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Abstract

Inspired by the hierarchical hidden Markov models (HHMM} mresent the
hierarchical semi-Markov conditional random figlHISCRF), a generalisation of
embedded undirected Markov chains to model complex hikieat; nested Markov
processes. It is parameterised in a discriminative framlewod has polynomial
time algorithms for learning and inference. Importantlye wonsider partially-
supervised learning and propose algorithms for genedalisetially-supervised
learning and constrained inference. We demonstrate theRFSE two applica-
tions: (i) recognising human activities of daily living (A3) from indoor surveil-
lance cameras, and (ii) noun-phrase chunking. We showleat ECRF is capa-
ble of learning rich hierarchical models with reasonableuaacy in both fully and
partially observed data cases.
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1 Introduction

Modelling hierarchical aspects in complex stochastic psses is an importantresearch
issue in many application domains. In an hierarchy, eacél lisvanabstractionof
lower level details. Consider, for example, a frequenvégtperformed by human like
‘eat-breakfast’ may include a series of more specific a@iwiike ‘enter-kitchen’, ‘go-
to-cupboard’, ‘take-cereal’, ‘wash-dishes’ and ‘leavteten’. Each specific activity
can be decomposed into finer details. Similarly, in natagliage processing (NLP)
syntax trees are inherently hierarchical. In a partialipgreask known as noun-phrase
(NP) chunking (Sang and Buchholz, 2000), there are threasterlevels: the sen-
tence, noun-phrases and part-of-speech (POS) tags. |edtiisg, the sentence is a
sequence of NPs and non-NPs and each phrase is a sub-segue@&® tags.

A popular approach to deal with hierarchical data is to bailchscadedmodel
where each level is modelled separately, and the outputeolotlver level is used as
the input of the level right above it (e.g. see (Oliwdral,, 2004)). For instance, in
NP chunking this approach first builds a POS tagger and thestieats a chunker that
incorporates the output of the tagger. This approach iglglsab-optimal because
the POS tagger takes no information of the NPs and the chuskert aware of the
reasoning of the tagger. In contrast, a noun-phrase is eéisnnformative to infer the
POS tags belonging to the phrase. As a result, this layergwaph often suffers from
the so-callectascading erroiproblem as the error introduced from the lower layer will
propagate to higher levels.

A more holistic approach is to build a joint representatiéralbthe levels. For-
mally, we are given a data observatiorand we need to model and infer about the
joint semanticz. The main problem is to choose an appropriate representatio
so that inference can be efficient. In this paper, we areeasted in a specific class of
hierarchical models that supports both joint modelling effttient inference. More
specifically, the models of interest awxursiveandsequentialin that each level is a
sequence and each node in a sequence can be decomposeadritotaesub-sequence
of finer grain at the lower level.

There has been substantial investigation of these typeodémespecially in the
area of probabilistic context-free grammars (e.g. see (Nanand Schitze, 1999,
Chapter 11)). However, grammars are often unbounded irhdeqt thus difficult to
represent by graphical models. A more restricted versiawkras hierarchical hidden



Markov model (HHMM) (Fineet al, 1998) offers clearer representation in that the
depth is fixed and the semantic levels are well defined. Esdgnthe HHMM is a
nested hidden Markov network (HMM) in the sense that eadle s¢aa sub HMM by
itself.

These models share a common property in that theyenerative i.e. they as-
sume that the data observation is generated by the hiecatd@mantics. The gen-
erative models try to construct the the joint distributiBr(z, z) = Pr(z|z) Pr(z).
However, there are some drawbacks associated with thioaglpr First, the gener-
ative process modelled byr(z|x) is typically unknown and complicated. Second,
given an observatior, we are more often interested in inferrify(x|z). Since
Pr(z, z) = Pr(z|z) Pr(z), modellingPr(z) may be unnecessary.

An attractive alternative is to model the distributiBn(z|z) directly, avoiding the
modelling ofz. This line of research has recently attracted much intglaasfely trig-
gered by the introduction of trmnditional random fieldCRF) (Laffertyet al,, 2001).
The advantages of the CRF is largely attributed taiseriminativenature that allows
arbitrary and long-range interdependent features.

In this paper we follow the HMM/HHMM path to generalise frofmein-structured
CRFs to nested CRFs. As a result, we construct a novel modetlddierarchical
Semi-Markov Conditional Random Figld SCRF), which is an undirected conditional
graphical model of nested Markov chains. Thus HSCRF is thmebaoation of the
discriminative nature of CRFs and the nested modelling@HRMM.

To be more concrete let us return to the NP chunking examgie. pfoblem can
be modelled as a three-level HSCRF, where the root repetiensentence, the sec-
ond level the NP process, and the bottom level the POS pro€assoot and the two
processes are conditioned on the sequence of words in tkensen Under the dis-
criminative modelling of the HSCRF, rich contextual infation such as starting and
ending of the phrase, the phrase length, and the distribofizvords falling inside the
phrase can be effectively encoded. On the other hand, swddmg is much more
difficult for HHMMs.

We then proceed to address important issues. First, we sloawtd represent
HSCRFs using a dynamic graphical model (e.g. see (LauritzZe®6)) which effec-
tively encodes hierarchical and temporal semantics. Farpeter learning, an efficient
algorithm based on the Asymmetric Inside-Outside of (&ual, 2004) is introduced.
For inference, we generalise the Viterbi algorithm to dectte semantics from an
observational sequence.

The common assumptions in discriminative learning andrénfee are that the
training data in learning is fully labelled, and the testadduring inference is not
labelled. We propose to relax these assumptions in thatinigaiabels may only be
partially available, and we term the learningeatial-supervision Likewise, when
some labels are given during inference, the algorithm shautomatically adjust to
meet the new constraints.

We demonstrate the effectiveness of HSCRFs in two appdieati(i) segmenting
and labelling activities of daily living (ADLS) in an indo@nvironment and (ii) jointly
modeling noun-phrases and part-of-speeches in shallosingarOur experimental re-
sults in the first application show that the HSCRFs are capaftiearning rich, hierar-
chical activities with good accuracy and exhibit betteffpeanance when compared to



DCRFs and flat-CRFs. Results for the partially observabde edso demonstrate that
significant reduction of training labels still results in dads that perform reasonably
well. We also show that observing a small amount of labelssigmificantly increase
the accuracy during decoding. In shallow parsing, the HSC&dn achieve higher
accuracy than standard CRF-based techniques and the BCRIs.

To summarise, in this paper we claim the following contritns:

¢ Introducing a novel Hierarchical Semi-Markov ConditioRaindom Field (HSCRF)
to model complex hierarchical and nested Markovian prezsegsa discrimina-
tive framework,

e Developing an efficient generalised Asymmetric Insidesig (AIO) algorithm
for full-supervised learning.

e Generalising the Viterbi algorithm for decoding the mosihable semantic la-
bels and structure given an observational sequence.

e Addressing the problem of partially-supervised learning aonstrained infer-
ence.

e Demonstration of the applicability of the HSCRFs for modglhuman activities
in the domain of home video surveillance and shallow parsfrignglish.

Notations and Organisation

This paper makes use of a number of mathematical notationshwie include in
Table 1 for reference.

The rest of the paper is organised as follows. Section 2wev@onditional Ran-
dom Fields. Section 3 continues with the HSCRF model dafimiéind parameterisa-
tion. Section 4 defines building blocks required for commufielience tasks. These
blocks are computed in Section 4.2 and 4.3. Section 5 pretiemgeneralised Viterbi
algorithm. Parameter estimation follows in Section 6. bé&ay and inference with
partially available labels are addressed in Section 7.i@e8&t presents a method for
numerical scaling to prevent numerical overflow. SectioroBuinents experimental
results. Section 10 concludes the paper.

2 Related Work

2.1 Hierarchical Modelling of Stochastic Processes

Hierarchical modelling of stochastic processes can beslargategorised as either
graphical models extending the flat hidden Markov models ENe.g., the layered
HMM (Oliver et al,, 2004), the abstract HMM (Bt al., 2002), hierarchical HMM
(HHMM) (Fine et al,, 1998; Buiet al., 2004), DBN (Murphy, 2002)) or grammar-based
models (e.g., PCFG (Pereira and Schabes, 1992)). Thesdsaoeeall generative.
Recent development in discriminative, hierarchical strces include extension of
the flat CRFs (e.g. dynamic CRFs (DCRF) (Sutbal, 2007), hierarchical CRFs (Liao



et al, 2007; Kumar and Hebert, 2005)) and conditional learninthefgrammars (e.g.
see (Miyao and Tsujii, 2002; Clark and Curran, 2003)). Thennpaoblem of the
DCREFs is that they are not scalable due to inference intoditya The hierarchical
CRFs, on the other hand, are tractable but assume fixed tueuses, and therefore
are not flexible to adapt to complex data. For example, in thenrphrase chunking
problem no prior tree structures are known. Rather, if sustriecture exists, it can
only be discovered after the model has been successfullyanai learned.

