
Rank-Approximate Nearest Neighbor Search:
Retaining Meaning and Speed in High Dimensions

Parikshit Ram, Dongryeol Lee, Hua Ouyang and Alexander G. Gray
Computational Science and Engineering, Georgia Institute of Technology

Atlanta, GA 30332
{p.ram@,dongryel@cc.,houyang@,agray@cc.}gatech.edu

Abstract

The long-standing problem of efficient nearest-neighbor (NN) search has ubiqui-
tous applications ranging from astrophysics to MP3 fingerprinting to bioinformat-
ics to movie recommendations. As the dimensionality of the dataset increases, ex-
act NN search becomes computationally prohibitive;(1+�) distance-approximate
NN search can provide large speedups but risks losing the meaning of NN search
present in the ranks (ordering) of the distances. This paper presents a simple,
practical algorithm allowing the user to, for the first time, directly control the
true accuracy of NN search (in terms of ranks) while still achieving the large
speedups over exact NN. Experiments on high-dimensional datasets show that
our algorithm often achieves faster and more accurate results than the best-known
distance-approximate method, with much more stable behavior.

1 Introduction

In this paper, we address the problem of nearest-neighbor (NN) search in large datasets of high
dimensionality. It is used for classification (k-NN classifier [1]), categorizing a test point on the ba-
sis of the classes in its close neighborhood. Non-parametric density estimation uses NN algorithms
when the bandwidth at any point depends on thektℎ NN distance (NN kernel density estimation [2]).
NN algorithms are present in and often the main cost of most non-linear dimensionality reduction
techniques (manifold learning [3, 4]) to obtain the neighborhood of every point which is then pre-
served during the dimension reduction. NN search has extensive applications in databases [5] and
computer vision for image search Further applications abound in machine learning.

Tree data structures such askd-trees are used for efficient exact NN search but do not scale better
than the näıve linear search in sufficiently high dimensions. Distance-approximate NN (DANN)
search, introduced to increase the scalability of NN search, approximates the distance to the NN and
any neighbor found within that distance is considered to be “good enough”. Numerous techniques
exist to achieve this form of approximation and are fairly scalable to higher dimensions under certain
assumptions.

Although the DANN search places bounds on the numerical values of the distance to NN, in NN
search, distances themselves are not essential; rather the order of the distances of the query to the
points in the dataset captures the necessary and sufficient information [6, 7]. For example, consider
the two-dimensional dataset(1, 1), (2, 2), (3, 3), (4, 4), . . . with a query at the origin. Appending
non-informative dimensions to each of the reference points produces higher dimensional datasets
of the form(1, 1, 1, 1, 1,), (2, 2, 1, 1, 1, ...), (3, 3, 1, 1, 1, ...), (4, 4, 1, 1, 1, ...), For a fixed dis-
tance approximation, raising the dimension increases the number of points for which the distance to
the query (i.e. the origin) satisfies the approximation condition. However, the ordering (and hence
the ranks) of those distances remains the same. The proposed framework,rank-approximate nearest-
neighbor(RANN) search, approximates the NN in its rank rather than in its distance, thereby making
the approximation independent of the distance distribution and only dependent on the ordering of
the distances.

1

This paper is organized as follows: Section 2 describes the existing methods for exact NN and
DANN search and the challenges they face in high dimensions. Section 3 introduces the proposed
approach and provides a practical algorithm using stratified sampling with a tree data structure to
obtain a user-specified level of rank approximation in Euclidean NN search. Section 4 reports the
experiments comparing RANN with exact search and DANN. Finally, Section 5 concludes with
discussion of the road ahead.

2 Related Work

The problem of NN search is formalized as the following:

Problem. Given a datasetS ⊂ X of sizeN in a metric space(X, d) and a queryq ∈ X, efficiently
find a pointp ∈ S such that

d(p, q) = min
r∈S

d(r, q). (1)

2.1 Exact Search

The simplest approach oflinear searchoverS to find the NN is easy to implement, but requires
O(N) computations for a single NN query, making it unscalable for moderately largeN .

