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1 Proof of Proposition 1

Proposition 1 Let (uk)1≤k≤K and v be vectors of RN . Let A be a M × N matrix of i.i.d. el-
ements drawn from one of the previously defined distributions. For any ε > 0, δ > 0, for
M ≥ 1

ε2
4 − ε3

6

log 4K
δ , we have, with probability at least 1 − δ, for all k ≤ K,

|Auk · Av − uk · v| ≤ ε||uk|| ||v||.

Proof: We make use of the following lemma, which states that the random (with respect to the
choice of the matrix A) variable ||Au||2 concentrates around its expectation ||u||2 when M is large.
The proof uses concentration inequalities (Cramer’s large deviation Theorem) and may be found
e.g. in [1].

Lemma 1 For any vector u in RN and any ε ∈ (0, 1), we have

P

(
||Au||2 ≥ (1 + ε)||u||2

)
≤ e−M(ε2/4−ε3/6)

P

(
||Au||2 ≤ (1 − ε)||u||2

)
≤ e−M(ε2/4−ε3/6)

To prove the proposition, we apply the lemma to any couple of vectors u + w and u − w, where u
and w are vectors of norm 1. From the parallelogram law, we have that

4Au · Aw = ||Au + Aw||2 − ||Au − Aw||2

≤ (1 + ε)||u + w||2 − (1 − ε)||u − w||2

= 4u · w + ε(||u + w||2 + ||u − w||2)
= 4u · w + 2ε(||u||2 + ||w||2) = 4u · w + 4ε.

fails with probability 2e−M(ε2/4−ε3/6) (we applied the previous lemma twice at line 2).

Thus for each k ≤ K, we have with same probability:

Auk · Av ≤ uk · v + ε||uk|| ||v||.

Now the symmetric inequality holds with the same probability, and using a union bound for consid-
ering all (uk)k≤K , we have that

|Auk · Av − uk · v| ≤ ε||uk|| ||v||,

holds for all k ≤ K, with probability 1 − 4Ke−M(ε2/4−ε3/6), and the proposition follows. ¤
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2 Proof of Proposition 2

Proposition 2 Assume that f∗ is (L, γ)-Lipschitz (i.e. for all v ∈ X there exists a polynomial pv of
degree bγc such that for all u ∈ X , |f(u) − pv(u)| ≤ L|u − v|γ) with 1/2 < γ ≤ p. Then setting
ch = 2h(1−2γ)/4, we have ||α+|| supx ||ϕ(x)|| ≤ L 2γ

1−21/2−γ

∫ 1

0
|ϕ0|, which is independent of N .

Proof: f+ decomposes as f+ =
∑

1≤h≤H

∑
l α

0
h,lϕ

0
h,l =

∑
1≤h≤H

∑
l(α

0
h,l2

h/2c−1
h )ϕh,l. By

Theorem 6.3 of [2], since f∗ is (L, γ)-Lipschitz and ϕ0 has at least p ≥ γ vanishing moments, we
have |α0

h,l| ≤ L2γ
∫ 1

0
|ϕ0|2−h(γ+1/2). Thus we deduce:

||α+||2 =
∑

1≤h≤H

∑
l

α2
h,l ≤

(
L2γ

∫ 1

0

|ϕ0|
)2 ∑

1≤h≤H

2h2−2hγc−2
h

and

||ϕ(x)||2 =
∑

1≤h≤H

∑
l

c2
h2−h(ϕ0

h,l(x))2 ≤
∑

1≤h≤H

c2
h

Thus, setting ch = 2(1−2γ)h/4, we deduce

||α+||2 sup
x

||ϕ(x)||2 ≤
(
L2γ

∫ 1

0

|ϕ0|
)2(1 − 21/2−γ

)−2

since γ > 1/2. ¤
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