
The Infinite Partially Observable Markov Decision
Process

Finale Doshi-Velez
Cambridge University

Cambridge, CB21PZ, UK
finale@alum.mit.edu

Abstract

The Partially Observable Markov Decision Process (POMDP) framework has
proven useful in planning domains where agents must balance actions that pro-
vide knowledge and actions that provide reward. Unfortunately, most POMDPs
are complex structures with a large number of parameters. In many real-world
problems, both the structure and the parameters are difficult to specify from do-
main knowledge alone. Recent work in Bayesian reinforcement learning has made
headway in learning POMDP models; however, this work has largely focused on
learning the parameters of the POMDP model. We define an infinite POMDP
(iPOMDP) model that does not require knowledge of the size of the state space;
instead, it assumes that the number of visited states will grow as the agent explores
its world and only models visited states explicitly. We demonstrate the iPOMDP
on several standard problems.

1 Introduction

The Partially Observable Markov Decision Process (POMDP) model has proven attractive in do-
mains where agents must reason in the face of uncertainty because it provides a framework for
agents to compare the values of actions that gather information and actions that provide immedi-
ate reward. Unfortunately, modelling real-world problems as POMDPs typically requires a domain
expert to specify both the structure of the problem and a large number of associated parameters,
and both of which are often difficult tasks. Current methods in reinforcement learning (RL) focus
on learning the parameters online, that is, while the agent is acting in its environment. Bayesian
RL [1, 2, 3] has recently received attention because it allows the agent to reason both about uncer-
tainty in its model of the environment and uncertainty within environment itself. However, these
methods also tend to focus on learning parameters of an environment rather than the structure.

In the context of POMDP learning, several algorithms [4, 5, 6, 7] have applied Bayesian methods
to reason about the unknown model parameters. All of these approaches provide the agent with the
size of the underlying state space and focus on learning the transition and observation1 dynamics for
each state. Even when the size of the state space is known, however, just making the agent reason
about a large number of unknown parameters at the beginning of the learning process is fraught with
difficulties. The agent has insufficient experience to fit a large number of parameters, and therefore
much of the model will be highly uncertain. Trying to plan under vast model uncertainty often
requires significant computational resources; moreover, the computations are often wasted effort
when the agent has very little data. Using a point estimate of the model instead—that is, ignoring
the model uncertainty—can be highly inaccurate if the expert’s prior assumptions are a poor match
for the true model.

1[7] also learns rewards.

1

We propose a nonparametric approach to modelling the structure of the underlying space—
specifically, the number of states in the agent’s world—which allows the agent to start with a simple
model and grow it with experience. Building on the infinite hidden Markov model (iHMM) [8], the
infinite POMDP (iPOMDP) model posits that the environment contains of an unbounded number of
states. The agent is expected to stay in a local region; however, as time passes, it may explore states
that it has not visited before. Initially, the agent will infer simple, local models of the environment
corresponding to its limited experience (also conducive to fast planning). It will dynamically add
structure as it accumulates evidence for more complex models. Finally, a data-driven approach to
structure discovery allows the agent to agglomerate states with identical dynamics (see section 4 for
a toy example).

2 The Infinite POMDP Model

A POMDP consists of the n-tuple{S,A,O,T ,Ω,R,γ}. S, A, andO are

s stt−1

rt ot

at

Figure 1: A time-slice
of the POMDP model.

sets of states, actions, and observations. The transition functionT (s′|s, a)
defines the distribution over next-statess′ to which the agent may transi-
tion after taking actiona from states. The observation functionΩ(o|s′, a)
is a distribution over observationso that may occur in states′ after taking
actiona. The reward functionR(s, a) specifies the immediate reward for
each state-action pair (see figure 1 for a slice of the graphical model). The
factorγ ∈ [0, 1) weighs the importance of current and future rewards.

We focus on discrete state and observation spaces (generalising to contin-
uous observations is straightforward) and finite action spaces. The size of
the state space is unknown and potentially unbounded. The transitions,
observations, and rewards are modelled with an iHMM.