Hashing the dataset into buckets is an efficient technique, but scales only to very low dimensional
X. Hence data structures are used to answer queries efficiently. Binary spatial partitioning trees,
like kd-trees [9], ball trees [10] and metric trees [11] utilize the triangular inequality of the distance
metricd (commonly the Euclidean distance metric) topruneaway parts of the dataset from the com-
putation and answer queries in expectedO(logN) computations [9]. Non-binary cover trees [12]
answer queries in theoretically boundedO(logN) time using the same property under certain mild
assumptions on the dataset.

Finding NNs forO(N) queries would then require at leastO(N logN) computations using the
trees. The dual-tree algorithm [13] for NN search also builds a tree on the queries instead of going
through them linearly, hence amortizing the cost of search over the queries. This algorithm shows
orders of magnitude improvement in efficiency and is conjectured to beO(N) for answeringO(N)
queries using the cover trees [12].

2.2 Nearest Neighbors in High Dimensions

The frontier of research in NN methods is high dimensional problems, stemming from common
datasets like images and documents to microarray data. But high dimensional data poses an inherent
problem for Euclidean NN search as described in the following theorem:

Theorem 2.1. [8] Let C be aD-dimensional hypersphere with radiusa. LetA andB be any two
points chosen at random inC, the distributions ofA andB being independent and uniform over the
interior of C. Letr be the Euclidean distance betweenA andB (r ∈ [0, 2a]). Then the asymptotic
distribution ofr is N(a

√
2, a2/2D).

This implies that in high dimensions, the Euclidean distances between uniformly distributed points
lie in a small range of continuous values. This hypothesizes that the tree based algorithms perform
no better than linear search since these data structures would be unable to employ sufficiently tight
bounds in high dimensions. This turns out to be true in practice [14, 15, 16]. This prompted interest
in approximation of the NN search problem.

2.3 Distance-Approximate Nearest Neighbors

The problem of NN search is relaxed in the following form to make it more scalable:

Problem. Given a datasetS ⊂ X of sizeN in some metric space(X, d) and a queryq ∈ X,
efficiently find any pointp′ ∈ S such that

d(p′, q) ≤ (1 + �)min
r∈S

d(r, q) (2)

for a low value of� ∈ ℝ
+ with high probability.

This approximation can be achieved withkd-trees, balls trees, and cover trees by modifying the
search algorithm to prune more aggressively. This introduces the allowed error while providing
some speedup over the exact algorithm [12]. Another approach modifies the tree data structures to

2

bound error with just one root-to-leaf traversal of the tree, i.e. to eliminatebacktracking. Sibling
nodes inkd-trees or ball-trees are modified to share points near their boundaries, formingspill
trees[14]. These obtain significant speed up over the exact methods. The idea ofapproximately
correct (satisfying Eq. 2) NN is further extended to a formulation where the(1 + �) bound can be
exceeded with a low probability�, thus forming the PAC-NN search algorithms [17]. They provide
1-2 orders of magnitude speedup in moderately large datasets with suitable� and�.

These methods are still unable to scale to high dimensions. However, they can be used in combina-
tion with the assumption that high dimensional data actually lies on a lower dimensional subspace.
There are a number of fast DANN methods that preprocess data withrandomized projectionsto
reduce dimensionality.Hybrid spill trees[14] build spill treeson the randomly projected data to
obtain significant speedups.Locality sensitive hashing[18, 19] hashes the data into a lower dimen-
sional buckets using hash functions which guarantee that “close” points are hashed into the same
bucket with high probability and “farther apart” points are hashed into the same bucket with low
probability. This method has significant improvements in running times over traditional methods in
high dimensional data and is shown to be highly scalable.

However, the DANN methods assume that the distances are well behaved and not concentrated in a
small range. However, for example, if the all pairwise distances are within the range (100.0, 101.00),
any distance approximation� ≥ 0.01 will return an arbitrary point to a NN query. The exact tree-
based algorithms failed to be efficient because many datasets encountered in practice suffered the
same concentration of pairwise distances. Using DANN in such a situation leads to the loss of the
ordering information of the pairwise distances which is essential for NN search [6]. This is too
large of a loss in accuracy for increased efficiency. In order to address this issue, we propose a
model of approximation for NN search which preserves the information present in the ordering of
the distances by controlling the error in the ordering itself irrespective of the dimensionality or the
distribution of the pairwise distances in the dataset. We also provide a scalable algorithm to obtain
this form of approximation.

