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Abstract

We present a system which constructs a topological map of an environment given
a sequence of images. This system includes a novel image similarity score which
uses dynamic programming to match images using both the appearance and rel-
ative positions of local features simultaneously. Additionally, an MRF is con-
structed to model the probability of loop-closures. A locally optimal labeling is
found using Loopy-BP. Finally we outline a method to generate a topological map
from loop closure data. Results, presented on four urban sequences and one indoor
sequence, outperform the state of the art.

1 Introduction

The task of generating a topological map from video data has gained prominence in recent years.
Topological representations of routes spanning multiple kilometers are robuster than metric and
cognitively more plausible for use by humans. They are used to perform path planning, providing
waypoints, and defining reachability of places. Topological maps can correct for the drift in visual
odometry systems and can be part of hybrid representations where the environment is represented
metrically locally but topologically globally.

We identify two challenges in constructing a topological map from video: how can we say whether
two images have been taken from the same place; and how can we reduce the original set of thou-
sands of video frames to a reduced representative set of keyframes for path planning. We take into
advantage the fact that our input is video as opposed to an unorganized set of pictures. Video guaran-
tees that keyframes will be reachable to each other but it also provides temporal ordering constraints
on deciding about loop closures. The paper has three innovations: We define a novel image similarity
score which uses dynamic programming to match images using both the appearance and the layout
of the features in the environment. Second, graphical models are used to detect loop-closures which
are locally consistent with neighboring images. Finally, we show how the temporal assumption can
be used to generate compact topological maps using minimum dominating sets.

We formally define a topological map T as a graph T = (K,ET ), where K is a set of keyframes
and ET edges describing connectivity between keyframes. We will see later that keyframes are
representatives of locations. We desire the following properties of T :

Loop closure For any two locations i, j ∈ K,ET contains the edge (i, j) if and only if it is possible
to reach location j from location i without passing through any other location k ∈ K.

Compactness Two images taken at the “same location” should be represented by the same
keyframe.
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Spatial distinctiveness Two images from “different locations” cannot be represented by the same
keyframe.

Note that spatial distinctiveness requires that we distinguish between separate locations, however
compactness encourages agglomeration of geographically similar images. This distinction is im-
portant, as lack of compactness does not lead to errors in either path planning or visual odometry
while breaking spatial distinctiveness does. Our approach to building topological maps is divided
into three modules: calculating image similarity, detecting loop closures, and map construction. As
defined it is possible to implement each module independently, providing great flexibility in the
algorithm selection. We now define the interfaces between each pair of modules.

Starting with I, a sequence of n images, the result of calculating image similarity scores is a matrix
Mn×n where Mij represents a relative similarity between images i and j. In section 2 we describe
how we use local image features to compute the matrix M . To detect loop-closures we have to
discretize M into a binary decision matrix Dn×n where Dij = 1 indicates that images i and j
are geographically equivalent and form a loop closure. Section 3 describes the construction of
D by defining a Markov Random Field (MRF) on M and perform approximate inference using
Loopy Belief Propagation (Loopy-BP). In the final step, the topological map T is generated from
D. We calculate the set of keyframes K and their associated connectivity ET using the minimum
dominating set of the graph represented by D (Section 4).

Related Work The state of the art in topological mapping of images is the FAB-MAP [8] algo-
rithm. FAB-MAP uses bag of words to model locations using a generative appearance approach
that models dependencies and correlations between visual words rendering FAB-MAP extremely
successful in dealing with the challenge of perceptual aliasing (different locations sharing common
visual characteristics). Its implementation outperforms any other in speed averaging an intra-image
comparison of less than 1ms. Bayesian inference is also used in [1] where bags of words on local
image descriptors model locations whose consistency is validated with epipolar geometry. Ran-
ganathan et al. [14] incorporate both odometry and appearance and maintain several hypotheses of
topological maps. Older approaches like ATLAS [5] and Tomatis et al. [17] define maps on two
levels, creating global (topological) maps by matching independent local (metric) data and com-
bining loop -closure detection with visual SLAM (Self Localization and Mapping). The ATLAS
framework [5] matches local maps through the geometric structures defined by their 2D schematics
whose correspondences define loop-closures. Tomatis et al [17] detect loop closures by examining
the modality of the robot position’s density function (PDF). A PDF with two modes traveling in sync
is the result of a missed loop-closure, which is identified and merged through backtracking.