The conditional probabilistic context-free grammar (CH&} appears to address
both tractability and dynamic structure issues. More @algj in C-PCFGs it takes
cubic time in sequence length to parse a sentence. Howheearphtext-free grammar
does not limit the depth of semantic hierarchy, thus makinmnecessarily difficult
to map many hierarchical problems into its form. Secondhadks a graphical model
representation and thus does not enjoy the rich set of appabda inference techniques
available in graphical models.

2.2 Hierarchical Hidden Markov Models

Hierarchical HMMs are generalisations of HMMs (Rabiner82pin the way that a
state in an HHMM may be a sub-HHMM. Thus, an HHMM is a nestedRdaichain.
In the model temporal evolution, when a child Markov chammi@ates, it returns the
control to its parent. Nothing from the terminated childichia carried forward. Thus,
the parent state abstracts out everything belonging to ftonreceiving the return
control the parent then either transits to a new parente(giliat the grand parent has
not finished), or terminates.

Figure 1 illustrates the state transition diagram of a texel HHMM. At the top
level there are two parent stated, B}. The parent has three children, i.eh(A) =
{1,2,3} and B has four, i.e.ch(B) = {4,5,6,7}. At the top level the transitions are
betweenA and B, as in a normal directed Markov chain. Under each parené taer
also transitions between child states, which only depentthemlirect parent (eithed
or B). There are special ending states (represented as shaded imoFigure 1) to
signify the termination of the Markov chains. At each timepsbf the child Markov
chain, a child will emit an observational symbol (not shovend).

Figure 1: The state transition diagram of an HHMM.



The temporal evolution of the HHMM can be represented as amhynBayesian
network, which was first done in (Murphy and Paskin, 2002yufé 2 depicts a DBN
structure of 3 levels. The bottom level is often referred $@enduction level As-
sociated with each state is an ending indicator to signigéytédrmination of the state.
Denote byz¢ ande{ the state and ending indicator at leviehnd timet, respectively.
Whene{ = 0, the stater{ continues, i.exf = z¢, ;. And whene{ = 1, the stater
transits to a new state, or transits to itself. There areahibiical consistency rules that
must be ensured. Whenever a state persistse(i.e 0), all of the states above it must
also persist (i.eef' =0 forall d < d). Similarly, whenever a state ends (&= 1),
all of the states below it must also end (ieé'. = 1forall d' > d).

Inference and learning in HHMMs follow the Inside-Outsidigaaithm of the prob-
abilistic context-free grammars. Overall, the algorithes(|S|> DT3) time com-
plexity where|S| is the maximum size of the state space at each lévés, the depth
of the model and” is the model length.

When representing as a DBN, the whole stack of statés can be collapsed into
a ‘mega-state’ of a big HMM, and therefore inference can bbgaxhout inO(|S|2PT')
time. This is efficient for a shallow model (i.€ is small), but problematic for a deep
model (i.e.D is large).
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Figure 2: Dynamic Bayesian network representation of HHMMs

2.3 Conditional Random Fields

Denote byG = (V, &) the graph wher@’ is the set of vertices, andl is the set of
edges. Associated with each veridg a state variable; Let x be joint state variable,
i.e. z = (z;);cy. Conditional random field§CRFs) (Laffertyet al, 2001) define a
conditional distribution given the observatioras follows

Pr(z|z) = % H(bc(l‘c,z) 1)

wherec is the index of cliques in the graph, (z., z) is a non-negative potential func-
tion defined over the clique andZ(z) = Y []. ¢.(z., z) is the partition function.



Let {Z} be the set of observed state variables with the empirictildigion Q(z),
andw be the parameter vector. Learning in CRFs is typically by im&ing the (log)
likelihood

w* = argmax L(w) = arg maxz Q(2)log Pr(z|z; w) (2)

The gradient of the log-likelihood can be computed as

w)=> Q@) (v l0g ¢e(Ee,2) — Y Pr(ze|2)V log gc(w., z)) (3)

Te

Thus, the inference needed in CRF parameter estimatiom iscimputation of clique
marginalsPr(z.|z).

Typically, CRFs are parameterised using log-linear modalso known as ex-
ponential family, Gibbs distribution or Maximum Entropy dl), i.e. ¢.(x., 2) =
exp(w ' f(x., z)), wheref(.) is the feature vector anst is the vector of feature weights.
The features are also known as sufficient statistics in themantial family setting. Let
F(z,z) =" _f(z., 2z) be the global feature. Equation 3 can be written as follows

Z Q)Y (f(i-c, 2) = > Pr(z|2)f(z., z)> (4)
= Eq@)[F] — Epy(a|2)[F] (5)

Thus gradient-based maximum likelihood learning in thellogar setting boils down
to estimating the feature expectations, also known as ¢xgsafficient statistics (ESS).

The probabilistic nature of CRFs allows incorporating leddariables in a disci-
plined manner. Lef = (¢, k), whered is the set of visible variables, aridis the set
of hidden variables. The incomplete log-likelihood andjitadient are given as

L = ZQ( log Pr(d|z) = ZQ log;Pr(ﬁ,Mz)

VL

3 Q@10 209,2) ~ log 2(2) ©)

whereZ(¥,z) = >, [1. ¢c(Ve, he, ). The gradient reads
VL = Epy.[F(,h,z2)] —E,.[F(z,2)]

ZQ(J?) Z <Z Pr(h|d, 2)£(9., he, 2) ZPr Ze|2) a:p,z)> @)
T c he

There have been extensions to CRFs, which can be broadlypggoumto two
categories. The first category involves generalisation ofieh representation, for
example by extending CRFs for complex temporal structuseg@ynamic CRFs
(DCRFs) (Suttoret al,, 2007), segmental sequences as in Semi-Markov CRFs (Semi-
CRFs) (Sarawagi and Cohen, 2004), and relational data &faskal, 2002). The



second category investigates learning schemes other thgimmum likelihood, for ex-
ample perceptron (Collins, 2002) and SVM (Tas&gal., 2004).

DCRFs and SemiCRFs are the most closely related to our HSTRERFs are ba-
sically the conditional, undirected version of the Dynamayesian Networks (Mur-
phy, 2002). The DCRFs introduce multi-level of semantichkjclv help to represent
more complex sequential data. The main drawback of the DGRtF® intractability
of inference, except for shallow models with small statecepa

Similarly, the SemiCRFs are the conditional, undirectediom of the Semi-Markov
HMMs. These allows non-Markovian processes to be embedd#tkichain CRFs,
and thus giving a possibility of modelling process duratiéppendix C analyses the
SemiCRFs in more details.

Our HSCRFs deal with the inference problem of DCRFs by limgitio recur-
sive processes, and thus obtaining efficient inference yiaughic programming in
the Inside-Outside family of algorithms. Furthermore, éngralises the SemiCRFs
to model multilevel of semantics. It also addresses pdétiadls by introducing appro-
priate constraints to the Inside-Outside algorithms.

3 Model Definition of HSCRF

Consider a hierarchically nested Markov process Witlevels. Then as in the HHMMs
(see Section 2.2), the parent state embeds a child Markaw elepse states may in
turn contain child Markov chains. The family relation is defil in themodel topology
which is a state hierarchy of depfd. The model has a set of staté$ at each level
d € [1,D],i.e.S% = {1...|S%}, where|S?| is the number of states at levél For each
states? € S? wherel < d < D, the topological structure also defines a set of children
ch(s?) c S+l Conversely, each child?’! has a set of parengsi(s?*t!) c S9.
Unlike the original HHMMs where the child states belong esdlely to the parent,
the HSCRFs allow arbitrary sharing of children between piare For example, in
Figure 3,ch(s! = 1) = {1,2,3}, andpa(s® = 1) = {1,2,4}. This helps to avoid
an explosive number of sub-states wheris large, leading to fewer parameters and
possibly less training data and time. The shared topologybkan investigated in the
context of HHMMs in (Buiet al., 2004).