The Infinite Hidden Markov Model A standard hidden Markov model (HMM) consists of the n-
tuple {S,O,T ,Ω}, where the transitionT (s′|s) and observationΩ(o|s′) distributions only depend
on the hidden state. When the number of hidden states is finite and discrete, Dirichlet distributions
may be used as priors over the transition and observation distributions. The iHMM [9] uses a
hierarchical Dirichlet Process (HDP) to define a prior over HMMs where the number of underlying
states is unbounded.2 To generate a model from the iHMM prior, we:

1. Draw the mean transition distribution̄T ∼ Stick(λ).
2. Draw observationsΩ(·|s, a) ∼ H for eachs, a.
3. Draw transitionsT (·|s, a) ∼ DP(α, T̄) for eachs, a.

whereλ is the DP concentration parameter andH is a prior over observation distributions. For
example, if the observations are discrete, thenH could be a Dirichlet distribution.

Intuitively, the first two steps define the observation distribution and an overall popularity for each
state. The second step uses these overall state popularities to define individual state transition distri-
butions. More formally, the first two steps involve a drawG0 ∼ DP(λ,H), where the atoms ofG0

areΩ, andT̄ are the associated stick-lengths.3 Recall that in the stick breaking procedure, thesth

stick-length,T̄s, is given byvs

∏s−1

i=1
(1 − vi), wherevi ∼ Beta(1, λ). While the number of states

is unbounded,̄Ts decreases exponentially withs, meaning that “later” states are less popular. This
construction ofT̄s also ensures that

∑∞
s T̄s = 1. The top part of figure 2 shows a cartoon of a few

elements of̄T andΩ.

The second step of the iHMM construction involves defining the transition distributionsT (·|s) ∼
DP(α, T̄) for each states, whereα, the concentration parameter for the DP, determines how closely
the sampled distributionT (·|s) matches the mean transition distributionT̄ . BecausēT puts higher
probabilities on states with smaller indices,T (s′|s) will also generally put more mass on earliers′

(see lower rows of figure 2). Thus, the generating process encodes a notion that the agent will spend
most of its time in some local region. However, the longer the agent acts in this infinite space, the
more likely it is to transition to somewhere new.

2The iHMM models in [8] and [9] are formally equivalent [10].
3A detailed description of DPs and HDPs is beyond the scope of this paper; please refer to [11] for back-

ground on Dirichlet processes and [9] for an overview of HDPs.

2

Infinite POMDPs To extend the iHMM framework to Τ1 Τ2 Τ3 Τ4

...

...
Τ

Τ

1:

2:

Ω Ω2 3Ω1 Ω4

...G0

...

Figure 2: iHMM: The first row
shows each state’s observation dis-
tribution Ωs and the mean transi-
tion distributionT̄ . Later rows show
each state’s transition distribution.

iPOMDPs, we must incorporate actions and rewards into the
generative model. To incorporate actions, we draw an ob-
servation distributionΩ(·|s, a) ∼ H for each actiona and
each states. Similarly, during the second step of the gener-
ative process, we draw a transition distributionT (s′|s, a) ∼
DP(α, T̄) for each state-action pair.4

HMMs have one output—observations—while POMDPs
also output rewards. We treat rewards as a secondary set of
observations. For this work, we assume that the set of pos-
sible reward values is given, and we use a multinomial dis-
tribution to describe the probabilityR(r|s, a) of observing
rewardr after taking actiona in states. As with the obser-
vations, the reward distributionsR are drawn from Dirichlet
distributionHR. We use multinomial distributions for con-
venience; however, other reward distributions (such as Gaus-
sians) are easily incorporate in this framework.

In summary, the iPOMDP prior requires that we specify

• a set of actionsA and observationsO,
• a generating distributionH for the observation distributions andHR for the rewards (these

generating distributions can have any form; the choice will depend on the application),
• a mean transition concentration factorλ and a state transition concentration factorα, and
• a discount factorγ.

