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1 Canonical Form

Every function of the form f(y;θ) =
∑

ij∈E θij(yi, yj) +
∑

i θi(yi), where the variables yi ∈
{1, 2, . . . , k} has an equivalent function in canonical form. We have already made use of the canon-
ical form for binary pairwise MRFs (i.e., when k = 2), and in this section we describe the general-
ization of this to non-binary MRFs. This notion is defined with respect to a canonical assignment.
Definition 1.1. Parameters θcan are in canonical form with respect to the assignment ycan if:

• For all ij ∈ E it holds that: θcan
ij (ycan

i , yj) = 0 for all yj and θcan
ij (yi, y

can
j ) = 0 for all yi.

• For all i ∈ V it holds that: θcan
i (ycan

i ) = 0.

Given an assignment ycan and parameters θ, the corresponding canonical parameters θcan can be
easily obtained via a sequence of reparameterizations as follows:

1. Initialize θcan ← θ.
2. For all ij ∈ E,∀yi, yj , do

θcan
ij (yi, yj) ← θcan

ij (yi, yj)− θcan
ij (yi, y

can
j ) (1)

θcan
i (yi) ← θcan

i (yi) + θcan
ij (yi, y

can
j ). (2)

3. For all ij ∈ E,∀yi, yj , do

θcan
ij (yi, yj) ← θcan

ij (yi, yj)− θcan
ij (ycan

i , yj) (3)

θcan
j (yj) ← θcan

j (yj) + θcan
ij (ycan

i , yj). (4)

4. For all i,∀yi, do

θcan
i (yi) ← θcan

i (yi)− θcan
i (ycan

i ). (5)

An example of this transformation into canonical form is shown in Fig. 1. The first three steps of
the transformation correspond to reparameterizations of the model, while the last step only adds a
constant to each single node potential. We thus have that f(y;θ) = f(y;θcan)+C which implies that
argmaxy f(y;θ) = argmaxy f(y;θcan). We conclude that every function f(y;θ) has an equivalent
canonical form, and focus on this case in the following proposition. We denote by Θcan the set of all
parameters in canonical form.

2 Identifiability of True Parameters

Proposition 2.1. For any θ∗ ∈ Θcan, there is a set of 2|V |(k − 1) + 2|E|(k − 1)2 examples,
{xm,y(xm;θ∗)}, such that any pseudo-max consistent θ ∈ Θps({ym,xm}) ∩ Θcan is arbitrarily
close to θ∗.
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Figure 1: Illustration of the transformation from a set of parameters to the equivalent canonical form,
using the canonical assignment ycan = 3. Shown on the left are the original edge potential functions
(zero fields), and shown on the right is its transformation into canonical form. These edge potentials
are also used in the NP-hardness proof.

Proof. The output of the classifier is y(x;θ) = arg maxy f(y;x,θ) where the function f is given
by (see Section 2.1 in the paper):

f(y;x,θ) =
∑

ij∈E θij(yi, yj) +
∑

i θi(yi) +
∑

i xi(yi), (6)

We assume that the data is generated from some function f(y;x,θ∗), with corresponding parame-
ters θ∗ in canonical form. Without loss of generality we assume that θ∗ is canonical with respect to
the assignment ycan = 1 (i.e., ycan

1 = 1, ycan
2 = 1, . . . , ycan

n = 1).

For this special case we can omit the loss e(ym
i , yi), because the input xi(yi) will suffice to rule out

solutions such as θ = 0. The pseudo constraints then simplify to

Θps =

{
θ | ∀m, i, yi 6= ym

i ,
∑

j∈N(i)

θij(ym
i , y

m
j )+ θi(ym

i ) + xm
i (ym

i ) ≥

∑
j∈N(i)

θij(yi, y
m
j ) + θi(yi) + xm

i (yi)

}
.(7)

We now show how to construct a set of 2n(k−1)+2|E|(k−1)2 labeled examples {(xm,ym)}Mm=1
such that θ∗ ∈ Θps ∩ Θcan (i.e., it is non-empty), and all other θ ∈ Θps ∩ Θcan are close to θ∗. For

convenience, we define Maxi(θ∗) = maxyi

[
|θ∗i (yi)|+

∑
j∈N(i) maxyj

|θ∗ij(yi, yj)|
]
. The key idea

is to set coordinates of xm to large enough values such that either ym
i or its neighbors are set to their

canonical state.

