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Proof of Theorem 1. Let Q; = Si @ Si. First we prove that if each view X, (v = 1,2) sat-
isfies Tsybakov noise condition, i.e., Pry cx,(|¢o(z,) — 1/2| < t) < Cst*s for some finite
C3 >0, A3 > 0andall 0 < ¢ < 1/2, Tsybakov noise condition can also be met in Q;, i.e.,

Prayvea; %:g:;il/ﬂgt) < Cyt™ for some finite Cy > 0, Ay > 0 and all 0 < ¢t < 1/2. Suppose

Tsybakov noise condition cannot be met in @);, then for C\, =

PT(Q ) and \, = )3, there exists

some 0 < ¢, < 1/2 to satisfy that P””GQ?‘(‘}f:((QI:))*l/QISt) > C,t}. So we get

Pro,ex, (lov(@o) = 1/2] 1) 2 Pra,eq,(lpo(zv) = 1/2) < 1) > G5t

It is in contradiction with that X, satisfies Tsybakov noise condition. Thus, we get that Tsybakov
noise condition can also be met in ();. Without loss of generality, suppose that Tsybakov noise
condition in all (Q; and X, can be met for the same finite Cjy and .

Since mg = 256 C(V +1o (16(s+1))) according to Lemma 1 we know that d(S9, §*) < 16’~ with
probability at leastl 607D +1) With d(S,, S5) > C1d& (Sy, Sy), we get da(S9,5%) < L. Itis
easy to find that da (SY N SY,9*) < da(SY,S*) + da(SY,S*) < 1/8 holds with probability at
least 1 — ﬁ'

For i > 0, m;y1 number of labels are queried randomly from @);. Thus, similarly according to
Lemma 1 we have da (SiT N SET | Qi, S* | Qi) < 1/8 with probability at least 1 — Let

_ i1 it+1 *
i+1 _ Qit1 ) o Pr(myT T, -SY) 1 ..
T, =5""NQ;and 7,41 = PTGy 2 it is easy to get

Pr(S*n(Si e S5TH(Q:) — Pr(S*n (ST @ STH|Q;) = —2m1 Pr(SiT @ S5 Q).

[
8(s+1)"

Considering the non-degradation condition and da (S% N S%|Q:, S*|Q;) = da(S:|Qi, S*|Q:), we
calculate that

da(S77 N S571Qi, 57(@Q:)

1

o N o
= (Aa(S1 @ S @) + da (SIS + s Pr(S7 0 (51 @ 5570

1 < i RN
—5Pr(SFn(sit e sy

1 AT k(A T e n i i+l
< 5 (aa(S11Qi S° (@) + da(S3Q:, S*1@Q0) ) — i Pr(SiH @ S5 Q)
= da(S] N S5[Qi, S*|Qi) — T Pr(STH @ S57Q).
So we have

da(SiH N S, 57)
— da(STT A SEQu Q) Pr(Q)) + da (ST 0 S QL S7@) Pr(@)

éP’F(Qi) +da(Si N S4Q;, S*Qi)Pr(Q;) — Ti+1Pr((Si+1 ® St N @)

IN



Considering da (Si N Si|Q;, S*|Q;) Pr(Q;) = Pr(Si N Sk — §*) 4+ Pr(Si NS4 — §%), we have
da (ST N SEtt 5%
< Pr(SinS,—S*) + Pr(SInSi—5)+ épr(si ® ) — T Pr((SiT @ S n ).
Similarly, we get
da(Sitt U Sett 5%
< Pr(SinsSi—S*) 4 Pr(SinSi—5%) + %Pr(si ® Sy + i Pr((Sit @ S5t Q).

Pr(Si@5;—-5") _ 1
Pr(Stesy) 2’

da (S} N 85, 57) da(S1 N 85]Qi, S™1Qi) Pr(Qs) + da(S1 N S5|Qs, S*|Q:) Pr(Qi)

= (1/2—7)Pr(S; ® 53) + Pr(S; NS5 — S*) + Pr(Si N S — 5%)

Lety; = we have

and da (S U Sk, 8%) = (1/2 4 7)Pr(Si @ Si) + Pr(Si N Sy — §*) + Pr(Si NS4 — 5%).