To sample a model from the iPOMDP prior, we first sample the mean transition distributionT̄ ∼
Stick(λ). Next, for each states and actiona, we sample

• T (·|s, a) ∼ DP(α, T̄) ,
• Ω(·|s, a) ∼ H,
• R(·|s, a) ∼ HR.

Samples from the iPOMDP prior have an infinite number of states, but fortunately all of these states
do not need to be explicitly represented. During a finite lifetime the agent can only visit a finite
number of states, and thus the agent can only make inferences about a finite number of states. The
remaining (infinite) states are equivalent from agent’s perspective, as, in expectation, these states
will exhibit the mean dynamics of the prior. Thus, the only parts of the infinite model that need to
be initialised are those corresponding to the states the agent has visited as well as a catch-all state
representing all other states. In reality, of course, the agent does not know the states it has visited:
we discuss joint inference over the unknown state history and the model in section 3.1.

3 Planning

As in the standard Bayesian RL framework, we recast the problem of POMDP learning as planning
in a larger ‘model-uncertainty’ POMDP in which both the true model and the true state are unknown.
We outline below our procedure for planning in this joint space of POMDP models and unknown
states and the detail each step—belief monitoring and action-selection—in sections 3.1 and 3.2.

Because the true state is hidden, the agent must choose its actions based only on past actions and
observations. Normally the best action to take at timet depends on the entire history of actions and
observations that the agent has taken so far. However, the probability distribution over current states,
known as thebelief, is a sufficient statistic for a history of actions and observations. In discrete state
spaces, the belief at timet + 1 can be computed from the previous belief,bt, the last actiona, and
observationo, by the following application of Bayes rule:

ba,o
t+1(s)=Ω(o|s, a)

∑

s′∈S

T (s|s′, a)bt(s
′)/Pr(o|b, a), (1)

4We use the same base measureH to draw all observation distributions; however, a separate measuresHa

could be used for each action if one had prior knowledge about the expected observation distribution for reach
action. Likewise, one could also draw a separateT̄a for each action.

3

wherePr(o|b, a)=
∑

s′∈S Ω(o|s′, a)
∑

s∈S T (s′|s, a)bt(s). However, it is intractable to express the
joint beliefb over models and states with a closed-form expression. We approximate the beliefb with
a set of sampled modelsm = {T,Ω, R}, each with weightw(m). Each model samplem maintains
a belief over statesbm(s). The states are discrete, and thus the beliefbm(s) can be updated using
equation 1. Details for sampling the modelsm are described in section 3.1.

Given the belief, the agent must choose what action to choose next. One approach is to solve the
planning problem offline, that is, determine a good action for every possible belief. If the goal is to
maximize the expected discounted reward, then the optimal policy is given by:

Vt(b) = max
a∈A

Qt(b, a), (2)

Qt(b, a) = R(b, a) + γ
∑

o∈O

Pr(o|b, a)Vt(b
a,o), (3)

where the value functionV (b) is the expected discounted reward that an agent will receive if its
current belief isb andQ(b, a) is the value of taking actiona in belief b. The exact solution to
equation 3 is only tractable for tiny problems, but many approximation methods [12, 13, 14] have
been developed to solve POMDPs offline.

While we might hope to solve equation 3 over the state space of a single model, it is intractable to
solve over the joint space of states and infinite models—the model space is so large that standard
point-based approximations will generally fail. Moreover, it makes little sense to find the optimal
policy for all models when only a few models are likely. Therefore, instead of solving 3 offline,
we build a forward-looking search tree at each time step (see [15] for a review of forward search in
POMDPs). The tree computes the value of action by investigating a number of steps into the future.
The details of the action selection are discussed in section 3.2.