Approaches like [3] [19] [18] and [9] represent the environment using only an image similarity
matrix. Booij et al [3] use the similarity matrix to define a weighted graph for robot navigation.
Navigation is conducted on a node by node basis, using new observations and epipolar geometry
to estimate the direction of the next node. Valgren et al [19] avoid exhaustively computing the
similarity matrix by searching for and sampling cells which are more likely to describe existing
loop-closures. In [18], they employ exhaustive search, but use spectral clustering to reduce the
search space incrementally when new images are processed. Fraundoerfer et al [9] use hierarchical
vocabulary trees [13] to quickly compute image similarity scores. They show improved results by
using feature distances to weigh the similarity score. In [15] a novel image feature is constructed
from patches centered around vertical lines from the scene (radial lines in the image). These are
then used to track the bearing of landmarks and localize the robot in the environment. Goedeme
[10] proposes ‘invariant column segments’ combined with color information to compare images.
This is followed by agglomerative clustering of images into locations. Potential loop-closures are
identified within clusters and confirmed u sing Dempster-Shafer probabilities.

Our approach advances the state of the art by using a powerful image alignment score without em-
ploying full epipolar geometry, and more robust loop colsure detection by applying MRF inference
on the similarity matrix. It is together with [4] the only video-based approach that provides a greatly
reduced set of nodes for the final topological representation, making thus path planning tractable.
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2 Image similarity score

For any two images i and j, we calculate the similarity scoreMij in three steps: generate image fea-
tures, sort image features into sequences, calculate optimal alignment between both sequences. To
detect and generate image features we use Scale Invariant Feature Transform (SIFT) [12]. SIFT was
selected as it is invariant to rotation and scale, and partially immune to other affine transformations.

Feature sequences Simply matching the SIFT features by value [12] yields satisfactory results
(see later in figure 2). However, to mitigate perceptual aliasing, we take advantage of the fact that
features represent real world structures with fixed spatial arrangements and therefore the similarity
score should take their relative positions into account. A popular approach, employed in [16], is to
enforce scene rigidity by validating the epipolar geometry between two images. This process, al-
though extremely accurate, is expensive and very time-consuming. Instead, we make the assumption
that the gravity vector is known so that we can split image position into bearing and elevation and
we take into account only the bearing of each feature. Sorting the features by their bearing, results
in ordered sequences of SIFT features. We then search for an optimal alignment between pairs of
sequences, incorporating both the value and ordering of SIFT features into our similarity score.

Sequence alignment To solve for the optimal alignment between two ordered sequences of fea-
tures we employ dynamic programming. Here a match between two features, fa and fb, occurs if
their L1 norm is below a threshold, Score(a, b) = 1 if |fa−fb|1 < tmatch. A key aspect to dynamic
programming is the enforcement of the ordering constraint. This ensures that the relative order of
features matched is consistent in both sequences, exactly the property desired to ensure consistency
between two scene appearances. Since bearing is not given with respect to an absolute orientation,
ordering is meant only cyclically, which can be handled easily in dynamic programming by repli-
cating one of the input sequences. Modifying the first and last rows of the score matrix to allow for
arbitrary start and end locations yields the optimal cyclical alignment in most cases. This comes at
the cost of allowing one-to-many matches which can result in incorrect alignment scores. The score
of the optimal alignment between both sequences of features provides the basis for the similarity
score between two images and the entries of the matrix M . We calculate the values of Mij for all
i < j − w. Here w represents a window used to ignore images immediately before/after our query.