As in each round of the multi-view active learning some contention points of the two views are
queried and added into the training set, the difference between the two views is decreasing, i.e.,
Pr(Sit @ S&t1) is no larger than Pr(S} @ S3).

Case 1: If |7;41| < 7;, with respect to Definition 1, we have
da(SiUSsT 8 g Pr(ST @ 85) + [mia | Pr(SiT @ S5 + S Pr(St @ S)
da(SjU S5, 8%) (3 +7)Pr(S{ @ S3) + S Pr(S{ & 53)
(5 +7)Pr(S; @ 85) + S Pr(Si® 83) _ 5a+8.
1

< L2 L2 ;
T (3 +)Pr(Si®S) 4+ LPr(SieSi) T 8a+8
Case 2: If —|7;41| > 4, with respect to Definition 1, we have
da(Si NSyt s gPr(SE @ 85) + [mia | Pr(SiT @ S3T) + S Pr(si @ SE)
da(SiN s, s~ (3 + 1D Pr(St @ S3) + 5 Pr(S{ @ S3)
- Sa + 8;
- 8a+8

Case3: If ;41 > v, and 0 < < %, with respect to Definition 1, we have

da(Sit NS5t 5%) sPr(81 @ S5) + ; Pr(Si @ S5)
da(S{N 85,87 = (5 7)Pr(Si®Sy) + L Pr(Si @ S)
< @ +8 ;
- 2048

Case4: If 7,41 > v; and T <; < 1, with respect to Definition 1, we have

da(SiH U STt §%) _ 1Pr(Si @ S%) + i Pr(SiTt @ S5t + 1 Pr(Si e S))
da(SiU S, S*) = (2 + ) Pr(Si @ S}) + LPr(Si @ Si)

da+ 8.

6o + 8’

<

Case 5: If 7,41 < y; and —i < 7; <0, with respect to Definition 1, we have

da(Si U S8 SPr(Si @ S3) + S Pr(Si @ S;)
da(SpU S5, 5%) = (3 Pr(S ®S85) + L Pr(S; @ S)

a+8

200+ 8’

IN




Case 6: If 7,1 < v; and — < ; < —1, with respect to Definition 1, we have

da(Si N syt sY) o gPr(Si @ Sh) +|rin | Pr(SiT @ 87 + S Pr(Si @ 83)
da(S1N083,5%) (3 + ) Pr(Si @ S3) + S Pr(Si © S3)
- dar + 8;
- ba+38

Case7: If 7,41 < —y;and 0 < ; < % with respect to Definition 1, we have

da (ST U SETt §%) LPr(Si @ Si) + LPr(Si @ S5)
da(S{US5,5%) = (5 +7)Pr(S; @ Si) + £ Pr(S] @ S)
- a+8 :
- 4a+8

Case 8: If 7,1 > —v; and —% < ~; < 0, with respect to Definition 1, we have

dA(s;'ﬂ N s;%% 51 1Pr(S; @ S;’) +'§Pr(5{ ® 5;) |
da(SNS5,8%) = (3 +DPr(Si @ S3) + S Pr(Si @ S3)
a+38
- da+38
. . da(S;'nsitt %) 5a48 . da(Sitlusitt.s®) 5a+8
Thus, after the (i + 1)-th round, either AdAES}hSéS*) < gagor AdA%S{usz,S*) < L

5/2 - s/2
holds. Hence, we have da (S5 N S5,5%) < %(5°‘+8) or da(S5 U S5,5%) < %(“"”8)