3.1 Belief Monitoring

As outlined in section 3, we approximate the joint belief over states and models through a set of
samples. In this section, we describe a procedure for sampling a set of modelsm = {T,Ω, R} from
the true belief, or posterior, over models.5 These samples can then be used to approximate various
integrations over models that occur during planning; in the limit of infinite samples, the approxima-
tions will be guaranteed to converge to their true values. To simplify matters, we assume that given
a modelm, it is tractable to maintain a closed-form beliefbm(s) over states using equation 1. Thus,
models need to be sampled, but beliefs do not.

Suppose we have a set of modelsm that have been drawn from the belief at timet. To get a set of
models drawn from the belief at timet+1, we can either draw the models directly from the new belief
or adjust the weights on the model set at timet so that they now provide an accurate representation
of the belief at timet + 1. Adjusting the weights is computationally most straightforward: directly
following belief update equation 1, the importance weightw(m) on modelm is given by:

wa,o
t+1(m) ∝ Ω(o|m,a)wt(m), (4)

whereΩ(o|m,a)=
∑

s∈S Ω(o|s,m, a)bm(s), and we have usedT (m′|m,a) = δm(m′) because the
true model does not change.

The advantage of simply reweighting the samples is that the belief update is extremely fast. How-
ever, new experience may quickly render all of the current model samples unlikely. Therefore, we
must periodically resample a new set of models directly from the current belief. The beam-sampling
approach of [16] is an efficient method for drawing samples from an iHMM posterior. We adapt this
approach to allow for observations with different temporal shifts (since the rewardrt depends on
the statest, whereas the observationot is conditioned on the statest+1) and for transitions indexed
by both the current state and the most recent action. The correctness of our sampler follows directly
from the correctness of the beam sampler [16].

The beam-sampler is an auxiliary variable method that draws samples from the iPOMDP posterior.
A detailed description of beam sampling is beyond the scope of this paper; however, we outline the
general procedure below. The inference alternates between three phases:

5We will use the wordsposteriorandbelief interchangeably; both refer to the probability distribution over
the hidden state given some initial belief (orprior) and the history of actions and observations.

4

• Sampling slice variables to limit trajectories to a finite number of hidden states.
Given a transition modelT and a state trajectory{s1, s2, . . .}, an auxiliary variable
ut ∼ Uniform([0,min(T (·|st, a))]) is sampled for each timet. The final columnk of the
transition matrix is extended via additional stick-breaking untilmax(T (sk|s, a)) < ut.).
Only transitionsT (s′|s, a) > ut are considered for inference at timet.6

• Sampling a hidden state trajectory.Now that we have a finite model, we apply forward
filtering-backward sampling (FFBS) [18] to sample the underlying state sequence.

• Sampling a model. Given a trajectory over hidden states, transition, observation, and
reward distributions are sampled for the visited states (it only makes sense to sample dis-
tributions for visited states, as we do not have information about unvisited states). In this
finite setting, we can resample the transitionsT (·|s, a) using standard Dirichlet posteriors:

T (·|s, a) ∼ Dirichlet(T sa
1 + nsa

1 , T sa
2 + nsa

2 , ..., T sa
k + nsa

k ,

∞∑

i=k+1

T sa
i), (5)

wherek is the number ofactiveor used states,T sa
i is the prior probability of transitioning

to statei from states after taking actiona, andnsa
i is the number of observed transitions

to statei from s aftera. The observations and rewards are resampled in a similar manner:
for example, if the observations are discrete with Dirichlet priors:

Ω(·|s, a) ∼ Dirichlet(H1 + no1sa,H2 + no2sa, ...,H|O| + no|O|sa). (6)

As with all MCMC methods, initial samples (from theburn-in period) are biased by sampler’s start
position; only after the sampler has mixed will the samples be representative of the true posterior.

Finally, we emphasize that the approach outline above is a sampling approach and not a maximum
likelihood estimator; thus the samples, drawn from the agent’s belief, capture the variation over
possible models. The representation of the belief is necessarily approximate due to our use of
samples, but the samples are drawn from the true current belief—no other approximations have
been made. Specifically, we are not filtering: each run of the beam sampler produces samples from
the current belief. Because they are drawn from the true posterior, all samples have equal weight.