The temporal evolution in the nested Markov processes witjusnce length df’
operates as follows:

e As soon as a state is created at leyek D, it initialises a child state at level
d + 1. The initialisation continues downward until reaching bogtom level.

e As soon as a child process at level- 1 ends it returns control to its parent at
level d, and in the case aof > 1, the parent eitheransitsto a new parent state
or returns to the grand-parent at leviet 1.

The main requirement for the hierarchical nesting is that life-span of the child
process belongs exclusively to the life-span of the paré&at: example, consider a
parent process at levélstarts a new state;{j at time+ and persists until timg. At

time i the parent initialises a child stat™ which continues until it ends at time



k < j, at which the child state transits to a new child stﬁjﬁ} The child process
exits at timej, at which the control from the child level is returned to trmemts;ij.

Upon receiving the control the parent stafe may transit to a new parent statg,
or end atj, returning the control to the grand-parent at level 1.

d=1
O T — OO
o o o o
d=2 z%
O o EESLLLES O
o | o€ o o
d= D 3
O O RRREEEEELES O O
o o o o
1 2 T-1 T

Figure 4: The multi-level temporal model.

We are now in a position to specify the nested Markov proceissa more formal
way. Let usintroduce a multi-level temporal graphical madéengthT" with D levels,
starting from the top as 1 and the bottomZagFigure 4). At each level € [1, D]
and time indexi € [1,7], there is a node representing a state variaflec S¢ =
{1,2,...,15}. Associated with each? is an ending indicata¢ which can be either
1 or 0 to signify whether the state¢ ends or persists dt The nesting nature of the
HSCRFs is now realised by imposing the specific constraimtfie value assignment
of ending indicators (Figure 5).

Thus, specific value assignments of ending indicators pgemontextghat realise
the evolution of the model states in both hierarchical {eaff and temporal (horizon-
tal) directions. Each context at a level and associated statables form @ontextual
clique, and we identify four contextual clique types:

e State-persistence This corresponds to the life time of a state at a given level
(see Figure 6). Specifically, given a context (e¢ = (1,0,..,0,1)), then

) i—1:7
fg””‘”d = (z,,c), is a contextual clique that specifies the life-span] of

d
any states = 7.

e State-transition This corresponds to a state at ledek [2, D] at time: tran-
siting to a new state (see Figure 7a). Specifically, givenraesac = (e~! =

3
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e The top state persists during the course of evolutiongl.e. ; = 0.

e When a state finishes, all of its descendants must also finish,
i.e.ef = 1impliesef™ P = 1.

e When a state persists, all of its ancestors must also persist
i.e.ed = 0impliese; ! = 0.

« When a state transits, its parent must remain unchangee?ie 1, e?~! = 0.

e The bottom states do not persists, ef.= 1 forall i € [1,T].

e All states end af’, i.e. eX:P = 1.

Figure 5: Hierarchical constraints.

0,ef = 1) theno ™™™ = (x4} 2¢., |, ) is a contextual clique that specifies
the transition of:{ to 2¢, ; at timei under the same parenf ;.

State-initialisationt This corresponds to a state at ledet [1, D —1] initialising
a new child state at level + 1 at time: (see Figure 7b). Specifically, given a
contextc = (e? | = 1), theno!™"% = (22, 29%1 ) is a contextual clique that

specifies the initialisation at timifrom the parent¢ to the childz{ .

State-ending This corresponds to a state at ledet [1, D — 1] to end at time

i (see Figure 7c). Specifically, given a context= (el = 1), theno" ¢ =

(z¢, 2971 ¢) is a contextual clique that specifies the endingbat time: with

the last childz¢**.

Ti—1 T4 Tj—1 Zj
OpfQ) PR O
R R )
ei—1=1 e =0 ej_1=0 e =1

Figure 6: An example of a state-persistence sub-graph.
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Figure 7: Sub-graphs for state transition (left), inigalion (middle) and ending
(right).

In the HSCRF we are interested in tlenditional setting in which the entire

state variables and ending indicatdrs 2, el:2) are conditioned on observational
sequences. For example, in computational linguistics, the obseorais often the

11



sequence of words and the state variables might be the papeech tags and the
phrases.

To capture the correlation between variables and such tionitig, we define a
non-negative potential functian(o, z) over each contextual clique Figure 8 shows
the notations for potentials that correspond to the foutexinal clique types we have
identified above. Details of potential specification arecdesd in the Section 6.1.

° Rd 5,2 _ w( perszst d ) wheres = x;})

Ad 2 =1(o; tansit, d z) wheres = 2! andu = ¢, v = 2%, ;.

w,v,1

dez _w( Mntd )WherES—J)d ’U,—J?(H_l
o g = = ( f”dd z) wheres = z¢, u_xd“

u,i

Figure 8: Shorthands for contextual clique potentials.

Let¢ = (zHR, el:P) denote the set of all variables that satisfies the set of hiera
chical constraints in Figure 5. Let' denote ordered set of all ending time indices at
leveld, i.e. ifi € 74 thene? = 1. The joint potential defined for each configuration
is the product of all contextual clique potentials over allimg time indices € [1, T
and all semantic level$ € [1, D]:

(¢, 2] = { H H Rfkii Zk+1:| X

dA€[1,D] iy ig €74

< I {[ T || T o=ti]| T0 E}%

de(1,D—1] ig€Tdtl j grd ip€eTd+1 ip€Td+1

The conditional distribution is given as

Pr(¢lz) = () (¢, 2] 9)

whereZ(z) = > ®[¢, 2] is the partition function for normalisation.

In what follows we omitz for clarity, and implicitly use it as part of the partition
function Z and the potentiad®[.]. It should be noted that in the unconditional formu-
lation, there is only a singl& for all data instances. In conditional setting there is a
Z(z) for each data instance

Remarks: The temporal model of HSCRFs presented here is not a stgdzphi-
cal model (Lauritzen, 1996) since the connectivity (andefae the clique structures)
is not fixed. The potentials are defined on-the-fly dependimghe context of as-
signments of ending indicators. Although the model topyplggidentical to that of
shared structure HHMMs (Bt al., 2004), the unrolled temporal representation is
an undirected graph and the model distribution is formdlatea discriminative way.
Furthermore, the state persistence potentials captugidnrinformation that is not
available in the dynamic DBN representation of the HHMMsNfu¢phy and Paskin,
2002).

12



In the way the potentials are introduced it may first appeaesemble the clique
templates in the discriminative relational Markov netwiRMNS) (Taskaret al,
2002). 1t is, however, different because cliques in the HBERre dynamic and
context-dependent.

4  Asymmetric Inside-Outside Algorithm

This section describes a core inference engine called Astnioinside-Outside (AlO)
algorithm, which is partly adapted from the generativeectied counter part of HH-
MMs in (Bui et al,, 2004). We now show how to compute the building blocks that ar
needed in most inference and learning tasks.

4.1 Building Blocks and Conditional Independence

© O O O O O © 0]

Q o o o o o o o o o o Q

leveldy g o o leveld; ¢ ¢ o 6 @ ©
———_

o ? leveld+1® * ? * * N\N°
OO (S} ©

Q Q (] o e} le} o. L)
QO (6} O

S} Q (] o Q o o L4
@) © © ©

(b)

Figure 9: (a) Symmetric Markov blanket, and (b) Asymmetriarkbv blanket.

4.1.1 Contextual Markov blankets

In this subsection we define elements that are building lsléakinference and learn-
ing. These building blocks are identified given the corresiiog boundaries. Let us
introduce two types of boundaries: the contexsyahmetricandasymmetric Markov
blankets

Definition 1. A symmetric Markov blanket at levélfor a states starting ati and
ending atj is the following set

d, s [ l: [:
Hi:’; = (a:fj =5,edD = 1,e?D = 1,6%71 =0) (10)

Definition 2. LetII};” be a symmetric Markov blanket, we defiffg’ and g_’; as
follows

G o= (P edttl) (11)
Qi’f = C\(Cgﬁﬂz’;) (12)
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subject tar{; = s. Further, we define

é—;i,js _ (C;ijs’ Hd 5) (13)
QZ}S = (¢l m) (14)

Figure 9a shows an example of a symmetric Markov blanketéssmted by a
double-arrowed line).

