation, implying that a percept cannot be maintained.

We point out that, in an over-complete representation, network activity can change without any
change in the percept, allowing persistent percepts to be maintained in face of variable neuronal
activity. This results from the fact that the activity space has a higher dimensionality than that of
the stimulus space. When the activity changes in a direction nulled by the projection onto stimulus
space, the percept remains invariant.
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What lateral connectivity can support persistent percepts, even in the face of changing neuronal
activity? We derive the condition on lateral connection weights for networks to maintain persistent
percepts, thus defining a family of REceptive FIeld REcombination networks. Furthermore, we
propose that minimizing synaptic volume cost favors sparse REFIRE networks, whose properties are
remarkably similar to that of the cortex. Such REFIRE networks act as high dimensional integrators
of sensory input.

2 Model

We consider n sensory neurons, their activity marked by s in Rn which project to a layer of m
cortical neurons, where m > n. The activity of the m neurons, marked by a in Rm, at any given
time represents a percept of a certain stimulus. The represented percept s is a linear superposition
of feature vectors, stacked as columns of matrix D, weighted by the neuronal activity a:

s = Da. (1)

For instance, s could represent the intensity level of pixels in a patch of the visual field and the
columns of D a dictionary chosen to represent the patches, e.g. a set of Gabor filters [8]. Since
m > n, the columns of dictionary D cannot be orthogonal and hence define a frame rather than a
basis [9].

2.1 Frames

A frame is a generalization of the idea of a basis to linearly dependent elements [9]. The mapping
between the activity spaceRm and the sensory spaceRn is accomplished by the synthesis operator,
D. The adjoint operator DT is called the analysis operator and their composition the frame operator
DDT . As a consequence of columns of D being a frame, a given vector in the space of percepts can
be represented non-uniquely, i.e. with different coefficients expressed by neuronal activity a. The
general form of coefficients is given by:

a = DT (DDT )−1s+ a⊥, (2)

where a⊥ belongs to the null-space of D, i.e. Da⊥ = 0.

One choice of coefficients, called frame coefficients, corresponds to a⊥ = 0 and minimizes their
l2 norm. Alternatively one can choose a set of coefficients minimizing the l1 norm. These can be
computed by Matching Pursuit [10], Basis Pursuit [11] or LASSO [12], or by the dynamics of a
neural network with feedforward and lateral connections [13]. In summary, the neural activity is an
over-complete representation of the sensory percepts, the m columns of D acting as a frame for the
space of sensory percepts.

2.2 Persistent percepts and lateral connectivity

Now, we derive a necessary and sufficient condition on the lateral connections L such that for every
a the percept represented by Equation (1) persists. We focus on the dynamics of a following a
transient presentation of the sensory stimulus. The dynamics of a network with lateral connectivity
matrix L is given by:

ȧ = −a+ La, (3)
where time is measured in units of the neuronal membrane time constant. Requiring time-invariant
persistent activity amounts to ȧ = 0 or

a = La. (4)
However, this is not necessary if we require only the percept represented by the network to be fixed.
Instead,

ṡ = Dȧ = D(−a+ La) = 0 (5)
Thus, setting the derivative of s to zero is tantamount to

Da = DLa. (6)

If we require persistent percepts for any a, then:

D = DL (7)
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Equation (7) has a trivial solution L = I , which corresponds to a network with no actual lateral
connections and only autapses. We do not consider this solution further for two reasons. First,
autapses are extremely rare among cortical neurons[14]. Second, recurrent networks better support
persistency than autapses [15, 16].

The intuition behind the derivation of Equation (7) is as follows: as the activity of each neuron
changes due to the first term in the rhs of Equation (5) its contribution to the percept may change. To
compensate for this change without necessarily keeping the activity fixed, we require that the other
neurons adjust their activity according to Equation (6).

The condition imposed by Equation (7) on the synaptic weights can be understood as follows. For
each neuron j the sum of its post-synaptic partners receptive fields, weighted by the synaptic efficacy
from neuron j to the other neurons equals to the receptive field of neuron j. Thus, the other neurons
get excited by exactly the amount that it would take for them to replace the lost contribution to the
percept. Equation (7) and its non-trivial solutions that maintain persistent percepts are the main
results of the present study. We term non-trivial solutions of Equation (7) REceptive FIeld RE-
expression, or REFIRE networks due to the intuition underlying their definition.