3.2 Action Selection

Given a set of models, we apply a stochastic forward search in the model-space to choose an action.
The general idea behind forward search [15] is to use a forward-looking tree to compute action-
values. Starting from the agent’s current belief, the tree branches on each action the agent might
take and each observation the agent might see. At each action node, the agent computes its expected
immediate rewardR(a) = Em[Es|m[R(·|s, a)]].

From equation 3, the value of taking actiona in belief b is

Q(a, b) = R(a, b) + γ
∑

o

Ω(o|b, a)max
a′

Q(a′, bao) (7)

wherebao is the agent’s belief after taking actiona and seeing observationo from beliefb. Because
action selection must be completed online, we use equation 4 to update the belief over models via
the weightsw(m). Equation 7 is evaluated recursively for eachQ(a′, bao) up to some depthD.

The number of evaluations grows with(|A||O|)D, so doing a full expansion is feasible only for very
small problems. We approximate the true value stochastically by sampling only a few observations
from the distributionP (o|a) =

∑
m P (o|a,m)w(m). Equation 7 reduces to

Q(a, b) = R(a, b) + γ
1

NO

∑

i

max
a′

Q(a′, baoi) (8)

whereNO is the number of sampled observations andoi is theith sampled observation.

Once we reach a prespecified depth in the tree, we must approximate the value of the leaves. For
each modelm in the leaves, we can compute the valueQ(a, bm,m) of the actiona by approximately

6For an introduction to slice sampling, refer to [17].

5

solving offline the POMDP model thatm represents. We approximate the value of actiona as

Q(a, b) ≈
∑

m

w(m)Q(a, bm,m). (9)

This approximation is always an overestimate of the value, as it assumes that the uncertainty over
models—but not the uncertainty over states—will be resolved in the following time step (similar to
the QMDP [19] assumption).7 As the iPOMDP posterior becomes peaked and the uncertainty over
models decreases, the approximation becomes more exact.

The quality of the action selection largely follows from the bounds presented in [20] for planning
through forward search. The key difference is that now our belief representation is particle-based;
during the forward search we approximate an expected rewards over all possible models with re-
wards from the particles in our set. Because we can guarantee that our models are drawn from the
true posterior over models, this approach is a standard Monte Carlo approximation of the expecta-
tion. Thus, we can apply the central limit theorem to state that the estimated expected rewards will
be distributed around the true expectation with approximately normal noiseN(0, σ2

n
), wheren is

the number of POMDP samples andσ2 is a problem-specific variance.

4 Experiments

We begin with a series of illustrative examples demonstrating the properties of the iPOMDP. In
all experiments, the observations were given vague hyperparameters (1.0 Dirichlet counts per ele-
ment), and rewards were given hyperparameters that encouraged peaked distributions (0.1 Dirichlet
counts per element). The small counts on the reward hyperparameters encoded the prior belief that
R(·|s, a) is highly peaked, that is, each state-action pair will likely have one associated reward value.
Beliefs were approximated with sample set of 10 models. Models were resampled between episodes
and reweighted during episodes. A burn-in of 500 iterations was used for the beam sampler when
drawing these models directly from the belief. The forward-search was expanded to a depth of 3.

Loopworld

S G

Lineworld

S G

.

(a) Cartoon of Models

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

N
um

be
r

of
 S

ta
te

s

Number of States in Lineworld POMDP

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

N
um

be
r

of
 S

ta
te

s

Episode Number

Number of States in Loopworld POMDP

(b) Evolution of state size

Learned Optimal
4

4.5

5

5.5

6

T
ot

al
 R

ew
ar

d

Total Reward in Lineworld POMDP

Learned Optimal
−6

−4

−2

0

T
ot

al
 R

ew
ar

d

Total Reward in Loopworld POMDP

(c) Performance

Figure 3: Various comparisons of the lineworld and loopworld models. Loopworld infers only
necessary states, ignoring the more complex (but irrelevant) structure.