3 Loop closure-detection using MRF

Using the image similarity measure matrix M , we use Markov Random Fields to detect loop-
closures. A lattice H is defined as an n × n lattice of binary nodes where a node vi,j represents
the probability of images i and j forming a loop-closure. The matrix M provides an initial esti-
mate of this value. We define the factor φi,j over the node vi,j as follows: φi,j(1) = Mij/F and
φi,j(0) = 1− φi,j(1) where F = max(M) is used to normalize the values in M to the range [0, 1].
Loops closures in the score matrix M appear as one of three possible shapes. In an intersection the
score matrix contains an ellipse. A parallel traversal, when a vehicle repeats part of its trajectory,
is seen as a diagonal band. An inverse traversal, when a vehicle repeats a part of its trajectory in
the opposite direction, is an inverted diagonal band. The length and thickness of these shapes vary
with the speed of the vehicle (see figure 1 for examples of these shapes). Therefore we define lat-
tice H with eight way connectivity, as it better captures the structure of possible loop closures. As
adjacent nodes in H represent sequential images in the sequence, we expect significant overlap in
their content. So two neighboring nodes (in any orientation), are expected to have similar scores.
Sudden changes occur when either a loop is just closed (sudden increase) or when a loop closure
is complete (sudden decrease) or due to noise caused by a sudden occlusion in one of the scenes.
By imposing smoothness on the labeling we capture loop closures while discarding noise. Edge

potentials are therefore defined as Gaussians of differences in M . Letting G(x, y) = e−
(x−y)2

σ2 ,
k = {i− 1, i, i+ 1} and l = {j − 1, j, j + 1} then

φi,j,k,l(0, 0) = φi,j,k,l(1, 1) = α ·G (Mij ,Mkl)
φi,j,k,l(0, 1) = φi,j,k,l(1, 0) = 1,
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(a) Intersection (b) Parallel Traversal (c) Inverse Traversal

Figure 1: A small ellipse resulting from an intersection (a) and two diagonal bands from a parallel
(b) and inverse (c) traversals. All extracted from a score matrix M .

where 1 ≤ α (we ignore the case when both k = i and j = l). Overall, H models a probability
distribution over a labeling v ∈ {1, 0}n×n where:

P (v) =
1
Z

∏

i,j∈[1,n]

φi,j(vi,j)
∏

i,j∈[1,n]

∏

k=[i−1,i+1]

∏

l=[j−1,j+1]

φi,j,k,l(vi,j , vk,l)

In order to solve for the MAP labeling of H , v∗ = arg maxv P (v), the lattice must first be trans-
formed into a cluster graph C. This transformation allows us to model the beliefs of all factors in the
graph and the messages being passed during inference. We model every node and every edge inH as
a node in the cluster graph C. An edge exists between two nodes in the cluster graph if the relevant
factors share variables. In addition this construction presents a two step update schedule, alternating
between ‘node’ clusters and ‘edge’ clusters as each class only connects to instances of the other.
Once defined, a straightforward implementation of the generalized max-product belief propagation
algorithm (described in both [2] and [11]) serves to approximate the final labeling. We initialize the
cluster graph directly from the lattice H with ψi,j = φi,j for nodes and ψi,j,k,l = φi,j,k,l for edges.
The MAP labeling found here defines our matrix D determining whether two images i and j close
a loop. Note, that the above MAP labeling is guaranteed to be locally optimal, but is not necessarily
consistent across the entire lattice. Generally, finding the globally consistent optimal assignment is
NP-hard [11]. Instead, we rely on our definition of D, which specifies which pairs of images are
equivalent, and our construction in section 4 to generate consistent results.

4 Constructing the topological map

Finally the decision matrix D is used to define keyframes K and determine the map connectivity
ET . D can be viewed as an adjacency matrix of an undirected graph. Since there is no guarantee
that D found through belief propagation is symmetric, we initially treat D as an adjacency matrix
for a directed graph, and then remove the direction from all the edges resulting in a symmetric graph
D′ = D ∨ DT. It is possible to use the graph defined by D′ as a topological map. However this
representation is practically useless because multiple nodes represent the same location. To achieve
compactness, D′ needs to be pruned while remaining faithful to the overall structure of the environ-
ment. Booij [4] achieve this by approximating for the minimum connected dominating set. By using
the temporal assumption we can remove the connectedness requirement and use minimum dominat-
ing set to pruneD′. We find the keyframesK by finding the minimum dominating set ofD′. Finding
the optimal solution is NP-Complete, however algorithm 1 provides a greedy approximation. This
approximation has a guaranteed bound of H(dmax) (harmonic function of the maximal degree in
the graph dmax) [6].