3 Rank Approximation

To approximate the NN rank, we formulate and relax NN search in the following way:

Problem. Given a datasetS ⊂ X of sizeN in a metric space(X, d) and a queryq ∈ X, let
D = {D1, . . . , DN} be the set of distances between the query and all the points in the datasetS,
such thatDi = d(ri, q), ri ∈ S, i = 1, . . . , N . Let D(r) be thertℎ order statistic ofD. Then the
r ∈ S : d(r, q) = D(1) is the NN ofq in S. The rank-approximation of NN search would then be to
efficiently find a pointp′ ∈ S such that

d(p′, q) ≤ D(1+�) (3)

with high probability for a given value of� ∈ ℤ
+.

RANN search may use any order statistics of the populationD, bounded above by the(1 + �)tℎ

order statistics, to answer a NN query. Sedransk et.al. [20] provide a probability bound for the
sample order statistics bound on the order statistics of the whole set.
Theorem 3.1. For a population of sizeN with Y values ordered asY(1) ≤ Y(2) ⋅ ⋅ ⋅ ≤ Y(N), let
y(1) ≤ y(2) ⋅ ⋅ ⋅ ≤ y(n) be a ordered sample of sizen drawn from the population uniformly without
replacement. For1 ≤ t ≤ N and1 ≤ k ≤ n,

P (y(k) ≤ Y(t)) =

t−k
∑

i=0

(

t− i− 1
k − 1

)(

N − t+ i
n− k

)

/

(

N
n

)

. (4)

We may find ap′ ∈ S satisfying Eq. 3 with high probability by sampling enough points{d1, . . . dn}
fromD such that for some1 ≤ k ≤ n, rank error bound� , and a success probability�

P (d(p′, q) = d(k) ≤ D(1+�)) ≥ �. (5)

Sample order statistick = 1 minimizes the required number of samples; hence we substitute the
values ofk = 1 andt = 1 + � in Eq. 4 obtaining the following expression which can be computed
in O(�) time

P (d(1) ≤ D(1+�)) =
�
∑

i=0

(

N − � + i− 1
n− 1

)

/

(

N
n

)

. (6)

3

The required sample sizen for a particular error� with success probability� is computed using
binary search over the range(1 + �,N]. This makes RANN searchO(n) (since now we only need
to compute the first order statistics of a sample of sizen) givingO(N/n) speedup.

3.1 Stratified Sampling with a Tree

For a required sample size ofn, we randomly samplen points fromS and compute the RANN for a
queryq by going through the sampled set linearly. But for a tree built onS, parts of the tree would
be pruned away for the queryq during the tree traversal. Hence we can ignore the random samples
from the pruned part of the tree, saving us some more computation.

Hence letS be in the form of a binary tree (saykd-tree) rooted atRroot. The root node hasN
points. Let the left and right child haveNl andNr points respectively. For a random queryq ∈ X,
the populationD is the set of distances ofq to all theN points inRroot. The tree stratifies the
populationD into Dl = {Dl1, . . . , DlNl

} andDr = {Dr1, . . . , DrNr
}, whereDl andDr are the

set of distances ofq to all theNl andNr points respectively in the left and right child of the root
nodeRroot. The following theorem provides a way to decide how much to sample from a particular
node, subsequently providing a lower bound on the number of samples required from the unpruned
part of the tree without violating Eq.5

Theorem 3.2. Letnl andnr be the number of random samples from the strataDl andDr respec-
tively by doing a stratified sampling on the populationD of sizeN = Nl + Nr. Letn samples be
required for Eq.5 to hold in the populationD for a given value of�. Then Eq.5 holds forD with the
same value of� with the random samples of sizesnl andnr from the random strataDl andDr of
D respectively ifnl + nr = n andnl : nr = Nl : Nr.

Proof. Eq. 5 simply requiresn uniformly sampled points, i.e. for each distance inD to have
probabilityn/N of inclusion. Fornl + nr = n andnl : nr = Nl : Nr, we havenl = ⌈(n/N)Nl⌉
and similarlynr = ⌈(n/N)Nr⌉, and thus samples in bothDl andDr are included at the proper rate.