Avoiding unnecessary structure: Lineworld and Loopworld. We designed a pair of simple envi-
ronments to show how the iPOMDP infers states only as it can distinguish them. The first, lineworld
was a length-six corridor in which the agent could either travel left or right. Loopworld consisted
of a corridor with a series of loops (see figure 3(a)); now the agent could travel though the upper or
lower branches. In both environments, only the two ends of the corridors had unique observations.

7We also experimented with approximatingQ(a, b) ≈ 80− percentile({w(m)Q(a, bm,m)}). Taking
a higher percentile ranking as the approximate value places a higher value on actions with larger uncertainty.
As the values of the actions become more well known and the discrepancies between the models decreases, this
criterion reduces to the true value of the action.

6

Actions produced the desired effect with probability 0.95, observations were correct with probability
0.85 (that is, 15% of the time the agent saw an incorrect observation). The agent started at the left
end of the corridor and received a reward of -1 until it reached the opposite end (reward 10).

The agent eventually infers that the lineworld environment consists of six states—based on the
number of steps it requires to reach the goal—although in the early stages of learning it infers
distinct states only for the ends of the corridor and groups the middle region as one state. The
loopworld agent also shows a growth in the number of states over time (see figure 3(b)), but it
never infers separate states for the identical upper and lower branches. By inferring states as they
needed to explain its observations—instead of relying on a prespecified number of states—the agent
avoided the need to consider irrelevant structure in the environment. Figure 3(c) shows that the agent
(unsurprisingly) learns optimal performance in both environments.

Adapting to new situations: Tiger-3. The iPOMDP’s flexibility also lets it adapt to new situations.
In the tiger-3 domain, a variant of the tiger problem [19] the agent had to choose one of three doors
to open. Two doors had tigers behind them (r= −100) and one door had a small reward (r= 10).
At each time step, the agent could either open a door or listen for the “quiet” door. It heard the
correct door correctly with probability 0.85.

The reward was unlikely to be behind the third door (p= .2),

0 50 100 150 200 250
−140

−120

−100

−80

−60

−40

A
ve

ra
ge

d
R

ew
ar

d

Episode Count

Evolution of Reward

Figure 4: Evolution of reward from
tiger-3.

but during the first 100 episodes, we artificially ensured that
the reward was always behind doors 1 or 2. The improving
rewards in figure 4 show the agent steadily learning the dy-
namics of its world; it learned never to open door 3. The dip
in 4 following episode 100 occurs when we next allowed the
reward to be behind all three doors, but the agent quickly
adapts to the new possible state of its environment. The
iPOMDP enabled the agent to first adapt quickly to its sim-
plified environment but add complexity when it was needed.

Broader Evaluation. We next completed a set of experi-
ments on POMDP problems from the literature. Tests had
200 episodes of learning, which interleaved acting and re-
sampling models, and 100 episodes of testing with the mod-
els fixed. During learning, actions were chosen stochasti-
cally based on its value with probability 0.05 and completely randomly with probability 0.01. Oth-
erwise, they were chosen greedily (we found this small amount of randomness was needed for ex-
ploration to overcome our very small sample set and search depths). We compared accrued rewards
and running times for the iPOMDP agent against (1) an agent that knew the state count and used
EM to train its model, (2) an agent that knew the state count and that used the same forward-filtering
backward-sampling (FFBS) algorithm used in the beam sampling inner loop to sample models, and
(3) an agent that used FFBS with ten times the true number of states. For situations where the number
of states is not known, the last case is particularly interesting—we show that simply overestimating
the number of states is not necessarily the most efficient solution.