Definition 3. A asymmetric Markov blanket at lewéfor a parent states starting at:
and a child state; ending at; is the following set

Ff;(u) = (xfj = s,x?“ =u, el =1, =1 ¢l | =0) (15)

Definition 4. Let Fd;j(u) be an asymmetric Markov blanket, we defeijri‘f(;zg (u) and
gdj( u) as follows

Gy (w) = (x?;1=1D7x?+2=D,eZ;i=1D> (16)
) = NG (W), T (w) (17)
subject tori =s andgclerl = u. Further, we define
G (w) = (¢ (), T (w) (18)
C) = (). T () (19)

Figure 9b shows an example of asymmetric Markov blanketr¢ssmted by an
arrowed line).

Remark: The concepts of contextual Markov blankets (or Markov kéds for
short) are different from those in traditional Markov rantdéelds and Bayesian net-
works because they are specific assignments of a subsetiables; rather than a
collection of variables.

4.1.2 Conditional independence

Given these two definitions we have the following proposisiof conditional indepen-
dence.

Proposition 1. g andgd ¢ are conditionally independent glvé”tf

Pr(¢hy, ¢RI = Pr(¢i|TE)) Pr(¢ e [T (20)

This proposition gives rise to the following factorisation

d,s d s d s d s d,s d,s|y1d,s d,s|y1d,s
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Proposition 2. ¢{*(u) andgj’.s(u) are conditionally independent giveif (u)

Pr(CZ’f(u),ij(U)IFZf(U)) Pr(¢ ()T (u) Pr(¢) (u N (@) (22)
The following factorisation is a consequence of Propomﬂo

Pr(¢) Pr(T{; (u)) Pr(Ciy (u), ¢ () |15 (u))

Pr(T{; (u) Pr(Ciy (w)|T5; (w) Pr(¢l () [TE (w) - (23)
The proof of Propositions 1 and 2 is given in Appendlx Al

4.1.3 Symmetric Inside/Outside Masses

From Equation 12 we have = (gff,l‘[dj,gd °). Sincell};’ separates;’’ from

g; we can group local potentials in Equation 8 into three pdrtsﬁjs[, [Q:j [, and

@[Hﬁ’j]. By ‘grouping’ we mean to multiply all the local potentialglbnging to a

certain part, in the same way that we group all the Iocal patsnbelonging to the
model in Equation 8. Note that althougﬁ contalnsH * we do not groupb[ i

into <I>[Q:j ]. The same holds fob[gi:j ]
By definition of the state-persistence clique potentiaj (e 8), we havé [Hf;’j] =
Rfj. Thus Equation 8 can be replaced by

B[¢] = D[C RE (LT 7 (24)

There are two special cases: (1) whee- 1, @[QIZT] = 1for s € S, and (2) when

d=D, @[éﬁ’s] = 1fors € SP andi € [1,T]. This factorisation plays an important
role in efficient inference.
We know define a quantity callesymmetric inside maasf;j, and another called

symmetric outside mass’”.

Definition 5. Given a symmetric Markov blankﬁﬁ’j, the symmetric inside maﬁxﬁ’f
and the symmetric outside ma&%’j are defined as

Az = Y ] (25)
¢y

A= el (26)
¢hs

—=i:j

As special cases we havwg’;. = 1 ands € S!, andAL® = 1fori e [1,7],
s € SP. For later use let us introduce the ‘full’ symmetric insidcatsl;xssAf;jS and the
‘full’ symmetric outside mas&;.” as

Ad, d,s Ad,

Aizj5 = RzJSAzJS (27)

A d, d,s i d,

Ai:j:5 = RzJSAij (28)
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In the rest of the thesis, when it is clear in the context, wiewsgie inside masss
a shorthand for symmetric inside masaiside masgr symmetric outside masfyll-
inside masdor full-symmetric inside mass, arfdll-outside massor full-symmetric
outside mass.

Thus, from Equation 24 the partition function can be comgtrtem the full-inside
mass at the top leveti(= 1)

zZ = ) @[]

= > Ay (29)

With the similar derivation the partition function can alse computed from the full-
outside mass at the bottom levél£ D)
Z =" A, foranyie [1,7] (30)
sespb

In fact, we will prove a more general way to computén Appendix B

Z Z Z Z Ad GAd S d ‘3 (31)

seSdie[l,t] je[t,T]
foranyt € [1, 7] andd € [2, D — 1]. These relations are summarised in Figure 10.
°Z = ZSESI Ai’;

o Z =3 .o A foranyi e [1,T)
0 Z =3 cs0 Ve Djepnr A Al RS foranyt € [1,T) andd € [2, D — 1]

Figure 10: Computing the partition function from the fullside mass and full-outside
mass.

Given the fact tha(ff’js is separated from the rest of variables by the symmetric
Markov blankeflI}, we have Proposition 3.

Proposition 3. The following relations hold

s l,s 1 ~d,s

Pr(Ciy I = Sas @l (32)
17

1 ~d,s

d,s|7d,s o )
Pr(gi:j |Hi;j ) = —Ag}s ‘I’[gi;j] (33)

d,s 1 d,s pd,s A d,s

Pr(Hi:j ) = EAM Ri:j Ai:j (34)
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The proof of this proposition is given in Appendix A.2.

4.1.4 Asymmetric Inside/Outside Masses

Recall that we have introduced the concept of asymmetrid<MabIanket1“ﬁ’f(u)
which separatesgf(u) andg{’jS (u). Let us group all the local contextual clique po-
tentials associated witff};* (u) andI'{. (u) into a joint potentiaf[;* (u)]. Similarly,
we group all local potentials associated V\gtjj (u) ande;;(u) into a joint potential
@[gj; (u)]. Note tha@[éi’;(u)]) includes the state-persistence poteniaf’.

Definition 6. Given the asymmetric Markov blanldéi_’jS (u), the asymmetric inside
maSSaZ’;(u) and the asymmetric outside mak%‘? (u) are defined as follows

alffw) = > B¢ (u)] (35)
¢y (w)

Ny = S el ()] (36)
¢hs(u)

=]

The relationship between the asymmetric outside mass gnuhastric inside mass
is analogous to that between the outside and inside massegevdr, there is a small
difference, that is, the asymmetric outside mass ‘owns‘s’égmenm;";j = s and the

associated state-persistence poted{@, whilst the outside masSg{j(s) does not.

4.2 Computing Inside Masses

O

o
leveld - ° ? ¢ ? ¢
©

o [} o () ) o)
b
leveld +1 } N o
L] QO o) { ] ] L]
. le} Q o Q L]
i W

Figure 11: Decomposition with respect to symmetric/asytim#arkov blankets.

In this subsection we show how to recursively compute the paside mass and
asymmetric inside mass. The key idea here is to exploit therdposition within the
asymmetric Markov blanket. As shown in Figure 11, an outgmasetric Markov
blanket can be decomposed into a sub-asymmetric Markoké&lamd a symmetric
blanket.
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4.2.1 Computing asymmetric inside mass from inside mass

Assume that within the asymmetric Markov blanlﬁéﬁ , the childu starts some-

where att € [i, j] and ends af, i.e. " = u, et =0 andedJrl D=1 — 1. Letus
consider two cases:> i andt = .

Case 1 Fort > i, denote byv = z{*!. We have two smaller blankets within
I'%:%(u): the symmetric blankelly " associated with the child = =/*, and the
asymmetric blankeF?; | (v) assomated with the child ending att — 1 under the
parents. Figure 11 illustrates the blanket decomposition. Thegmméntgﬁf(u) can
be decomposed as

Cot(u) = (¢ (0), ¢ u =t e ) = 0,ef P =1) (37)

Thus, the joint potentiab[g:f(u)] can be factorised as follows

~d,s 2d,s 2d+1u7 4d+1,s d+1,u
‘I’[Q‘;j (u)] = ®[¢;;7 4 (v)]@ [C T ]Avtf 1R ; (38)
The transition potentiall|"'; | is enabled in the context = (ef , = 0,¢/™} =
Lzt = 5,207 = v, 29" = u), and the state-persistence potentﬁﬁrjH ™ in the
contexte = (eft!, = 0,ef P =1, et = 1 2t = ).