6a+8 6a+8
. e 2log si 5a+8
with probability at least 1 — §. When s = v 1, where Cy = & is a constant less
()gc—2 a+8

than 1, we have either da (S7 N S5, 5%) < € or da(S5 U S5,5*) < e with probability at least
1 — 6. Thus, considering R(h') — R(S*) = R(S{ N S5) — R(S*) < da(S{ N Si,5*) and
R(h' ) — R(S*) = R(Si U S1) — R(S*) < da(Si U Si, S*), we have either R(h%) < R(S*) + ¢
or R(h®) < R(S*) +e. O

Proof of Lemma 2. We apply S} and S5 to the unlabeled instances set and identify the contention

. 2log(%) . . .
point set. Then we query for labels of % instances drawn randomly from the contention points

Pr({z:z€S;®S5Ay(z)=1})
Pr(5:®55)

and the em-

. By Chernoff bound, with number of 2 loﬁgﬁ) labels we

set. With these labels we estimate the empirical value ]31 of

Pr({z:xeS{®S;Ay(x)=0})
Pr(S7®S3)

have the following two equations with probability at least 1 — 4.

B e [Pr({m:xe S; @ S5 Ay(z) =1}) B Pr({z:z e S;® S5 Ay(x) =1}) N é}
! Pr(S; @ S3) 2 Pr(S; & S3) 2
B e [Pr({x:xe S @ S5 Ay(z) =0}) B Pr({z:z e S;i® S5 Ay(z) =0}) N é}

° Pr(S; & S5) 2’ Pr(S; @ S3) 2
If P, < Ps, we get Pr({z:ze Si@S5Ay(x) =1}) < Pr({z:z € S ® S5 Ay(z) = 0})
with probability at least 1 — §; otherwise, we get Pr({z : z € S§ ® S5 Ay(z) = 1}) > Pr({=z :
z € 57 ® S5 Ay(x) = 0}) with probability at least 1 — 4. O

pirical value ﬁg of

Proof of Theorem 2. According to Theorem 1, by requesting 6(log %) labels the multi-view active
learning in Table 1 can get either R(h7 ) < R(S*) + e or R(h? ) < R(S*) + € with probability at
least 1 — g. According to Lemma 2, by requesting 21%2(%) labels we can decide correctly whether
Pr({fe :x € S; @S5 Any(x) = 1}) or Pr({z : @ € 5§ ® S5 Ay(z) = 0}) is smaller with

e )
probability at least 1 — 3.

Case 1: If Pr({z :z € S ® S5 Ay(z) =1}) < Pr({z : @ € 5§ ® S5 Ay(x) = 0}), we have
R(h*) < R(h?). Thus, we get R(h® ) < R(S*) + € with probability at least 1 — 4.



Case2: If Pr({z :z € S ® S5 Ay(z) =1}) > Pr({z : x € 5§ @ S5 Ay(x) = 0}), we have
R(h%) < R(h.). Thus, we get R(h%) < R(S*) 4 € with probability at least 1 — ¢.

The total number of labels to be requested is O (log D+ ZIL() O(log ). O

Proof of Theorem 3. Since Pr(S; @ S5) < 1, with the following equation
‘Pr({x:xeSf@Sg/\y(x):l}) Pr({z:z € S{® S5 Ay(z) =0}) ‘
Pr(S: & S3) Pr(S; @ S35)
we have |[Pr({z:z € 5] @S5 Ay(x) =1}) — Pr({z:z € S; & S5 Ay(z) = 0}~)| = O(e). So
itis easy to get |[R(h%.) — R(h% )| = O(€). According to Theorem 1, by requesting O(log 1) labels

we can get either R(h%) < R(S*)+ e or R(h®) < R(S*)+ € with probability at least 1 — . Thus,
we get that % and h® satisfy either (a) or (b) with probability at least 1 — 6. O

Proof of Theorem 5. According to Theorem 4, by requesting 5(log %) labels the multi-view active
learning in Table 1 can get either R(h%) < R(S{ N .S3) + € or R(hS ) < R(ST N S3) + e with
probability at least 1 — %. According to Lemma 2, by requesting 5( 2) Jabels we can decide
correctly whether Pr({z : z € S§ ® S5 Ay(z) = 1}) or Pr({z : € S§ & S5 Ay(x) = 0}) is

smaller with probability at least 1 — é.