Table 1 summarises the results. We see that the iPOMDP often infers a smaller number of states than
the true count, ignoring distinctions that the history does not support. The middle three columns
show the speeds of the three controls relative the iPOMDP. Because the iPOMDP generally uses
smaller state spaces, we see that most of these values are greater than 1, indicating the iPOMDP is
faster. (In the largest problem, dialog, the oversized FFBS model did not complete running in several
days.) The latter four columns show accumulated rewards; we see that the iPOMDP is generally on
par or better than the methods that have access to the true state space size. Finally, figure 5 plots the
learning curve for one of problems, shuttle.

5 Discussion

Recent work in learning POMDP models include[23], which uses a set of Gaussian approximations
to allow for analytic value function updates in the POMDP space, and [5], which jointly reasons
over the space Dirichlet parameter and states when planning in discrete POMDPs. Sampling based
approaches include Medusa [4], which learns using state-queries, and [7], which learns using policy

7

0 50 100 150 200
−20

−15

−10

−5

0

5

10

Episode Count
T

ot
al

 R
ew

ar
d

Evolution of Total Reward for Shuttle

Learned Optimal
−20

−15

−10

−5

0

5

10

Final Reward for Shuttle

Figure 5: Evolution of reward for shuttle. During training (left), we see that the agent makes fewer
mistakes toward the end of the period. The boxplots on the right show rewards for 100 trials after
learning has stopped; we see the iPOMDP-agent’s reward distribution over these 100 trials is almost
identical an agent who had access to the correct model.

Table 1: Inferred states and performance for various problems. The iPOMDP agent (FFBS-Inf)
often performs nearly as well as the agents who had knowledge of the true number of states (EM-
true, FFBS-true), learning the necessary number of states much faster than an agent for which we
overestimate the number of states (FFBS-big).

Metric States Relative Training Time Performance
Problem True FFBS-

Inf
EM-
true

FFBS-
true

FFBS-
big

EM-
true

FFBS-
true

FFBS-
big

FFBS-
Inf

Tiger[19] 2 2.1 0.41 0.70 1.50 -277 0.49 4.24 4.06
Shuttle[21] 8 2.1 1.82 1.02 3.56 10 10 10 10
Network[19] 7 4.36 1.56 1.09 4.82 1857 7267 6843 6508
Gridworld[19]
(adapted)

26 7.36 3.57 2.48 59.1 -25 -51 -67 -13

Dialog[22]
(adapted)

51 2 0.67 5.15 - -3023 -1326 - -1009

queries. All of these approaches assume that the number of underlying states is known; all but [7]
focus on learning only the transition and observation models.

In many problems, however, the underlying number of states may not be known—or may require
significant prior knowledge to model—and, from the perspective of performance, is irrelevant. The
iPOMDP model allows the agent to adaptively choose the complexity of the model; any expert
knowledge is incorporated into the prior: for example, the Dirichlet counts on observation param-
eters can be used to give preference to certain observations as well as encode whether we expect
observations to have low or high noise. As seen in the results, the iPOMDP allows the complex-
ity of the model to scale gracefully with the agent’s experience. Future work remains to tailor the
planning to unbounded spaces and refine the inference for POMDP resampling.

Past work has attempted to take advantage of structure in POMDPs [24, 25], but learning that struc-
ture has remained an open problem. By giving the agent an unbounded state space—but strong
locality priors—the iPOMDP provides one principled framework to learning POMDP structure.
Moreover, the hierarchical Dirichlet process construction described in section 2 can be extended to
include more structure and deeper hierarchies in the transitions.

6 Conclusion

We presented the infinite POMDP, a new model for Bayesian RL in partially observable domains.
The iPOMDP provides a principled framework for an agent to posit more complex models of its
world as it gains more experience. By linking the complexity of the model to the agent’s experience,
the agent is not forced to consider large uncertainties—which can be computationally prohibitive—
near the beginning of the planning process, but it can later come up with accurate models of the
world when it requires them. An interesting question may also to apply these methods to learning
large MDP models within the Bayes-Adaptive MDP framework [26].