Some patterns of activity satisfying Equation (4) will remain time-invariant themselves. These
correspond to patterns spanned by the right eigenvectors of L with an eigenvalue of one. Note that
in order to satisfy Equation (7) a right eigenvector v of L must have either an eigenvalue of one or
be in the null-space of D.

There are infinitely many solutions satisfying Equation (7), since there are m ∗ n equations and
m ∗m variables in L. A general solution is given by:

L = DT (DDT )−1D + L⊥, (8)

where L⊥ indicates a component in L corresponding to the null-space of D i.e. DL⊥ = 0. We shall
use these degrees of freedom to require a zero diagonal for L, thus avoiding autapses.
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Figure 1: Schematic network diagram and Mercedes-Benz example. Left: Network diagram. Mid-
dle: Directions of vectors in the MB example. Right: visualization of L

2.3 An example: the Mercedes-Benz frame

In order to present a more intuitive view of the concept of persistent percepts we consider the
Mercedes-Benz frame [17]. This simple frame spans the R2 plane with three frame elements:
[0 1], [−

√
3/2 − 1/2], [

√
3/2 − 1/2]. In this case, the frame operator DDT has a partic-

ularly simple form, being proportional to the identity matrix, indicating that the frame is tight. The
first term in the general form of L (Equation (8)) has a non-zero diagonal, which can be removed by
adding L⊥, a matrix with all its entries equal to one (times a scalar). Thus, L is:

L =

( 0 −1 −1
−1 0 −1
−1 −1 0

)
This seems a rather unlikely candidate matrix to support persistent percepts. However, consider
starting out with the vector a0 = [1 0 0] representing the point [0 1] on the plane, after con-
vergence of the dynamics we have a = [2/3 − 1/3 − 1/3]. This new activity vector represents
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exactly the same point on the plane: Da = [0 1]. Thus, the percept, the point on the plane,
remained constant despite changing neuronal activity. Note that some patterns of activity will re-
main strictly persistent themselves. These correspond to vectors which are a linear combination
of the right eigenvectors of L with an eigenvalue of one. In this case, these eigenvectors are:
v1 = [−1 1 0],v2 = [1/2 1/2 − 1].

2.4 The sparse REFIRE network

Which members of the family of REFIRE networks obeying equation (7) are most likely to model
cortical networks? In the cortex, the connectivity is sparse and the synaptic weights are distributed
exponentially [18, 19]. These measurements are consistent with minimizing cost proportional to
synaptic weight, such as for example their volume. Motivated by these observations, we choose
each column of L as a sparse representation of each individual dictionary element by every other
element. Define Dj = d1,d2, . . .dj−1,dj+1 . . .dm. We shall denote the sparse approximation
coefficients by β. Therefore:

β∗j = min
βj∈Rm−1

||dj −Djβj||22 + λ||βj||1 (9)

These are vectors in Rm−1, we now need to insert a zero in the position of the dictionary element
that was extracted for each of these vectors. Denote by β̃j a vector where a zero before the jth
location of βj, resulting in a vector in Rm. The connectivity of our model network is given by
L = [β̃1, β̃2, . . . β̃m] inRmxm.

We call this form of L the sparse REFIRE network. Similar networks were previously constructed
on the raw data (or image patches) [20, 21], while sparse REFIRE networks reflect the relation-
ship among dictionary elements. Previously, the dependencies between dictionary elements were
captured by tree-graphs [22, 23].

3 Results

In this section, we apply our model to the primary visual cortex by modeling the receptive fields
following the approach of [1]. We study the properties of the resulting sparse REFIRE network and
compare them with experimentally established properties of cortical networks.

3.1 Constructing the sparse REFIRE network for visual cortex

We learn the sparse REFIRE network from a standard set of natural images [8]. We extract patches
of size 13x13 pixels. We use a set of 100,000 such patches distributed evenly across different natural
images to learn the model. Whitening was performed through PCA, after the DC component of each
patch was removed. The dimensionality was reduced from 169 to 84 dimensions. We learn a four
times over-complete dictionary, via the SPAMS online sparse approximation toolbox [24]. Figure 2
left shows the forward weights (columns of D) learned. As expected, the filters obtained are edge
detectors differing in scale, spatial location and orientation.