Since the ratio of the sample size to the population size is a constant� = n/N , Theorem 3.2 is
generalizable to any level of the tree.

3.2 The Algorithm

The proposed algorithm introduces the intended approximation in the unpruned portion of thekd-
tree since the pruned part does not add to the computation in the exact tree based algorithms. The
algorithm starts at the root of the tree. While searching for the NN of a queryq in a tree, most of
the computation in the traversal involves computing the distance of the queryq to any tree node
R (dist to node(q,R)). If the current upperbound to the NN distance (ub(q)) for the queryq is
greater thandist to node(q,R), the node is traversed andub(q) is updated. Otherwise nodeR is
pruned. The computations of distance ofq to points in the datasetS occurs only whenq reaches
a leaf node it cannot prune. The NN candidate in that leaf is computed using the linear search
(COMPUTEBRUTENN subroutine in Fig.2). The traversal of the exact algorithm in the tree is illus-
trated in Fig.1.

To approximate the computation by sampling, traversal down the tree is stopped at a node which can
be summarized with a small number of samples (below a certain threshold MAX SAMPLES). This is
illustrated in Fig.1. The value of MAX SAMPLESgiving maximum speedup can be obtained by cross-
validation. If a node is summarizable within the desired error bounds (decided by the CANAPPROX-
IMATE subroutine in Fig.2), required number of points are sampled from such a node and the nearest
neighbor candidate is computed from among them using linear search (COMPUTEAPPROXNN sub-
routine of Fig.2).

Single Tree. The search algorithm is presented in Fig.2. The datasetS is stored as a binary tree
rooted atRroot. The algorithm starts as STRANK APPROXNN(q, S, �, �). During the search, if a
leaf node is reached (since the tree is rarely balanced), the exact NN candidate is computed. In case
a non-leaf node cannot be approximated, the child node closer to the query is always traversed first.
The following theorem proves the correctness of the algorithm.

Theorem 3.3. For a queryq and a specified value of� and � , STRANK APPROXNN(q, S, �, �)
computes a neighbor inS within (1 + �) rank with probability at least�.

4

Figure 1: The traversal paths of the exact and the rank-approximate algorithm in akd-tree

Proof. By Eq.6, a query requires at leastn samples from a dataset of sizeN to compute a neighbor
within (1 + �) rank with a probability�. Let � = (n/N). Let a nodeR contain∣R∣ points. In the
algorithm, sampling occurs when a base case of the recursion is reached. There are three base cases:

∙ Case 1 - Exact Pruning (ifub(q) ≤ dist to node(q,R)): Then number of points required
to be sampled from the node is at least⌈� ⋅ ∣R∣⌉. However, since this node is pruned, we
ignore these points. Hence nothing is done in the algorithm.
∙ Case 2 - Exact Computation COMPUTEBRUTENN(q,R)): In this subroutine, linear search

is used to find the NN candidate. Hence number of points actually sampled is∣R∣ ≥
⌈� ⋅ ∣R∣⌉.
∙ Case 3 - Approximate Computation (COMPUTEAPPROXNN(q,R, �)): In this subroutine,

exactly� ⋅ ∣R∣ samples are made and linear search is performed over them.

Let the total number of points effectively sampled fromS ben′. From the three base cases of the
algorithm, it is confirmed thatn′ ≥ ⌈� ⋅N⌉ = n. Hence the algorithm computes a NN within(1+�)
rank with probability at least�.
Dual Tree. The single tree algorithm in Fig.2 can be extended to the dual tree algorithm in case
of O(N) queries. The dual tree RANN algorithm (DTRANK APPROXNN(T, S, �, �)) is given in
Fig.2. The only difference is that for every queryq ∈ T , the minimum required amount of sampling
is done and the random sampling is done separately for each of the queries. Even though the queries
do not share samples from the reference set, when a query node of the query tree prunes a reference
node, that reference node is pruned for all the queries in that query node simultaneously. This
work-sharing is a key feature of all dual-tree algorithms [13].

