1 Supplementary figures for Section 5.3

In Section 5.3 of the paper we show the results in a compressive sensing recovery experiment with
synthetic data for RWBP and RW5BP. We show here two additional results. First, we show in Fig-
ure 1 the compressive sensing recovery results using Basis Pursuit (BP) as the recovery algorithm.
Second, we show in Figure 2 the compressive sensing recovery results using the algorithm with
divisive normalization update with neighborhood size 5 (RW35BP). The results for BP are similar to
RWBP, whereas the results for RW5BP are similar to the results for RW3;BP.
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Figure 1: Compressive sensing recovery results using synthetic data. We show the phase plots for
BP. On the x-axis is the sparsity of the system indexed by p = 3d/m, and on the y-axis is the
indeterminacy of the system indexed by 6 = n/m. At each point (p, §) in the phase plot, we sample
10 compressive sensing problems and display the average recovery error.

2 Supplementary figures for Section 5.4

In Section 5.4 of the paper, we describe a compressive sensing experiment applied to image patches.
In the paper we have compared the recovery performance of the inference algorithm corresponding
to inference in a non-factorial LSM model with 3 x 3 overlapping group (RW3,3BP) with the
inference algorithm corresponding to inference in a factorial LSM model (RWBP). We show here
how these two algorithms compare to the algorithm corresponding to inference in a factorial model
with Laplacian prior (BP). We show in Figure 3 the comparison between BP and RW3, 3BP, and
see that RW3,3BP clearly outperforms BP. We show in Figure 4 the comparison between BP and
RWBP, and see that RWBP outperforms BP as RWBP is able to find solutions with greater sparsity.
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Figure 2: Compressive sensing recovery results using synthetic data. We show the phase plots for
RW5B. On the x-axis is the sparsity of the system indexed by p = 3d/m, and on the y-axis is the
indeterminacy of the system indexed by § = n/m. At each point (p, d) in the phase plot, we sample
10 compressive sensing problems and display the average recovery error.
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Figure 3: Compressive sensing recovery. On the x-axis is the recovery performance for the factorial
Laplacian model (BP), and on the y-axis the recovery performance for the non-factorial LSM model
with 3 x 3 overlapping groups (RW3,3BP).
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Figure 4: Compressive sensing recovery. On the x-axis is the recovery performance for the factorial

Laplacian model (BP), and on the y-axis the recovery performance for the non-factorial LSM model
with 3 x 3 overlapping groups (RW3,3BP).