The sparse REFIRE network was then learned from the dictionary using the same toolbox. Parameter
λ in equation (9) governs the tradeoff between sparsity and reconstruction fidelity, figure 2 right. We
verified that the results presented in this study do not qualitatively change over a wide range of λ
and chose the value of λ where the average probability of connection was 9%, in agreement with the
experimental number of approximately 10%. For this choice the relative reconstruction mismatch
was approximately 10−3. The distribution of synaptic weights in the network, Figure 3 left, shows a
strong bias to zero valued connections and a heavier than gaussian tail as does the cortical data [25].
For an enlarged view of the network see Figure 7. From here on we consider that particular choice
when we refer to the sparse REFIRE network.

Remarkably, the real part of all eigenvalues is less than or equal to one, Figure 3 right, indicating
stability of network dynamics. Although equation (7) guarantees that n eigenvalues are equal to
one, it does not rule out the existence of eigenvalues with greater real part. We speculate that the
absence of such eigenvalues in the spectrum is due to the l1 term in equation (9), the minimization
of which could be viewed as a shrinkage of Gershgorin circles. We find that the connectivity learned
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Figure 2: The sparse REFIRE network. Left: the patches corresponding to columns of D sorted by
variance. Right: Summed l1-norm of all columns of L (left y-axis, red), the reconstruction mismatch
|(D −DL)|/|D| (right y-axis, blue) as a function of λ. Dashed line indicates the value of λ chosen
for the sparse REFIRE network.

was asymmetric with substantial imaginary components in the eigenvalues, see Figure 3 right. In
general, the sparse REFIRE network is unlikely to be symmetric because the connection weights
between a pair of neurons are not decided based solely on the identity of the neurons in the pair but
are dependent on other connections of the same pre-synaptic neuron.
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Figure 3: Properties of lateral connections. Left: distribution of lateral connectivity weights. Inset
shows a survival plot with logarithmic y-axis and same axes limits. Right: scatter plot of eigenvalues
of the lateral connectivity matrix. Note that there are many eigenvalues at real value one, imaginary
value zero. Histogram shown below plot

Numerical simulations of the dynamics of a recurrent network with connectivity matrix L confirm
that the percept remains stable during the network dynamics. We chose an image patch at random
and simulated the network dynamics. As can be seen in Figure 4 left, despite significant changes
in the activity of the neurons, the percept encoded by the network remained stable, PSNR between
original image and image after dynamics lasting 100 neuronal time constants: 45.5dB. The dynamics
of the network desparsified the representation (Figure 4 right). Averaged across multiple patches,
the value of each coefficient in the sparse representation was 0.0704, while after the network dy-
namics this increased to 0.0752, though still below the value obtained for the frame coefficients
representation which was 0.0814.

3.2 Computational advantages of the sparse REFIRE network

In this section, we consider possible computational advantages for the de-coupling between the
sensory percept and it representation by neuronal activity. Specifically, we address a shortcoming
of the sparse representation, its lack of robustness [13]. Namely, the fact that stimuli that differ
only to a small degree might end up being represented with very different coefficients. Intuitively
speaking, this may occur when two (or more) dictionary elements compete for the same role in the
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Figure 4: Evolution of neuronal activity in time. Left: activity of a subset of neurons over time. Top
shows the original percept (framed in black) and plotted left to right patches taken from consecutive
points in the dynamics. Right: scatter of the coefficients before and after 400 neuronal time constants
of the dynamics.

sparse representation. To arrive at a sparse approximation of the stimuli either one of the dictionary
elements could potentially be used, but due to the high cost of non-sparseness both of them together
are not likely to be chosen in a given representation. Thus, small changes in the image, as might
arise due to various noise sources, might cause one of the coefficients to be preferred over the other
in an essentially random fashion, potentially resulting in very different coefficient values for highly
similar images.

The dynamics of the sparse REFIRE network improve the robustness of the coefficient values in the
face of noise. In order to model this effect we extract a single patch and corrupt it repeatedly with i.i.d
5% Gaussian noise. Figure 5 left shows two patches with similar orientation. Figure 5 middle shows
the values of these two coefficients for the sparse approximation taken across the different noise
repetitions. As can be clearly seen only one or the other of the two coefficients is used, exemplifying
the competition described above. The resulting flickering in the coefficients exemplifies this lack of
robustness. Note that the true lack of robustness arises due to multicollinear relations between the
different dictionary elements. Here we restrict ourselves to two in the interests of clarity. Figure
5 right shows these coefficient values plotted one against the other in red along with the values of
the two coefficients following the model dynamics in blue. In the latter case, the coefficient values
between different repetitions remain fairly constant and the flickering representation as in Figure 5
middle is abolished.