8

References

[1] R. Dearden, N. Friedman, and D. Andre, “Model based Bayesian exploration,” pp. 150–159,
1999.

[2] M. Strens, “A Bayesian framework for reinforcement learning,” inICML, 2000.

[3] P. Poupart, N. Vlassis, J. Hoey, and K. Regan, “An analytic solution to discrete Bayesian
reinforcement learning,” inICML, (New York, NY, USA), pp. 697–704, ACM Press, 2006.

[4] R. Jaulmes, J. Pineau, and D. Precup, “Learning in non-stationary partially observable Markov
decision processes,” ECML Workshop, 2005.

[5] S. Ross, B. Chaib-draa, and J. Pineau, “Bayes-adaptive POMDPs,” inNeural Information Pro-
cessing Systems (NIPS), 2008.

[6] S. Ross, B. Chaib-draa, and J. Pineau, “Bayesian reinforcement learning in continuous
POMDPs with application to robot navigation,” inICRA, 2008.

[7] F. Doshi, J. Pineau, and N. Roy, “Reinforcement learning with limited reinforcement: Using
Bayes risk for active learning in POMDPs,” inInternational Conference on Machine Learning,
vol. 25, 2008.

[8] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, “The infinite hidden Markov model,” in
Machine Learning, pp. 29–245, MIT Press, 2002.

[9] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,”Journal
of the American Statistical Association, vol. 101, no. 476, pp. 1566–1581, 2006.

[10] J. V. Gael and Z. Ghahramani,Inference and Learning in Dynamic Models, ch. Nonparametric
Hidden Markov Models. Cambridge University Press, 2010.

[11] Y. W. Teh, “Dirichlet processes.” Submitted to Encyclopedia of Machine Learning, 2007.

[12] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An anytime algorithm for
POMDPs,”IJCAI, 2003.

[13] M. T. J. Spaan and N. Vlassis, “Perseus: Randomized point-based value iteration for
POMDPs,”Journal of Artificial Intelligence Research, vol. 24, pp. 195–220, 2005.

[14] T. Smith and R. Simmons, “Heuristic search value iteration for POMDPs,” inProc. of UAI
2004, (Banff, Alberta), 2004.

[15] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning algorithms for POMDPs,”
Journal of Artificial Intelligence Research, vol. 32, pp. 663–704, July 2008.

[16] J. van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani, “Beam sampling for the infinite hidden
Markov model,” inICML, vol. 25, 2008.

[17] R. Neal, “Slice sampling,”Annals of Statistics, vol. 31, pp. 705–767, 2000.

[18] C. K. Carter and R. Kohn, “On Gibbs sampling for state space models,”Biometrika, vol. 81,
pp. 541–553, September 1994.

[19] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for partially observable
environments: scaling up,”ICML, 1995.

[20] D. McAllester and S. Singh, “Approximate planning for factored POMDPs using belief state
simplification,” inUAI 15, 1999.

[21] L. Chrisman, “Reinforcement learning with perceptual aliasing: The perceptual distinctions
approach,” inIn Proceedings of the Tenth National Conference on Artificial Intelligence,
pp. 183–188, AAAI Press, 1992.

[22] F. Doshi and N. Roy, “Efficient model learning for dialog management,” inProceedings of
Human-Robot Interaction (HRI 2007), (Washington, DC), March 2007.

[23] P. Poupart and N. Vlassis, “Model-based Bayesian reinforcement learning in partially observ-
able domains,” inISAIM, 2008.

[24] J. H. Robert, R. St-aubin, A. Hu, and C. Boutilier, “SPUDD: Stochastic planning using decision
diagrams,” inUAI, pp. 279–288, 1999.

[25] A. P. Wolfe, “POMDP homomorphisms,” inNIPS RL Workshop, 2006.

[26] M. O. Duff, Optimal learning: computational procedures for Bayes-adaptive markov decision
processes. PhD thesis, 2002.

9