4 Experiments and Results

A meaningful value for the rank error� should be relative to the size of the reference datasetN .
Hence for the experiments, the(1 + �)-RANN is modified to(1 + ⌈" ⋅ N⌉)-RANN where1.0 ≥
" ∈ ℝ

+. The Euclidean metric is used in all the experiments. Although the value of MAX SAMPLES
for maximum speedup can be obtained by cross-validation, for practical purposes, any low value (≈
20-30) suffices well, and this is what is used in the experiments.

4.1 Comparisons with Exact Search

The speedups of the exact dual-tree NN algorithm and the approximate tree-based algorithm over
the linear search algorithm is computed and compared. Different levels of approximations ranging
from 0.001% to 10% are used to show how the speedup increases with increase in approximation.

5

STRANK APPROXNN(q, S, �, �)

n←COMPUTESAMPLESIZE (∣S∣, �, �)
� ← n/∣S∣
Rroot ←TREE(S)
STRANN(q,Rroot, �)

STRANN(q,R, �)
if ub(q) > dist to node(q,R) then

if ISLEAF(R) then
COMPUTEBRUTENN(q,R)

else if CANAPPROXIMATE(R, �)
then

COMPUTEAPPROXNN (q,R, �)
else

STRANN(q,Rl, �),
STRANN(q,Rr, �)

end if
end if

COMPUTEBRUTENN(q,R)

ub(q)← min(min
r∈R

d(q, r), ub(q))

COMPUTEBRUTENN(Q,R)

for ∀q ∈ Q do
ub(q)← min(min

r∈R
d(q, r), ub(q))

end for
node ub(Q)← max

q∈Q
ub(q)

COMPUTEAPPROXNN(q,R, �)

R′ ← ⌈� ⋅ ∣R∣⌉ samples fromR
COMPUTEBRUTENN(q,R′)

COMPUTEAPPROXNN(Q,R, �)

for ∀q ∈ Q do
R′ ← ⌈� ⋅ ∣R∣⌉ samples fromR
COMPUTEBRUTENN(q,R′)

end for
node ub(Q)← max

q∈Q
ub(q)

DTRANK APPROXNN(T, S, �, �)

n←COMPUTESAMPLESIZE (∣S∣, �, �)
� ← n/∣S∣
Rroot ←TREE(S)
Qroot ←TREE(T)
DTRANN(Qroot, Rroot, �)

DTRANN(Q,R, �)
if node ub(Q) >
dist between nodes(Q,R) then

if ISLEAF(Q) && I SLEAF(R) then
COMPUTEBRUTENN(Q,R)

else if ISLEAF(R) then
DTRANN(Ql, R, �), DTRANN(Qr, R, �)
node ub(Q)← max

i={l,r}
node ub(Qi)

else ifCANAPPROXIMATE(R, �) then
if ISLEAF(Q) then

COMPUTEAPPROXNN (Q,R, �)
else

DTRANN(Ql, R, �),
DTRANN(Qr, R, �)
node ub(Q)← max

i={l,r}
node ub(Qi)

end if
else if ISLEAF(Q) then

DTRANN(Q,Rl, �), DTRANN(Q,Rr, �)
else

DTRANN(Ql, Rl, �), DTRANN(Ql, Rr, �)
DTRANN(Qr, Rl, �),
DTRANN(Qr, Rr, �)
node ub(Q)← max

i={l,r}
node ub(Qi)

end if
end if

CANAPPROXIMATE(R, �)
return ⌈� ⋅ ∣R∣⌉ ≤MAX SAMPLES

Figure 2: Single tree (STRANK APPROXNN) and dual tree (DTRANK APPROXNN) algorithms and
subroutines for RANN search for a queryq (or a query setT) in a datasetS with rank approximation
� and success probability�. Rl andRr are the closer and farther child respectively ofR from the
queryq (or a query nodeQ)

Different datasets drawn for the UCI repository (Bio dataset 300k×74, Corel dataset 40k×32,
Covertype dataset 600k×55, Phy dataset 150k×78)[21], MNIST handwritten digit recognition
dataset (60k×784)[22] and the Isomap “images” dataset (700×4096)[3] are used. The final dataset
“urand” is a synthetic dataset of points uniform randomly sampled from a unit ball (1m×20). This
dataset is used to show that even in the absence of a lower-dimensional subspace, RANN is able to
get significant speedups over exact methods for relatively low errors. For each dataset, the NN of
every point in the dataset is found in the exact case, and(1+⌈" ⋅N⌉)-rank-approximate NN of every
point in the dataset is found in the approximate case. These results are summarized in Fig.3.