We further examined the utility of a more stable representation by training a Naive Bayes classifier to
discriminate between noisy versions of two patches. We corrupt the two patches with i.i.d noise and
train the classifier on 75% of the data while reserving the remaining data for testing generalization.
We train one of classifier on the sparse representation and the other on the representation following
the dynamics of the sparse REFIRE network. We find that the generalization of the classifier learned
following the dynamics was indeed higher, providing 92% accuracy, while the sparse coefficient
trained classifier scored 83% accuracy.

We then demonstrate the computational advantages of the sparse REFIRE network in a more realistic
scenario, encoding a set of patches extracted from an image by shifting the patch one pixel at a
time. Such a shift can be caused by fixational drift or slow self-movement. Figure 5 right top
shows a subset of the patches extracted in this fashion. For each of the patches we calculate the
sparse approximation coefficients and then determine the dot product between the representation
of consecutive patches. We then take the same coefficients, evolve them through the dynamics of
the sparse REFIRE network network and compute the dot product between these new coefficients.
Figure 5 right bottom shows the normalized dot product, the value of the dot product between the
coefficients of two consecutive patches after the sparse REFIRE network dynamics, divided by the
same dot product between the original coefficients. As can be seen, for nearly all cases the ratio is
higher than one, indicating a smoother transition between the coefficients of the consecutive patches.
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Figure 5: Sparse REFIRE network dynamics enhances the robustness of representation. Left: the
patches corresponding to two columns of D with similar tuning. Followed by the coefficient of
each of the patch in the representation of the different noisy image instantiations and a scatter plot
of the coefficient values before recurrent dynamics (red) and following (blue) recurrent dynamics.
Right: an example of the patches in the sliding frame (top) and the normalized dot product between
consecutive patches.

Figure 6: Dictionary clustering. Clusters of patches obtained by a three-way sparse REFIRE network
partitioning by normalized cut. Note the mainly horizontal orientation of the first set of patches and
the vertical orientation of the second.

The sparse REFIRE network encodes useful information regarding the relation between the different
dictionary elements. This can be probed by partitioning performed on the graph [20]. Figure 6 shows
the components of a normalized cut performed on the sparse REFIRE network. The left group
shows clear bias towards horizontal orientation tuning, the middle towards vertical. Thus, subspaces
can be learned directly from partitioning on the sparse REFIRE network offering a complementary
approach to learning structured models directly from the data [26, 27].

Finally, the sparse REFIRE network serves as an integrator of the sensory input. Eigenspace of the
unit eigenvalue is a multi-dimensional generalization of the line attractor used to model persistent
activity [16]. However, unlike the persistent activity theory, which focuses on dynamics along the
line attractor, we emphasize the transient dynamics approaching the unitary eigenspace.

4 Discussion

This study makes a number of novel contributions. First, we propose and demonstrate that in an
over-complete representation certain types of network connectivity allow the percept, i.e. the stim-
ulus represented by the network activity, to remain fixed in time despite changing neuronal activity.
Second, we propose the sparse REFIRE network as a biologically plausible model for cortical lateral
connections that enables such persistent percepts. Third, we point out that the ability to manipulate
activity without affecting the accuracy of representation can be exploited in order to achieve compu-
tational goals. As an example, we show that the sparse REFIRE network dynamics, though causing
the representation to be less sparse, alleviates the problem of representation non-robustness.

Although this study focused on sensory representation in the visual cortex, the framework can be
extended to other sensory modalities, motor cortex and, perhaps, even higher cognitive areas such
as prefrontal cortex or hippocampus.
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Figure 7: sparse REFIRE network structure. Nodes are shown by a patch corresponding to its
feature vector. Arrows indicate connections, blue excitatory, red inhibitory. Plot organized to put
strongly connected nodes close in space. Only strongest connections shown in the interests of clarity.
Inset: Left: histogram of connectivity fraction by difference in feature orientation; red non-zero
connections, gray all connections. Right: zoomed in view.

The sparse REFIRE network model bears an important relation to the family of sparse subspace
models, which have been suggested to improve the robustness of sparse representations[26, 27]. We
have shown that subspaces can be learned directly from the graph by standard graph partitioning
algorithms. The optimal way to leverage the information embodied in the sparse REFIRE network
to learn subspace-like models is a subject of ongoing work with promising results as is the study of
different matrices L that allow persistent percepts.
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