
Supplementary Material for
"Localizing Bugs in Program Executions

with Graphical Models"

Laura Dietz
Max-Planck Institute for Computer Science

Saarbruecken, Germany
dietz@mpi-inf.mpg.de

Valentin Dallmeier
Saarland University

Saarbruecken, Germany
dallmeier@cs.uni-saarland.de

Andreas Zeller
Saarland University

Saarbruecken, Germany
zeller@cs.uni-saarland.de

Tobias Scheffer
Potsdam University
Potsdam, Germany

scheffer@cs.uni-potsdam.de

Derivation of the Predictive Distribution

Given a collection Gm of previously seen execution graphs for methodm and a new executionGm =
(Vm, Em, Lm), Bayesian inference determines the likelihood p((u, v) ∈ Em|Vm,Gm, αψ, βψ) of
each of the edges (u, v), thus indicating unlikely transitions in the new execution of m represented
by execution graph Gm. Since we employ independent models for all methods m, inference can be
carried out for each method separately.

In order to infer the probability of an edge, Equation 1 integrates over the model space.

p((u, v) ∈ Em|Vm,Gm, αψ, βψ) =
ˆ
p((u, v) ∈ Em|Vm,Ψ)p(Ψ|Gm, αψ, βψ) dΨ (1)

According to the Bernoulli graph model, the likelihood of the existence of an edge (u, v) given the
parameter vector Ψ is a Bernoulli distribution. The distribution is conditioned on existence of the
start vertex u and yields zero probability if the labels do not overlap appropriately:

p((u, v) ∈ Em|Vm,Ψ) =
{
ψm,s1...sn

if u ∈ Vm, Lm(u)=s1 . . . sn−1, and Lm(v)=s2 . . . sn
0 otherwise.

(2)

Corresponding to Figure 3a), the random variable bG,u,s = true iff an edge (u, v) ∈ G exists in
the graph such that L(u) = s1 . . . sn−1 and L(v) = s2 . . . sn−1s. The likelihood of a graph is
proportional to the likelihood that all edges in EG are generated (bG,u,s = true) and all edges in the
complementary set EG are not (Equation 3). If the start vertex u is not contained, random variables
b are false with probability 1, thus we can omit them from the product over G in Equation 4. This
product with shared parameter ψ yields a Binomial distribution. Since the product of Binomial and
Beta distributions yields a reparametrized Beta distribution, we arrive at Equation 5 using counts
of successful and failed trials. Shorthand #G(u,sn) abbreviates the number of graphs G ∈ G with
bG,u,sn = true which is the case if an edge (u, v) between vertices labeled L(u) = s1 . . . sn−1 and
L(v) = s2 . . . sn exists; and #Gu refers to the number of graphs G ∈ G that have a vertex u labeled
s1 . . . sn−1, in which case a draw from ψ is issued.

1

p(Ψ|Gm, αψ, βψ)

∝ p(Ψ|αψ, βψ)
∏
G∈Gm

p(VG)︸ ︷︷ ︸
const

p(EG|VG,Ψ)
(
1− p(EG|VG,Ψ)

)
(3)

∝
∏

s1...sn−1

∏
s∈S

(
pβ(ψm,s1...sn−1s|αψ, βψ)

∏
G∈Gm|u∈VG

L(u)=s1...sn−1

p(bG,u,s|ψm,s1...sn−1s)
)

(4)

∝
∏

s1...sn∈(Sm)n

pβ

(
ψm,s1...sn−1sn

|#G(u,sn) + αψ,#Gu −#G(u,sn) + βψ

)
(5)

The predictive distribution in Equation 1 using a Beta-distributed posterior has an analytic solution:

p((u, v) ∈ Em|Vm,Gm, αψ, βψ) =
#G(u,sn) + αψ

#Gu + αψ + βψ
. (6)

By definition, an execution graphG for an execution contains a vertex if its label is a substring of the
execution’s trace t. Likewise, an edge is contained if an aggregation of the vertex labels is a substring
of t. It follows that #Gu = #{t ∈ T |s1 . . . sn−1 ∈ t} and #G(u,sn) = #{t ∈ T |s1 . . . sn ∈ t}.
Equation 6 can be reformulated as in Equation 7 to predict the probability of seeing the code position
s̃ = sn after a fragment of preceding statements f̃ = s1 . . . sn−1 using the trace representation of
an execution. Thus, it is not neccessary to represent execution graphs G explicitly.

p(s̃|f̃ , T, αψ, βψ) =
#{t ∈ T |f̃ s̃ ∈ t}+ αψ

#{t ∈ T |f̃ ∈ t}+ αψ + βψ
(7)

2