The results show that for even low values of" (high accuracy setting), the RANN algorithm is
significantly more scalable than the exact algorithms for all the datasets. Note that for some of the
datasets, the low values of approximation used in the experiments are equivalent to zero rank error
(which is the exact case), hence are equally efficient as the exact algorithm.

6

bio corel covtype images mnist phy urand

10
0

10
1

10
2

10
3

10
4

sp
ee

du
p

ov
er

 li
ne

ar
 s

ea
rc

h

ε=0%(exact),0.001%,0.01%,0.1%,1%,10%
α=0.95

Figure 3: Speedups(logscale on the Y-axis) over the linear search algorithm while find-
ing the NN in the exact case or(1 + "N)-RANN in the approximate case with" =
0.001%, 0.01%, 0.1%, 1.0%, 10.0% and a fixed success probability� = 0.95 for every point in
the dataset. The first(white) bar in each dataset in the X-axis is the speedup of exact dual tree
NN algorithm, and the subsequent(dark) bars are the speedups of the approximate algorithm with
increasing approximation.

4.2 Comparison with Distance-Approximate Search

In the case of the different forms of approximation, the average rank errors and the maximum rank
errors achieved in comparable retrieval times are considered for comparison. The rank errors are
compared since any method with relatively lower rank error will obviously have relatively lower
distance error. For DANN, Locality Sensitive Hashing (LSH) [19, 18] is used.

Subsets of two datasets known to have a lower-dimensional embedding are used for this experiment
- Layout Histogram (10k×30)[21] and MNIST dataset (10k×784)[22]. The approximate NN of
every point in the dataset is found with different levels of approximation for both the algorithms.
The average rank error and maximum rank error is computed for each of the approximation levels.
For our algorithm, we increased the rank error and observed a corresponding decrease in the retrieval
time. LSH has three parameters. To obtain the best retrieval times with low rank error, we fixed one
parameter and changed the other two to obtain a decrease in runtime and did this for many values of
the first parameter. The results are summarized in Fig. 4 and Fig. 5.

The results show that even in the presence of a lower-dimensional embedding of the data, the rank
errors for a given retrieval time are comparable in both the approximate algorithms. The advantage
of the rank-approximate algorithm is that the rank error can be directly controlled, whereas in LSH,
tweaking in the cross-product of its three parameters is typically required to obtain the best ranks for
a particular retrieval time. Another advantage of the tree-based algorithm for RANN is the fact that
even though the maximum error is bounded only with a probability, the actual maximum error is not
much worse than the allowed maximum rank error since a tree is used. In the case of LSH, at times,
the actual maximum rank error is extremely large, corresponding to LSH returning points which
are very far from being the NN. This makes the proposed algorithm for RANN much more stable

7

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

Average Rank Error

T
im

e
(in

 s
ec

.)

Random Sample of size 10000

RANN
LSH

(a) Layout Histogram

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

10

Average Rank Error

T
im

e
(in

 s
ec

.)

Random Sample of size 10000

RANN
LSH

(b) Mnist

Figure 4: Query times on the X-axis and the Average Rank Error on the Y-axis.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

Maximum Rank Error

T
im

e
(in

 s
ec

.)

Random Sample of size 10000

RANN
LSH

(a) Layout Histogram

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

9

10

Maximum Rank Error

T
im

e
(in

 s
ec

.)

Random Sample of size 10000

RANN
LSH

(b) Mnist

Figure 5: Query times on the X-axis and the Maximum Rank Error on the Y-axis.

than LSH for Euclidean NN search. Of course, the reported times highly depend on implementation
details and optimization tricks, and should be considered carefully.