The first set of examples enforces that θ∗i (yi) − ε/2 ≤ θi(yi) ≤ θ∗i (yi) + ε/2. In particular, for
every i ∈ V and every label yi 6= 1 (the canonical state for i), we have two examples (unless
otherwise specified, assume xm = 0). For both examples, and for all j ∈ N(i), we set ym

j = 1 and
xm

j (1) = Maxj(θ∗) + 1. This enforces that all nodes that are neighbors of i are in their canonical
state (and thus yi is effectively separated from the rest of the graph). In addition, for both examples
and for ŷi 6∈ {1, yi}, we set xm

i (ŷi) = −2Maxi(θ∗)−1. This will ensure that the states ŷi 6∈ {1, yi}
will not be in the maximizing assignment. Then,

1. For the first example, set ym
i = yi and xm

i (yi) = −θ∗i (yi)+ε/2. This gives us the following
pseudo-max constraint for variable yi:∑

j∈N(i)

θij(yi, 1) + θi(yi) + xm
i (yi) ≥

∑
j∈N(i)

θij(1, 1) + θi(1) + xm
i (1) (8)

θi(yi)− θ∗i (yi) + ε/2 ≥ 0 (9)
θi(yi) ≥ θ∗i (yi)− ε/2. (10)
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2. For the second example, set ym
i = 1 and xm

i (yi) = −θ∗i (yi) − ε/2. This gives us the
following pseudo-max constraint for variable yi:∑

j∈N(i)

θij(1, 1) + θi(1) + xm
i (1) ≥

∑
j∈N(i)

θij(yi, 1) + θi(yi) + xm
i (yi) (11)

0 ≥ θi(yi)− θ∗i (yi)− ε/2 (12)
θ∗i (yi) + ε/2 ≥ θi(yi). (13)

We have thus far not specified ym
k for k 6∈ {i} ∪ N(i). These values should be set such that

ym = y(xm;θ∗), so that θ∗ ∈ Θps.

The second set of examples enforces that θ∗ij(yi, yj)−ε ≤ θij(yi, yj) ≤ θ∗ij(yi, yj)+ε. In particular,
for every ij ∈ E and yi 6= 1, yj 6= 1, we have two examples. For both examples, and for all
k ∈ N(i)\{j}, we set ym

k = 1 and xm
k (1) = Maxk(θ∗) + 1. This enforces that all nodes that

are neighbors of i (except j) are in their canonical state. As before, for both examples and for
ŷi 6∈ {1, yi}, we set xm

i (ŷi) = −2Maxi(θ∗)−1. We also set ym
j = yj and xm

j (yj) = Maxj(θ∗)+1.

1. For the first example, set ym
i = yi and xm

i (yi) = −θ∗ij(yi, yj) − θ∗i (yi) + ε/2. This gives
us the following pseudo-max constraint for variable yi:

θij(yi, yj) +
∑

k∈N(i)\{j}

θik(yi, 1) + θi(yi) + xm
i (yi) ≥ θij(1, yj) +

∑
k∈N(i)\{j}

θik(1, 1) + θi(1) + xm
i (1)

θij(yi, yj) + θi(yi)− θ∗ij(yi, yj)− θ∗i (yi) +
ε

2
≥ 0

θij(yi, yj) ≥ θ∗ij(yi, yj) +
(
θ∗i (yi)− θi(yi)

)
− ε/2⇒

θij(yi, yj) ≥ θ∗ij(yi, yj)− ε.

2. For the second example, set ym
i = 1 and xm

i (yi) = −θ∗ij(yi, yj)−θ∗i (yi)− ε/2. This gives
us the following psuedo-max constraint for variable yi:

θij(1, yj) +
∑

k∈N(i)\{j}

θik(1, 1) + θi(1) + xm
i (1) ≥ θij(yi, yj) +

∑
k∈N(i)\{j}

θik(yi, 1) + θi(yi) + xm
i (yi)

0 ≥ θij(yi, yj) + θi(yi)− θ∗ij(yi, yj)− θ∗i (yi)−
ε

2

θ∗ij(yi, yj) +
(
θ∗i (yi)− θi(yi)

)
+ ε/2 ≥ θij(yi, yj)⇒

θ∗ij(yi, yj) + ε ≥ θij(yi, yj).

As before, ym
k for k 6∈ {i} ∪N(i) should be set such that ym = y(xm;θ∗), so that θ∗ ∈ Θps. We

now let ε→ 0 to get the result.
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