Case 2 Fort = i, the asymmetric blankdtjff_l(v) does not exist since >

t— 1. We have the following decompositions of assignnfé;iﬂst = (f{ijl Yed | =
1,e;?{j_1 = 0). Inthe context = (¢! , = 1), the state-initialisation potentlal,d
activated. Thus we have

(" (w)] = mo (G RiT (39)

u,i it

Substituting Equations 38 and 39 into Equation 35, and tegetith the fact that
t can take any value in the interal 5], andv can take any value if4+!, we have the
following relation

XTCIEED Yl YD D R R BTV

tefi+1,j]veSHH ¢de (y )<d+1 u

+ Z Z d+1 1L]R{i-—!-1,1L

itj
d+1,u
Cig

d+1l,u 4d+1 d+1l,u_d,
Z Z aztl A_'_q‘AU—L_Lfgl_FA_'_1 u: (40)

teli+1,j] veSdtt

As we can see, the asymmetric inside masglays the role of gorward message
starting from the starting timéto the ending timeg/. There is a recursion where the
asymmetric inside mass ending at timhes computed from all the asymmetric inside
masses ending at tinte- 1, for¢ € [i + 1, j.
There are special cases for the asymmetric inside mass:h@ni= j, we only
have
abs(u) = Adthegds (41)

1:7 u 1

18



and (2) whenl = D —1, the sum over the indeas in Equation 40 is not allowed since
at level D the inside mass only spans a single index. We have the foltpimistead

D—1,s _ D— 19 Du D,s
Oéi:j (’U,) - E : azg 1 A Avu,] 1
veSdt!
D— 19 Du D,s
B Z izj—1 JJ Av,u,jfl (42)
veSdt!

4.2.2 Computing inside mass from asymmetric inside mass

Notice the relationship between the asymmetric Markovmaﬁfj(u) and the sym-

metric bIanketHff, whered < D. Whene = 1, i.e. the parent ends atj, and

FZ;( ) will becomeH with v = x}”l. Then we have decompositiorjgf =

d,s ~d,s ~d,s
]EQ:% (y),v{_t = 20 andgi:j = ({5 (w),ed = 1,u = 2f*™"). These lead to the
actorisation

D[(7] = D[S ()] ELS (43)

it it u,j

where the state-ending potentE.fjj is activated in the context= (ef = 1). Thus,
the inside mass in Equation 25 can be rewritten as

ALy =YY el wIE;

ugeSa+1 g:ij (u)

= X B ) 0w

ugeSa+1 fi'fg(u)
d,s d e
= Z B0 ( (44)
ueSatt

This equation holds foi < D. Whend = D, we setA”;* = 1 forall s ¢ S” and
i € [1,T],and whenl = 1, we must ensure that=1andj =T

Remark: Equations 40, 41, 42 and 44 specifieét-right andbottom-upalgorithm
to compute both the inside and asymmetric inside masseémlliat the bottom level
Aff = 1fori € [1,7] ands € SP. A pseudo-code of the dynamic programming
algorithm to compute all the inside and asymmetric insidessaa and the partition
function is given in Figure 12.

4.3 Computing Outside Masses

In this subsection we show how to recursively compute thensgtric outside mass and
the asymmetric outside mass. We use the same blanket destimpas in Section 4.2.
However, this time the view is reversed as we are interestegliantities outside the
blankets. For example, outside the inner symmetric Markarlet in Figure 11, there
exists an outer asymmetric blanket and another sub-asymerhkinket on the left.
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Input: D, T, all the potential function values.
Output: partition functionZ;
ALs, fors € S1;
A% ford e [2,D —1],s € S4andl <i < j < T;
Afjf fors € SP andi € [1,T];
alf(uforde [1,D -1, ue S andl <i<j<T
* Initialisation */
AP — 1foralli € [1,7] ands € SP
* At the level d=D-1 */

Fori=1,2,...T
Forj=44¢+1,..,T
Computen”. ™% (1) using Equation 42
ComputeA ;) using Equation 44
EndFor
EndFor

/* The main recursion loops: bottom-up and forward */
Ford=D-2,D-3,...,1
Fori=1,2,...T
Forj=44:+1,..,T
Computen’ () using Equation 41f j = i
Computen’* () using Equation 40f j > i
ComputeA;>” using Equation 44f d > 1
EndFor
EndFor
EndFor
ComputeZ using Equation 29.

Figure 12: Computing the set of inside/asymmetric insidessaa and the partition
function.

4.3.1 Computing asymmetric outside mass from outside mass

Let us examine the variablgg,_;(u) associated with the asymmetric Markov blanket

Fﬁj(u), ford € [1,D — 1] andl < i < j < T (see Definition 4). Foj < T', assume
that there exists an outer asymmetric Markov blamggst(v) for somev € S9! and

t € [j +1,T], and a symmetric Markov blankﬂfﬂgf right next toFZf(u). Given
.ad,s ~d,s ~ v
these blankets we have the decomposition(u) = (¢, (v)ygﬁll;t 28 = ),
which leads to the following factorisation
~d,s ads ~d+1,v I+1,v s
[, (w)] = D¢, ()R IR AV (45)

The state transition potentialzfv%f is enabled in the context= (ej-" =0, e?“ =1),

and the state persistence potenfil/};; in the context = (/™! = 1, ¢4}, | =
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0,edtl =1).
In addition, there exists a special case where the stateds atj. We have the
.. nds ~d,s . . .
decomposmo@i_j (u) = (¢, o= xd“) and the following factorisation

~d,s

P[¢.

3]

(w)] = ®[C| R B (46)

1.7
The ending potentlaEuj appears here because of the context (e? =1),ie. s
ends atj.

Now we relax the assumption éfv and allow them to receive all possible values,
i.e.t € [j,T] andv € S9!, Thus we can replace Equation 36 by

d,s _ d+1 v d+1,v 4d+1,s
A’L(u) - +1t]R +1tAuv
J J J \J
veSa+1 te ]+1 T] Cd Q(U) Cd:11 tv

+ Z Rd eEde
C‘.i?(“)
d v a4d s ds d,s
oY A wATy Al $ Al Bl (47)
veSIt te[j41,T]

ford e [2,D—2],andl < i< j <T.Thus, thexﬁ’f(u) can be thought as a message
passedackwardfrom j = T'to j = i. Here, the asymmetric outside mass ending at
is computed by using all the asymmetric outside masses giadlirfor ¢ € [j + 1, T].

There are two special cases. At the top level, ide= 1, then/\f;‘?(u) is only
defined at = 1, and the second term of the RHS of Equation 47 is included ibnly
1=1,j=T. At the second lowest level, i.e.= D — 1, we cannot sum overas in
Equation 47 smce‘k }1.¢ isonly defined fot = j 4 1. We have the following relation
instead

Dls D 19 D,v D,s Dls D—1,s
E /\”Jrl Ag+1;+1Auvg A B (48)

veSDP

4.3.2 Computing outside mass from asymmetric outside mass

Given a symmetric Markov blankéld“’“’ ford € [1, D — 1], assume that there exists
an asymmetric Markov blank@f ) at the parent level, wheret € [1,1]. Clearly,
for ¢ € [1,i — 1] there exists some sub-asymmetrlc Markov blariket , (v). See

Figure 11 for an illustration.
Let us consider two cases< ¢ andt = 1. 0
~d,s

. Load+1u s
Case 1 Fort < i, this enables the decomposltlolri.r = (gw (u), (fl (), u=
d“) which leads to the following factorisation

~d+1,u ~d,s

¢, 1=2[¢

=

(W] R (v)]ADS (49)

t:g

The state transition potentLA[j ..i—1 Isactivated in the context= (ed | =0,elt]) =

1).
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. ~d+1,u ~d,s
Case 2 Fort = i, the decomposition reduces@;r1 = (Ci:j( ), u = xﬁjl),
which leads to the following factorisation
~d+1,u ~d,s s
The state-initialisation potennal,d plays the role in the context= (e , = 1)

However, these decomposmons and factorisations onlg pivien the assumption
of specific values of € S¢, v € S+, andt € [1,1]. Without further information we
have to take all possibilities into account. Substitutimgse relations into Equation 26,
we have

D D ED DEED DEED DD DI S )] e o) Kt

s€StveSdtlte(l,i—1] £d 2 (u) Ct ()

Ade
+Z Z (I)—zj “7

sesd Cd b(u)

Z Z )\d ; a:‘i 18 1 Aﬁtlvs 1 Z )\d ; u i (51)

seSdtell,i—1] 1)ES‘Z+1 seSd

ford € [2,D — 2].