5 Conclusion

We have proposed a new form of approximate algorithm for unscalable NN search instances by con-
trolling the true error of NN search (i.e. the ranks). This allows approximate NN search to retain
meaning in high dimensional datasets even in the absence of a lower-dimensional embedding. The
proposed algorithm for approximate Euclidean NN has been shown to scale much better than the
exact algorithm even for low levels of approximation even when the true dimension of the data is
relatively high. When compared with the popular DANN method (LSH), it is shown to be compara-
bly efficient in terms of the average rank error even in the presence of a lower dimensional subspace
of the data (a fact which is crucial for the performance of the distance-approximate method). More-
over, the use of spatial-partitioning tree in the algorithm provides stability to the method by clamping
the actual maximum error to be within a reasonable rank threshold unlike the distance-approximate
method.

However, note that the proposed algorithm still benefits from the ability of the underlying tree data
structure to bound distances. Therefore, our method is still not necessarily immune to the curse of
dimensionality. Regardless, RANN provides a new paradigm for NN search which is comparably
efficient to the existing methods of distance-approximation and allows the user to directly control
the true accuracy which is present in ordering of the neighbors.

8

References

[1] T. Hastie, R. Tibshirani, and J. H. Friedman.The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2001.

[2] B. W. Silverman.Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC,
1986.

[3] J. B. Tenenbaum, V. Silva, and J.C. Langford. A Global Geometric Framework for Nonlinear
Dimensionality Reduction.Science, 290(5500):2319–2323, 2000.

[4] S. T. Roweis and L. K. Saul. Nonlinear Dimensionality Reduction by Locally Linear Embed-
ding. Science, 290(5500):2323–2326, December 2000.

[5] A. N. Papadopoulos and Y. Manolopoulos.Nearest Neighbor Search: A Database Perspective.
Springer, 2005.

[6] N. Alon, M. Bădoiu, E. D. Demaine, M. Farach-Colton, and M. T. Hajiaghayi. Ordinal Em-
beddings of Minimum Relaxation: General Properties, Trees, and Ultrametrics. 2008.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When Is “Nearest Neighbor” Mean-
ingful? LECTURE NOTES IN COMPUTER SCIENCE, pages 217–235, 1999.

[8] J. M. Hammersley. The Distribution of Distance in a Hypersphere.Annals of Mathematical
Statistics, 21:447–452, 1950.

[9] J. H. Freidman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding Best Matches in
Logarithmic Expected Time.ACM Trans. Math. Softw., 3(3):209–226, September 1977.

[10] S. M. Omohundro. Five Balltree Construction Algorithms. Technical Report TR-89-063,
International Computer Science Institute, December 1989.

[11] F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer, 1985.

[12] A. Beygelzimer, S. Kakade, and J.C. Langford. Cover Trees for Nearest Neighbor.Proceedings
of the 23rd international conference on Machine learning, pages 97–104, 2006.

[13] A. G. Gray and A. W. Moore. ‘N-Body’ Problems in Statistical Learning. InNIPS, volume 4,
pages 521–527, 2000.

[14] T. Liu, A. W. Moore, A. G. Gray, and K. Yang. An Investigation of Practical Approximate
Nearest Neighbor Algorithms. InAdvances in Neural Information Processing Systems 17,
pages 825–832, 2005.

[15] L. Cayton. Fast Nearest Neighbor Retrieval for Bregman Divergences.Proceedings of the 25th
international conference on Machine learning, pages 112–119, 2008.

[16] T. Liu, A. W. Moore, and A. G. Gray. Efficient Exact k-NN and Nonparametric Classification
in High Dimensions. 2004.

[17] P. Ciaccia and M. Patella. PAC Nearest Neighbor Queries: Approximate and Controlled Search
in High-dimensional and Metric spaces.Data Engineering, 2000. Proceedings. 16th Interna-
tional Conference on, pages 244–255, 2000.

[18] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hashing.
pages 518–529, 1999.

[19] P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality. InSTOC, pages 604–613, 1998.

[20] J. Sedransk and J. Meyer. Confidence Intervals for the Quantiles of a Finite Population: Simple
Random and Stratified Simple Random sampling.Journal of the Royal Statistical Society,
pages 239–252, 1978.

[21] C. L. Blake and C. J. Merz. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/,
1998.

[22] Y. LeCun. MNIST dataset, 2000. http://yann.lecun.com/exdb/mnist/.

9