The dominating set itself serves as our keyframesK. Each dominating node k ∈ K is also associated
with the set of nodes it dominatesNk. Each setNk represent images which have the “same location”.
The sets {Nk : k ∈ K} in conjunction with our underlying temporal assumption are used to connect
the map T . An edge (k, j) is added ifNk andNl contain two consecutive images from our sequence,
i.e. (k, j) ∈ ET if ∃i such that i ∈ Nk and i+ 1 ∈ Nl. This yields our final topological map T .
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Algorithm 1: Approximate Minimum Dominating Set
Input: Adjacency matric D′
Output: K,{Nk : k ∈ K}
K ← ∅
while D′ is not empty do

k ← node with largest degree
K ← K ∪ {k}
Nk ← {k} ∪Nb(k)
Remove all nodes Nk from matrix D′

end

5 Experiments

The system was applied to five image sequences. Results are shown for the system as described, as
well as for FAB-MAP ([8]) and for different methods of calculating image similarity scores.

Image sets Three image sequences, indoors, Philadelphia and Pittsburgh1 were captured with a
Point Gray Research Ladybug camera. The Ladybug is composed of five wide-angle lens camera
arranged in circle around the base and one camera on top facing upwards. The resulting output is
a sequence of frames each containing a set of images captured by the six cameras. For the outdoor
sequences the camera was mounted on top of a vehicle which was driven around an urban setting, in
this case the cities of Philadelphia and Pittsburgh. In the indoor sequence, the camera was mounted
on a tripod set on a cart and moved inside the building covering the ground and 1st floors. Ladybug
images were processed independently for each camera using the SIFT detector and extractor pro-
vided in the VLFeat toolbox [20]. The resulting features for every camera were merged into a single
set and sorted by their spherical coordinates. The two remaining sequences, City Centre and New
College were captured in an outdoor setting by Cummins [7] from a limited field of view camera
mounted on a mobile robot. Table 1 summarizes some basic properties of the sequences we use.
All the outdoor sequences were provided with GPS location of the vehicle / robot. For Philadelphia

Data Set Length No. of frames Camera Type Format
Indoors Not available 852 spherical raw Ladybug stream file
Philadelphia[16] 2.5km 1,266 spherical raw Ladybug stream file
Pittsburgh 12.5km 1,256 spherical rectified images
New College[7] 1.9km 1,237 limited field of view standard images
City Centre[7] 2km 1,073 limited field of view standard images

Table 1: Summary of image sequences processed.

and Pittsburgh, these were used to generate ground truth decision matrices using a threshold of 10
meters. Ground truth matrices were provided for New College and City Centre. For the indoor
sequence the position of the camera was manually determined using building schematics at an arbi-
trary scale. A ground truth decision matrix was generated using a manually determined threshold.
The entire system was implemented in Matlab with the exception of the SIFT detector and extractor
implemented by [20].

Parameters Both the image similarity scores and the MRF contain a number of parameters that
need to be set. When calculating the image similarity score, there are five parameters. The first
tmatch is the threshold on th L1 norm at which two SIFT features are considered matched. In addi-
tion, dynamic programming requires three parameters to define the score of an optimal alignment:
smatch,sgap,smiss. smatch is the value by which the score of an alignment is improved by including
correctly matched pairs of features. sgap is the cost of ignoring a feature in the optimal alignment
(insertion and deletion), and smiss is the cost of including incorrectly matched pairs (substitution).
We use tmatch = 1000, smatch = 1, sgap = −0.1 and smiss = 0. Finally we use w = 30 as our
window size, to avoid calculating similarity scores for images taken within very short time of each

1The Pittsburgh dataset has been provided by Google for research purposes
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Indoors Philadelphia Pittsburgh City Centre New College
Precision 91.67% 91.72% 63.85% 97.42% 91.57%

Recall 79.31% 51.46% 54.60% 40.04% 84.35%

Table 2: Precision and recall after performing inference.

other. Constructing the MRF requires three parameters, F , σ and α. The normalization factor, F ,
has already been defined as max(M). The σ used in defining edge potentials is σ = 0.05F where
F is again used to rescale the data in the interval [0, 1]. Finally we set α = 2 to rescale the Gaussian
to favor edges between similarly valued nodes. Inference using loopy belief propagation features
two parameters, a dampening factor λ = 0.5 used to mitigate the effect of cyclical inferencing and
n = 20, the number of iterations over which to perform inference.