There are three special cases. The first is the base caseaivifﬁa(i)eiatndA1 r=1
for all s € S'. In the second case, far= 1, we must fix the index = 1 since the
asymmetric inside mass-* | is only defined at = 1. Also the second term in the
RHS is included only if = 1 for the asymmetric outside masé ) to make sense.
In the second case, fdr+ 1 = D, we only have = j.

Remark: Equations 47, 48 and 51 show a recurgivp-downand outside-inap-
proach to compute the symmetric/asymmetric outside masfesstart from the top
with d = 1 andA};;. = 1 forall s € S* and proceed downward until = D. The
pseudo-code is given in Figure 13. Figure 14 summarisesubatiies computed in
Section 4.2 and 4.3.

Figure 15 summarises the AlO algorithm for computing alldinig blocks and the
partition function.

5 The Generalised Viterbi Algorithm

By definition the MAP assignment is the maximiser of the ctindal distribution
given an observation sequence

(MAP arg m?X Pr(¢|2)
= arg mcax D[, 2] (52)
For clarity, let us drop the notationand assume that it is implicitly there.

The process of computing the MAP assignment is very sindlénat of computing
the partition function. This similarity comes from the @ between the sum-product
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Input: D, T, all the potential function values, all inside/asymmeiingide masses.
Output: all outside/asymmetric outside masses
Initialise: A} = 1,
Ap(u) = B3 fors € St u e S?
[* the main recursive loops: top-down and inside-out */
Ford=1,2,....D—1
Fori=1,2,...T
Forj=T,T—1,...,1
Compute the asymmetric outside ma\§§ (u) using Equations 47,48
Compute the outside maﬁﬁ’j using Equation 51
EndFor
EndFor
EndFor

Figure 13: Computing the set of outside/asymmetric outsiedsses.

o AS AL fors € ST

oAfD;jfs,Afgforde [2,D—1),s€8%1<i<j<T

o A N forie [1,T),s € SP

o afjj-(u),)\‘f:’;(u) ford=1,s€ S ue S?jecl,T)

o ol (u), NP (u)ford € [2,D —1],s € SLue S 1<i<j<T

> Mg

Figure 14: Summary of basic building blocks computed in iBact.2 and 4.3.

and max-product algorithm (a generalisation of the Vitatgorithm) of Pearl (1988),
and from the fact that inside/asymmetric inside proceddesxribed in Section 4.2
are essentially a sum-product version. What we need to dw jisst convert all the
summations into corresponding maximisations. The allgoris a two-step procedure:

e In the first step the maximum joint potential is computed av@hl maximum
states and ending indicators are saved along the way. Thates and ending
indicators are maintained inkmokkeeper

e Inthe second step we decode the best assignmesdadktrackinghrough saved
local maximum states.

Input: D, T, all the potential function values

Output: all building blocks and partition function

Compute all inside/asymmetric inside masses using theitiigoin Figure 12
Compute all outside/asymmetric outside masses using gfeeitdm in Figure 13

Figure 15: The AIO algorithm.
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We make use of the contextual decompositions and factmmisafrom Section 4.2.

Notations

This section, with some abuse, uses some slight modificatmthe notations used in
the rest of the paper. See Table 2 for reference.
We now describe the first step.

5.1 Computing the Maximum Joint Potential, Maximal States and

Time Indices
As @[] = B[(] 5] Ry for s € ST we have
max ®[(] = max Ry:7 max ®[(;:7] (53)
¢ seSt <1 b

Now, for asub—assignmegjf’fs for1 € [1, D — 1], Equation 43 leads to

~d,s
I?Lajx (I)[Q y ] = ugg%ﬁl Eu,g cfrja(if) P[¢;.7 ()] (54)

With some slight abuse of notation we introduﬁxé‘a’“d’S as the optimal poten-
tial function of the subset of variable;ﬁ anda;;™ %5(4) as the optimal potential
function of the subset of variableg’js(u

Definition 7. We defineA™*%* anda*%*(4,) as follows
2] ]

AT = max @[(] (55)
¢y

Al‘nax,d,s _ Ammx d, eR;i; (56)

et () = 1 O ()] (57)

The Equations 53 and 54 can be rewritten more compactly as

PO = A -
Al‘nax,d,s _ max Ede mmxd@(u) (59)

wESd+1 u,j ZJ

ford € [1,D — 1]. Whend = D, we simply setA*">* — 1 forall s € S” and
€ [1,T].
From the factorisation in Equation 38 and 39, we have

maX @[(ZJ (w)] = max{( max max Rd+1 "Aztlt’s_l max (I)Kzt L ()] %

t:g yU,y s
Gy () vESIHL tefi+1,7] SO

d+1 u . d+1,u d,s d+1 u
X gﬁ}i (I)K ]) ; <Ri;j glalxu T z(I)[C ]) }60)
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and

ax,d, d, d+lu 4d,
a0 (u) = max max max ag;, (v )A’mx + A
J veSatl te[i+1,j]

(Annx ,d+1, uﬁgﬁf 9) } (61)

ford € [1,D — 2] andi < j. Ford = D — 1, we cannot scan the indéxn the interval
[i + 1, j] because the maximum insi(zte;?j‘.“”"’D’“ is only defined at = j. We have the

following instead

ax,D—1,: D—1, Do 4D
a:{l;’lx 9(u) . fel%)é azn]‘xxl ?( )AIH'}X 71.Av u"s"j 1 (62)

There is a base case for= j, where the context = (e? | = 1) is active, then

azr:liax,d,e( ) Ammx d+1, uﬂ_z : (63)
Of course, what we are really interested in is not the maxirjoint potentials but
the optimal states and time indices (or ending indicatdk®) need some bookkeepers
to hold these quantities along the way. With some abuse @ftiootlet us introduce
the symmetric inside bookkeepag’*’ 45 associated with Equation 59, and the asym-

metric inside bookkeepeﬁ:’f’d *(u) associated with Equations 61, 62 and 63.

Definition 8. We define the symmetric inside bookkeep?f’d’s as follows

A?:rg’d’s = u*=arg maxuesdﬂEZ; injmd *(u) (64)
Similarly, we define the asymmetric inside bookkeepg’éﬁd *(u) associated with
Equation 61 ford € [1,D — 2] as

d, d, ,d+1, d,
a:!gg €(u) = (Uat) = argmaXye(i41 4], UGS‘Hlaznthl €( )Ammx “Au Z t—1 (65)

max,d,s max, Jd+1,u max, Jd+1,u d+1 s
if max,cgat1 sefiv1,j) Qg (U )A Av wi1 > A m, . andi <
j;and

a?8%5(y) = undefined (66)

i:j
otherwise. Ford = D — 1, thea} 45 (y) is associated with Equation 62

arg,D—1,s

o mmxde( )Ammeu d,s

(u) = arg max, e gp ;- i1

(67)
The Equations 58,59,61,62 and 63 provide a recursive pured¢d compute maxi-

mum joint potential in a bottom-up and left-right manneititdly we just setA* "% —
1 forall s € SP andi € [1,T]. The procedure is summarised in Figure 16.
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5.2 Decoding the MAP Assignment

The proceeding of the backtracking process is oppositeabdhthe max-product.
Specifically, we start from the root and proceed itop-downandright-left manner.
The goal is to identify the right-most segment at each lekermally, a segment is a
triple (s, 4, j) wheres is the segment label, aricandj are start and end time indices,
respectively. From the maximum insidéf;‘.“’d’s at leveld, we identify the best child
u and its ending timg from Equation 59. This gives rise to the maximum asymmetric
inside aﬁf‘j‘x’d’s(u). Then we seek for the best chitdthat transits tou under the
same parent using Equation 61. Since the starting tithéor « has been identified
the ending time fow is t — 1. We now have a right-most segmeht, ¢, j) at level
d + 1. The procedure is repeated until we reach the starting tiofi¢ghe parens. The
backtracking algorithm is summarised in Figure 17.

Finally, the generalised Viterbi algorithm is given in Figu.8.

Working in log-space to avoid numerical overflow

With long sequence and complex topology we may run into toelpm of numerical
overflow, i.e. when the numerical value of the maximum joiotgmtial is beyond the
number representation of the machine. To avoid this, we cank im the log-space
instead, using the monotonic property of the log functioihe Bquations in the log-
space are summarised in Table 3.

6 Parameter Estimation

In this section, we tackle the problem of parameter estondily maximising the (con-
ditional) data likelihood. Typically we need some paraiiedorm to be defined for a
particular problem and we need some numerical method toelogtimisation task.

