Signal-to-Noise Ratio Analysis of Policy Gradient Algorithms

Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)

Bibtex »Metadata »Paper »


John Roberts, Russ Tedrake


Policy gradient (PG) reinforcement learning algorithms have strong (local) convergence guarantees, but their learning performance is typically limited by a large variance in the estimate of the gradient. In this paper, we formulate the variance reduction problem by describing a signal-to-noise ratio (SNR) for policy gradient algorithms, and evaluate this SNR carefully for the popular Weight Perturbation (WP) algorithm. We confirm that SNR is a good predictor of long-term learning performance, and that in our episodic formulation, the cost-to-go function is indeed the optimal baseline. We then propose two modifications to traditional model-free policy gradient algorithms in order to optimize the SNR. First, we examine WP using anisotropic sampling distributions, which introduces a bias into the update but increases the SNR; this bias can be interpretted as following the natural gradient of the cost function. Second, we show that non-Gaussian distributions can also increase the SNR, and argue that the optimal isotropic distribution is a ‘shell’ distribution with a constant magnitude and uniform distribution in direction. We demonstrate that both modifications produce substantial improvements in learning performance in challenging policy gradient experiments.