Results In addition to the image similarity score defined above, we also processed the image
sequences using alternative similarity measures. We show results for MSIFT

ij = number of SIFT
matches, MREC

ij = number of reciprocal SIFT matches (the intersection of matches from image i
to image j and from j to i). We also show results using FAB-MAP [8]. To process spherical images
using FAB-MAP we limited ourselves to using images captured by camera 0 (Directly forwards
/ backwards). Figure 2 shows precision-recall curves for all sequences and similarity measures.
The curves were generated by thresholding the similarity scores. Our method outperforms state of
the art in terms of precision and recall in all sequences. The gain from using our system is most
pronounced in the Philadelphia sequence, where FAB-MAP yields extremely low recall rates. Table
2 shows the results of performing inference on the image similarity matrices. Finally figure 3 shows
the topological map resulting from running dominating sets on the decision matrices D. We use
the ground truth GPS positions for display purposes only. The blue dots represent the locations
of the keyframes K with the edges ET drawn in blue. Red dots mark keyframes which are also
loop-closures. For reference, figure 4 provides ground truth maps and loop-closures.

6 Outlook

We presented a system that constructs purely topological maps from video sequences captured from
moving vehicles. Our main assumption is that the images are presented in a temporally consistent
manner. A highly accurate image similarity score is found by a cyclical alignment of sorted feature
sequences. This score is then refined via loopy-belief propagation to detect loop-closures. Finally
we constructed a topological map for the sequence in question. This map can be used for either path
planning or for bundle adjustment in visual SLAM systems. The bottleneck of the system is comput-
ing the image similarity score. In some instances, taking over 166 hours to process a single sequence
while FAB-MAP [8] accomplishes the same task in 20 minutes. In addition to implementing score
calculation with a parallel algorithm (either on a multicore machine or using graphics hardware), we
plan to construct approximations to our image similarity score. These include using visual bags of
words in a hierarchical fashion [13] and building the score matrix M incrementally [19, 18].
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Figure 2: Precision-recall curves for different thresholds on image similarity scores.
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(a) Indoors (b) Philadelphia (c) Pittsburgh

(d) City Centre (e) New College

Figure 3: Loop-closures generated using minimum dominating set approximation. Blue dots rep-
resent positions of keyframes K with edges ET drawn in blue. Red dots mark keyframes with
loop-closures.

(a) Indoors (b) Philadelphia (c) Pittsburgh

(d) City Centre (e) New College

Figure 4: Ground truth maps and loop-closures. Blue dots represent positions of keyframes K with
edges ET drawn in blue. Red dots mark keyframes with loop-closures.
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[10] T. Goedemé, M. Nuttin, T. Tuytelaars, and L. Van Gool. Omnidirectional vision based topo-
logical navigation. Int. J. Comput. Vision, 74(3):219–236, 2007.

[11] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

[12] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60:91–110, 2004.

[13] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree. volume 2, pages
2161–2168, 2006.

[14] A. Ranganathan, E. Menegatti, and F. Dellaert. Bayesian inference in the space of topological
maps. IEEE Transactions on Robotics, 22(1):92–107, 2006.

[15] D. Scaramuzza, N. Criblez, A. Martinelli, and R. Siegwart. Robust feature extraction and
matching for omnidirectional images. Springer Tracts in Advanced Robotics, Field and Service
Robotics, 2008.

[16] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular visual odometry in urban environments
using an omnidirectional camera. pages 2531–2538, Sept. 2008.

[17] N. Tomatis, I. Nourbakhsh, and R. Siegwart. Hybrid simultaneous localization and map
building: a natural integration of topological and metric. Robotics and Autonomous Systems,
44(1):3–14, 2003.

[18] C. Valgren, T. Duckett, and A. J. Lilienthal. Incremental spectral clustering and its application
to topological mapping. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 4283–
4288, 2007.

[19] C. Valgren, A. J. Lilienthal, and T. Duckett. Incremental topological mapping using omnidirec-
tional vision. In Proc. IEEE Int. Conf. On Intelligent Robots and Systems, pages 3441–3447,
2006.

[20] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algo-
rithms. http://www.vlfeat.org/, 2008.

9


