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1 Proof Sketch of Theorem 1

1.1 Assumptions

1. The model given in the equation

Xt = At ·Xt−1 + ε, ε ∼ N (0, σ2I) (1)

is a locally stationary model (see [4] for a rigorous definition).

2. Element of the matrixAt are smooth functions with bounded second derivatives, i.e., there
exists a constant L > 0 such that

| ∂
∂t
At

ij | < L and | ∂
2

∂t2
At

ij | < L (2)

3. The minimum absolute value of non-zero element of the matrix At is bounded away from
zero at observation points, and this bound tends to zero as we observe more and more
samples, i.e.,

amin := min
t∈{1/T,2/T,...,1}

min
i∈[p],j∈St

i

|At
ij | > 0. (3)

4. Let Σt = E[Xt(Xt)T ] = [σij(t)]i,j=1,...,p and let St
i denote the set of non-zero elements

of the i-th row of the matrix At, i.e., St
i = {j ∈ [p] : At

ij 6= 0}. We assume that there
exist a constant d ∈ (0, 1] such that

max
j∈St

i ,k 6=j
|σjk(t)| ≤ d

s
, ∀i ∈ [p], t ∈ [0, 1],

where s is an upper bound on the number of non-zero elements, i.e., s =
maxt∈[0,1] maxi∈[p] |St

i |.
5. The kernel K(·) : R 7→ R is a symmetric function and has bounded support on [0, 1].

There exist a constant MK that upper bounds the following quantities maxx∈R |K(x)| and
maxx∈R K(x)2.

1.2 Theorem

Theorem 1 Assume that the conditions made above hold. Let the penalty scale as

λ = O(

√
log p
Th

)

and let the minimum non-zero value be sufficiently large

amin ≥ 2λ.
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If we assume

h = O(T 1/3) and
s log p
Th

= o(1)

then

P[supp(Ât∗) = supp(At∗)]→ 1, t∗ ∈ [0, 1]. (4)

To prove the above theorem we follow the proof strategy of [3], however, there are a lot of technical
details that need to be addressed. First, in the case of the auto-regressive model, the observations are
not i.i.d.. Second, the process is not stationary, but can only be approximated by a locally stationary
process. For this reason, we additionally need to deal with the bias term that arises due to non-
stationarity. We leave the detailed proof of this theorem for a full version of the paper, and outline
the approach below.

1.3 Proof Sketch

We outline the proof strategy, which follows [3] with necessary modifications to allow for dependent
data. Since the estimation problem decomposes across different rows of matrix A, it is enough to
show that one row is estimated sparsistently with high probability and then apply the union bound to
show that the whole matrixA is estimated sparsistently. We proceed by characterizing the optimum

Ât∗

i· = argmin
a∈R1×n

1
T

T∑
t=1

wt∗(t)(xt
i − axt−1)2 + 2λ||a||1. (5)

From the estimator Ât∗

i· we obtain the estimator Ŝt∗

i . We show that P[Ŝt∗

i = St∗

i ] → 1 in two
steps, showing that P[Ŝt∗

i 6⊆ St∗

i ] → 0 and that P[St∗

i 6⊆ Ŝt∗

i ] → 0. From the analysis of the KKT
conditions, we have that if Ât∗

ik = 0, then

| 1
T

T∑
t=1

wt∗(t)(xt
i − Ât∗

i· x
t−1)xt−1

k | ≤ λ, (6)

which we use to show that

P[St∗

i 6⊆ Ŝt∗

i ]

≤ s max
k∈St∗

i

P[| 1
T

T∑
t=1

wt∗(t)(xt
i − Ât∗

i· x
t−1)xt−1

k | ≤ λ; At∗

ik 6= 0]

≤ s max
k∈St∗

i

P[| 1
T

T∑
t=1

wt∗(t)((t− t∗) ∂
∂t
At∗

i· x
t−1 + εt

i)x
t−1
k | ≥ λ

2
]+

s max
k∈St∗

i

P[| 1
T

T∑
t=1

wt∗(t)((At∗

i· − Ât∗

i· )x
t−1)xt−1

k | ≥ λ

2
].