Here we employ the log-linear parameterisation, which isiecmnly used in the
CREF setting. Recall from Section 2.3 that estimating patars@®f the log-linear mod-
els using gradient-based methods requires the computattifaature expectation, or
expected sufficient statistics (ESS). For our HSCRFs we teedmpute four types
of ESS corresponding to the state-persistence, statsitican state-initialisation and
state-ending.

6.1 Log-Linear Parameterisation

In our HSCRF setting there is a feature vedif(o, ) associated with each type of
contextual cliquer, in thatp(a?, z) = exp(w.£(c, 2)). Thus, the features are active
only in the context in which the corresponding contextuigjues appear.

For the state-persistence contextual clique, the feaincesporatestate-duration
start timei and end timgj of the state. Other feature types incorporate the time index
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in which the features are triggered. Specifically,

RES7 = exp(w (,pmmaww(z 4,2)) (68)
AL = exp(W aneina i (00 2) (69)
Tt = exp(w;mwmuu,z) (70)
By = exp(Weadfeng (i, 2) (71)

Denote byF? (¢, z) the global feature, which is the sum of all active featdf&s)
at leveld in the duratior{1, 7] for a given assignment @fand a clique type. Recall
that7 = {ix}}, is the set of ending time indices (i.ej. = 1). The four feature
types are given in Equations 72-75.

Fipserbwt (g’ Z) = fjpirbwt (]-a 7:17 Z) + Z fjp‘z7 sist (Zk + ]" Zk+1’ 2172)
ipeTd k>1
d,s d,s
Fa-tra'n sit y, 1,(§; ) = Z fa-tra'n sit gy (lk; Z) (73)
ipgTd= 1 eTd
FOo (G2) = fom L)+ Y £l ik +1,2) (74)
ipETe
FOo. (G2) = Y £, G.2) (75)

ipeTd

Substituting the global features into potentials in EquatB and 9 we obtain the
following log-linear model:

Pr((lz) = E)exp > Wi (6:2) (76)

whereC' = {persist, transit, init, exit}.
Again, for clarity of presentation we will drop the notionobut implicitly assume
that it is still in the each quantity.

6.2 ESS for State-Persistence Features

Recall from Section 6.1 that the feature function for théestzersistenc€®? ... (i, j)

ypersist

is active only in the context wheﬂéd * € (. Thus, Equation 72 can be rewritten as

Fd,s

et ()= > Y £h (i, )OS € (] 7

1€[1,T) j€[3,T)

The indicator function in the RHS ensures that the feaf([j;’fgaﬁ,.,St (i,4) is only active
if there exists a symmetric Markov blankﬁﬁ’j in the assignment of. Consider the
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following expectation
E[£5; i (6, 4)S[5; € C)) = Z Pr(Q)E5 e (1, 1) € () (78)
= —Z@ (Ui (1, )STT € ¢ (79)
Using the factorisation in Equation 24 we can rewrite
E[£%2, 0000 (i, )01, = Z ¢ CIREES (0, )0I € (] (80)
Note that the elements inside the sum of the RHS are only roosZor those assign-

ment of( that respect the persistent stafg and the factorisation in Equation 24, i.e.
¢= (¢, ¢ gd °,I1{:). Thus, the equation can be simplified to

BIEL )OI €] = 5 3 ST BRI RS ,5) (8D
¢y el
AT R ,)) (62)

Using Equation 77 we obtain the ESS for the state-persistiratures
EFESQ) = Y Y ElE% . (i, )0 € (]

zE[lT]JE[7T]
= 2 Y Y AbALRLEL LGS @Y
ze[lT]JE[%T]

There are two special cases: (1) whén= 1, we do not sum ovet, j but fix
1=1,7=1T,and (2) whenl = D then we keey = i.

6.3 ESS for Transition Features

Recall that in Section 6 1 we deflrfémmt " ,(t) as a function that is active in the

contextc!@si = (ed=1 = 0,ef = 1), in which the child state/ finishes its job at
time¢ and transits to the child staté under the same parestt—! (that iss?1 is still
running). Thus Equation 73 can be rewritten as

Fo Q= D i, (3 € (] (84)

te[1,7—-1]

We now consider the following expectation

B0 wneie (D3 € Q] = > Pr(OfS i, (D)7 € (] (85)

1 .
= - D B[ e, (O[T € (]86)
¢
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Assume that the pareatstarts at. Sincee! = 1, the childv must starts at + 1
and ends some time later At> ¢ + 1. We have the following decomposition of the
configuratior( that respects this assumption

~d—1,s

¢=(C, ¢ W), () (87)
and the following factorisation of the joint potential
2d—1,s 2d—1,s v v s
B[C) = @[¢, ()@ (W] RICH IR AL (88)

The state persistent potentﬁf+”1 ; Is enabled in the context= (ed =1 ef'+1;j_1 =

0, ej = 1) and the state transition potenti{* ¢ inthe context!ransit,
Substituting this factorisation into the RHS of Equationgdées us

d 15 d—1,s d,v d,s s
- Z DD D I 1 NP (W P[CH TR AL it o (1)
76[11‘ JE[t+1,T] Cd Be (g, )gd s (v )Ct+17
which can be simplified to
L Z S AT el (WAL AL () (89)
16[1 t] jE[t+1,T]

Using Equations 84 and 89 we obtain the ESS for the statsitiamfeatures

E[Fj;im,u,v<<>] = Y Elen, B3 € ()]
te[1,T—1]

Z Aif}tfo-dtfanbnuv Z Z d 15 /\d 18( )Adygo)

i€[1,t] jE[t+1,T]

N |

Whend = 2 we must fixi = 1 sincea;;;’ (u) and\;;; (v) are only defined at= 1.

6.4 ESS for Initialisation Features

Recall that in Section 6.1 we defnﬁém, u ) as a function at level that is triggered
at time: when a parent at leveld |n|t|al|ses a childu at leveld + 1. In this event,
the context™* = (e? ; = 1) must be activated far > 1. Thus, Equation 74 can be
rewritten as

Foo (O = > £, ()™ € (91)

1€[1,T]

Now we consider the following feature expectation

E[f%:, ,()s[cm" e )] = ZPr YL, (D)0l € (]

- = Z QL (D)™ € (] (92)
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For each assignment ofthat enable$”;’ it u( 1), we have the following decomposition
~d,s ~ ”
¢ = (¢, (w), G (93)

where the contex#* activates the emission fromto « and the feature function
£45.. (i). Thus the joint potentiab[¢] can be factorised as

0-17171 u

P[(] = @[éu.l’,s(u)]@[é?ﬂv"]Rdflmﬂd,s o

=417 ¥ 2y U,

Using this factorisation and noting that the elements withe summation in the RHS
of Equation 92 are only non-zeros with such assignments anesienplify the RHS of
Equation 92 to

E: z: z: dg d+1u d+1,u_d,sed,s .
T~ (I) 7] Z] ]sz ulfa'”’” q,(Z)

JG[z 7] gd "‘(u) C‘H'l u
= Z A () AT el () (95)
JE[ZT]

The summation ovef € [, T is due to the fact that we do not know this index.
Using Equation 91 and 95 we obtain the ESS for the initidbsefieatures

EF%. O = 0 Ef%, ()™ € (]
16[1 T)
= - Z ms e ) > A (WA (96)
zelT] j€[i,T]

There are two special cases: (1) whes 1, there must be no scanningzbut fix
i = 1 since there is only a single initialisation at the beginmigequence, (2) when
d= D —1,wefixj = ifor A7:" is only defined af = j.

6.5 ESS for Ending Features

Recall that in Section 6.1 we defnféefm ,(7) as a function that is activated when a
child u at leveld + 1 returns the control to its parentat leveld and timej. This event
also enables the context’® = (e ;l 1). Thus Equation 75 can be rewritten as

Foou (0= Y i ()8l €] (97)

JE[L,T]

Now we consider the following feature expectation

]E[f:pid u(j)é[cend e(]] = ZPr f:ﬁid u j)(;[cend e (]
= - Z BN%, (ol e ) (98)
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Assume that the statestarts at and ends aj. For each assignment ¢fthat enables
£hs (j) and respects this assumption, we have the following deceitipo

ogend U

~d,s

C=(C, ¢t (u) (99)

i

This assignment has the context? that activates the ending ef Thus the joint
potential®[¢] can be factorised as

D[] = B[C 1 RCL (W) RIS B (100)

119 u,j

Substituting this factorisation into the summation of tHéSR0f Equation 98 yields

YooY Y I IR BN, () = > Alaly (B, (7)(101)

i€[1,] ¢dos C,d;(u) i€[1,5]

2i:j

Using Equations 97 and 101 we obtain the ESS for the exitiagifes

EFLS. (O] = D ES. ()l €]
jE[lT]
= ZE;’;;’;M Y Afjagiw) (102
JE[l T] i€(1,5]

There is a special case: whéen= 1 there must be no scanning af; but fix
i=1,j="T.