Case : If Pr({z:z € S; @S5 Ay(x) =1}) < Pr({z:z € S§ & S5 Ay(z) = 0}
R(h%) < R(h?). Thus, we get R(h®) < R(ST N S5) + € with probability at least 1 —
(
)

~—

, we have

o

Case2: If Pr({z:z € S; ® S5 Ay(z) =1}) > Pr({z : x € S§ ® S5 Ay(z) = O},wehave

R(h%) < R(h®). Thus, we get R(h?.

~—

&

< R(ST N S%) + e with probability at least 1 —

The total number of labels to be requested is O (log ) + QIL() = O(log ). O

Proof of Corollary 1. According to Theorem 5 we know that by requesting 5(10g %) labels the
multi-view active learning in Table 1 will generate a classifier whose error rate is no larger than
R(S} N S3) + § with probability at least 1 — ¢. Considering that

R(S; N53) — R(S%) = / 200 (20) — Llps, ds, < Pr(St @ S3),
(S:NS3)AS:

we have R(S7NS5) < R(S})+ 5. Thus, we get that R(ST N.S5)+ § is no larger than R(S) +-¢. [

Proof of Theorem 6. After the i-th round in Table 2, the number of training examples in L is
b0 2°m; = (27! — 1)m;. While in the (i + 1)-th round, we randomly query (27! — 1)m;
labels from the region of ); and add them into £. So in the (i + 1)-th round, the number of training

examples for S¢1 (v = 1,2) drawn randomly from region of Q; is larger than the number of whole
training examples for .S;. Since the optimal Bayes classifier ¢, belongs to H,, according to the

standard PAC-model, it is easy to know that d(S:1(Q;, S*|Q;) < d(S!|Q;, S*|Q;) can be met for
any ¢,,, where d(S,|Q;, S*|Q;) is defined as

SIS0 & R ~ RS = [ 2oulen) = pe, e,/ Pr@)

So, by setting ¢, € {0,1}, we get da(S5|Q;, S*|Qi) < da(S%|Q;, S*|Q;), which implies the
non-degradation condition. Thus, with the proof of Theorem 1, we get Theorem 6 proved. ]

Proof of Theorem 7. According to Theorem 6, by requesting O(%) labels the multi-view active
learning in Table 2 will generate two classifiers 4% and h° , at least one of which is with error rate
no larger than R(S*) + e with probability at least 1 — §. Similarly to the proof of Theorem 2, we
get Theorem 7 proved. ]



Proof of Theorem 8. According to Theorem 6, by requesting O(%) labels the multi-view active
learning in Table 2 will generate two classifiers 4% and h° , at least one of which is with error rate
no larger than R(S™*) + e with probability at least 1 — §. Similarly to the proof of Theorem 3, we
get Theorem 8 proved. ]

Proof of Theorem 9. Similarly to the proof of Theorem 4 and Theorem 6, we know that by request-
ing O(1) labels the multi-view active learning in Table 2 can get either R(h%) < R(S} N S3) + €
c;r1 R((Sh)i ) < R(SF N S5) + e with probability at least 1 — %. According to Lemma 2, by requesting
og(8
il
least 1 — g. Thus, we can get a classifiers whose error rate is no larger than R(S7 N S3) + € with

probability at least 1 — §. The total number of labels to be requested is 6(%) + 21%2(%) = 6(%) O

labels we can decide correctly whether R(h?.) or R(h® ) is smaller with probability at

Proof of Corollary 2. According to Theorem 9 we know that by requesting 5(%) labels the
multi-view active learning in Table 2 will generate a classifier whose error rate is no larger than

R(ST N S5) + § with probability at least 1 — 0. With the proof of Corollary 1, we get that
R(ST N S3) + § is no larger than R(S}) + €. 0