(7)

Next, we describe how to bound the two probabilities above. It is not hard to show that
1
T

∑T
t=1 w

t∗(t)xt−1
l xt−1

k →p σlk(t∗), sufficiently fast, combing the standard results on station-
ary time series [2] and Lemma 4 in [1]. Combining this result, together with exponential inequality
for martingales [5], one obtains that the first term converges to 0, exponentially fast. The conver-
gence of the second term to 0, can be shown in a similar way as Theorem 2.2 in [3], utilizing the fact
that 1

T

∑T
t=1 w

t∗(t)xt−1
l xt−1

k < σlk(t∗) + δ with high probability and using exponential inequality
for martingales in place of Bernstein’s inequality. Combining these results, we have

P[Ŝt∗

i 6⊆ St∗

i ]→ 0. (8)
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To finalize the proof of the theorem, we show that

P[Ŝt∗

i 6⊆ St∗

i ]

≤
∑

k 6∈St∗
i

P[| 1
T

T∑
t=1

wt∗(t)(xt
i − Ât∗

i· x
t−1)xt−1

k | ≥ λ]

≤ s max
k∈St∗

i

P[| 1
T

T∑
t=1

wt∗(t)((t− t∗) ∂
∂t
At∗

i· x
t−1 + εt

i)x
t−1
k | ≥ λ

2
]+

∑
k 6∈St∗

i

P[| 1
T

T∑
t=1

wt∗(t)
∑

j∈St∗
i

(At∗

ij − Ât∗

ij )xt−1
j xt−1

k | ≥ λ

2
],

(9)

which can be again argued to converge to 0, exponentially fast.

2 Additional Figures

Table 1: (a) Timeline of the 23 enriched transcriptional factor target gene sets, and (b) the 26
enriched gene knockout signature gene sets. Each cell in the plot corresponds to one gene set at one
specific time point. The cells in each row are ordered according to their time point across two cell
cycles. Cells colored blue indicate the corresponding gene set listed in the right column is detected
in the estimated network; blank color indicates the gene set is not detected. It can be seen that many
of them are dynamic and transient, and can not be captured by the static network.

FKH1
HIR1
PHD1
CIN5
SWI4
FKH2
SWI6
ACE2
DIG1
SUM1
DAL81
STE12
MCM1
YAP6
YAP5
ABF1
SWI5
HAP4
RAP1
HIR2
NDD1
MBP1
FHL1

ssn6 (haploid)
HU
Tunicamycin
KAR2 (tet promoter)
med2 (haploid)
PMA1 (tet promoter)
CMD1 (tet promoter)
fus3, kss1 (haploid)
swi4
yer050c
CDC42 (tet promoter)
rml2 (**13)
MMS
dig1, dig2 (haploid)
rtg1
yhl029c
she4
anp1
2-deoxy-D-glucose
dig1, dig2
tup1 (haploid)
ERG11 (tet promoter)
rpd3 (haploid)
yor080w (**3)
Itraconazole
yor078w
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Figure 1: Temporal progressions of brain interactions for five BCI subjects. The dots correspond to EEG
electrode positions in 10-5 system. The estimated TV-DBN reveal that the brain interaction of subject ‘av’
is particularly weak and the brain connectivity actually decreases as the experiment proceeds. In contrast, all
other four subjects show an increased brain interaction as they engage in active imagination. Particularly, these
increased interactions occur between visual and motor cortex. This dynamic coherence between visual and
motor cortex corresponds nicely to the fact that subjects are consciously transforming visual stimuli into motor
imaginations which involve the motor cortex. It seems that subject ‘av’ fails to perform such integration due to
the disruption of brain interactions.
SB t = 1.0s t = 1.5s t = 2.0s t = 2.5s
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