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Supplementary Material

1 Efficient Computation of the Registration Objective

Here we derive the efficient computation of the similarity portion of the registration objective, ||C’ F—
C R||§. Making the substitution A = WrBW L, we obtain:
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where we made use of the fact that ||OX||§ = HXO||§ = HX||?C for an orthogonal matrix O.
2 Partial Derivative of Registration Objective
The partial derivative of the registration objective with respect to éj is given by:
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A similar expression is obtained for 9.5 (g) /06;.
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First, we focus on the term 0 HC —Cg Hf /0a;;. Given that the Frobenius norm of a matrix A can
be expressed as ||A||§ = tr (AT A), where tr (-) is the matrix trace, we have:
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We will now take derivatives of the expression above. Since the trace operator is linear, the deriva-
tive can be pulled inside the trace to obtain:
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where g?F is the matrix whose (i, j
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)th
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entry is given by 0 [C‘p} /0d;;. This matrix can be
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computed as:
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where E;; = eiejT is the matrix with all zeros except for a one in the (i, j )th

(11) into (8), we obtain:

entry. Substituting
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The matrix CrA (C’F — CR> can be simplified further using the matrix decomposition A =
WgrB Wg. First, note that:
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Multiplying the two, we obtain:

CpA (OF - CR) = VpSp [(BlBlT + ByBY)SpVEA - B@Rvﬂ (19)

In practice, only select entries of the N, x N, matrix C' F/I (é r—C R) need to be computed,

since the interpolation kernel is locally supported. These entries can be computed from (19), by
taking inner products of rows of the NV, x d matrix VX with columns of the d x N, matrix

[(BiBT + BoBY) SpVEA - sV |

Now, we turn to partial derivatives of a;; = ®; (x ((Z)j, 0~J>) with respect to ¢~>j and éj. Since
D, (x (q%,&})) = ¢ (s), where s = d (x (q%ﬁ}-) ,pi) is the geodesic distance between g (p;)
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and p;, we can compute partials using the chain rule: 23, = 0s o4, and 6. = s 00, Letp; =
x (¢, 6;), and assume a particular form for z: x (¢,0) = (cos (¢) , sin (¢) sin (#) , sin (¢) cos (6)).

Then Js/ 3¢~>j and Os/ 89~j can be computed using the identity:
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Taking derivatives with respect to qNSj:
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Taking derivatives with respect to 9~j:

J

—sin

82- Cos s 82- (sin gz~5j sin ¢; cos (5] — Gi) + cos <;~5j cos qﬁi)

J

ds N .z

s 8§j = —sing¢;sing;sin (9]- — Qi)
Os sin éj sin ¢; sin (éj — 9i>
aéj - sin s

Using the radial basis function ¢ given in the main paper, we have:
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Thus, combining (31) with (25) and (28, we obtain:

aaij
0
3a7;j

90,

20

r2

20

(1 — %sin (;))i (cos gzNSj sin ¢; cos <9~] — 01-) — sin rz~5j cos ¢i)

<1 — %sin (;))3 sin ¢ sin ¢; sin (9} - 9@)

+

which are nonzero only for s < 2sin™* (1/2).

Now we look at d; and its partial derivatives.
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where a; is the j th column of the matrix A. Then
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Since a; and da;j/ 8qz~5j are sparse vectors, the expression above can be computed efficiently by sparse

multiplication.



3 Computing Leave-one-out Templates

The leave-one-out template C, for subject k € 1,..., Ny is given by:
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where 5j = ‘ZEJVJT and Cj, = Vkikvf. Here we prove that range(V,,) C range(Vy) for
n # k.

Proof. Select n # k and pick z € range(V,,). Then
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The first term in (39b) is greater than zero since « € range(V;,). The second term in (39b) is greater
than or equal to zero since each C; is positive semi-definite. Thus, 7 Cz > 0, which implies that
x € range(Vy). O
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