7 Partially Observed Data in Learning and Inference

So far we have assumed that training data is fully labeled,that testing data does
not have any labels. In this section we extend the AIO to hatitd cases in which

these assumptions do not hold. Specifically, it may happerttie training data is not

completely labeled, possibly due to lack of labeling resear In this case, the learning
algorithm should be robust enough to handle missing laliatshe other hand, during
inference, we may partially obtain high quality labels fraxternal sources. This
requires the inference algorithm to be responsive to that da

7.1 The Constrained AlO algorithm

In this section we consider the general case when(d, h), wherey is the visible set
labels, and: the hidden set. Since our HSCREF is also an exponential misledies the
same computation required for general CRFs (Equations &arwle have to compute
four quantities: the partial log-partition functidfi(v, z), the partition functionZ(z),
the ‘constrained’ ESEy,y . [F(¥, h, z)], and the ‘free’ ESE,|.[F((, z)]. The parti-
tion function and the ‘free’ ESS has been computed in Sestoand 6, respectively.
This section describes the other two quantities.
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Let the set of visible labels b&= (Z, €¢) wherez is the visible set of state variables
ande is the visible set of ending indicators. The basic idea i$ Wehave to modify
procedures for computing the building blocks sucmfgs and afj(u), to address
constraints imposed by the labels. For exam;z:tlé’;g implies that the state at level
d starts ati and persists till terminating gt Then, if any labels (e.g. there is an
z¢ # sfor k € [i,]) are seen, causing this assumption to be inconsis&ﬁ@i,will
be zero. Therefore, in general, the computation of eacldiogjlblock is multiplied by
an identity function that enforces the consistency betvieese labels and the required
constraints for computation of that block. As an examplecasider the computation
of Af; andaf;’j (u).

The symmetric inside magsfj is consistent only if all of the following conditions
are satisfied:

1. If there are state label§ at leveld within the interval[i, j], thenz¢ = s,
2. Ifthere is any label of ending indicatéf_,, thene? | = 1,

3. If there is any label of ending indicatéf for somek € [i, j — 1], thené{ = 0,
and

4. If any ending indicato#{ is labeled, the@} = 1.

These conditions are captured by using the following idgifdinction:

TAY 7] = 6[Thep ) = s16le) = 1)0[eF ey, _y = 016[e] = 1] (103)
When labels are observed, Equation 44 is thus replaced by
sty =uatl( ¥ alierl;) (104)
uegd+t

Note that we do not need to explicitly enforce the state gtescy in the summation
overwu since in the bottom-up and left-right computatiar‘j:;jS (u) is already computed
and contributes to the sum only if it is consistent.

Analogously, the asymmetric inside maﬁé ) is consistent if all of the follow-
ing conditions are satisfied:

1. The first three conditions for the symmetric inside mang hold,
2. If the state at level at timej is labeled, it must ba, and

tof ~d+1

3. If any ending indicato# “d“ =1.

is labeled, ther

These conditions are captured by the identity function
Iafy (u)] = 8[Fep ) = s10[E ) = [ epymy = OJ8[F " = uldfe] ™ = 1](105)

i

Thus Equation 40 becomes

als (u) = Iaf ( SN el AT Al ATt 8)(106)

k=i+1peSd+1
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Note that we do not need to explicitly enforce the state @escy in the summation
overwv and time consistency in the summation o¥esince in bottom-up computa-
tion, a ( ) andA"”J1 ' are already computed and contribute to the sum only if they
are con3|stent Finally, the constrained partition fumctt (v, z) is computed using
Equation 29 given that the inside mass is consistent witloliservations.

Other building blocks, such as the symmetric outside mﬁifsand the asymmetric

outside mass)\d S( ), are computed in an analogous way. Slrzr(,,d% andA ° are
complementary and they shai@ s, i, j), the same indicator functlo]ﬁAd 7l can be
applied. Similarly, the pair asymmetric inside maﬁg and asymmetric outside
mass)\zj(u) are complementary and they shake, 7, j, u, thus the same indicator
functionI[a;? (u)] can be applied.

Once all constrained building blocks have been computeddae be used to cal-
culate constrained ESS as in Section 6 without any furthetifications. The only

difference is that we need to replace the partition functiqr) by the constrained
versionZ (9, z).

7.2 The Constrained Viterbi Algorithm

Recall that in the Generalised Viterbi Algorithm descrilre&ection 5 we want to find
the most probable configuratigd!4? = arg max. Pr(¢|z). When some variable$
of ¢ are labeled, it is not necessary to estimate them. The tasbwdo estimate the
most probable configuration of the hidden varialilegven the labels:

pMAP arg max Pr(h|¥, z)

= argm}axPr(h,Mz)
= argm}ax@[h,ﬁ,z] (207)

Itturns out that the constrained MAP estimation is idemticéhe standard MAP except
that we have to respect the labeled varialles

Since the Viterbi algorithm is just the max-product versairthe AlO, the con-
strained Viterbi can be modified in the same manner as in thetned AlO (Sec-
tion 7.1). Specifically, for each auxiliary quantities sast\;”*** anda;"" " (u), we
need to maintain a set of indicator functions that ensure&ﬁmsstency with labels.
Equations 103 and 104 become

]I[A;:r}am’d’s] = 5[xie[7 = = sofer; = 1]5[6k6[7 1] = 0jofes = 1]
g = a0 o
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Likewise, we have the modifications to Equation 105 and EqodtO6, respectively.

max,d,s ~ ~ ~ P _ Py —
]I[ai:j (w)] = 5[$ﬁe[i,j} = slolei_, = 1]5[€Ze[¢;j_1] = 0]5[13'”1 = u]d[e;Hl =1]
max,d,s mazx,d,s max,d,s A mazx,d+1,u ,d,s
Oéi:j l (’LL) = ]I[ai:j (u)] max { ker[rzl—%}l(j] Uglsad}il Qg1 (U)Ak:j " A?J,u,k:—l;

A;Zam,d+1,u7rd+1,s} (109)

u,t

Other tasks in the Viterbi algorithm including bookkeepargd backtracking are
identical to those described in Section 5.

7.3 Complexity Analysis

The complexity of the constrained AlO and constrained Yitéas an upper bound of
O(T?), when no labels are given. It also has a lower boun@(@f’) when all ending
indicators are known and the model reduces to the standeegestructured graphical
model. In general, the complexity decreases as more lateBvailable, and we can
expect a sub-cubic time behaviour.

8 Numerical Scaling

In previous sections, we have derived AlO-based inferenddesarning algorithms for
both unconstrained and constrained models. The quartiieputed by these algo-
rithms like the inside/outside masses often involve surionaiver exponentially many
positive potentials. The potentials, when estimated fratadare often not upper-
bound, leading to the fact that the magnitude of the massesdrses exponentially fast
in the sequence lengfh, thus goes beyond the numerical capacity of most machines
for moderatél".

In this section we present a scaling method to reducentimserical overflovprob-
lem. The idea can be traced back to the Pearl’'s messageaipassicedure (Pearl,
1988; Yedidiaet al,, 2005). Our AlO algorithms can be considered as generalisat
of the message-passing, in which the inside masses plaglthefrthe inside-out mes-
sages. In Pearl's method, we reduce the messages’ maghitud@malising them at
each step. In the context of HHMMs with which the numerigatlerflowproblem is
associated, the similar idea has been proposed indBali, 2004), which we adapt to
our overflow problem.

8.1 Scaling the Symmetric/Asymmetric Inside Masses

Before proceeding to algorithmic details let us revisit Btipn 44. If we scale down
the asymmetric inside maaﬁ’js (u) by afactork; > 1, i.e.

' o (u)
() = ——— (110)
J
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then the symmetric inside ma&ﬁ?j is also scaled down by the same factor. Similarly,
as we can see from Equation 40 that

d+1u d,s d+1u d,s
E: E: avfl A Avut l—l—A ﬂ—uv

t=i+1yeSd+1

where AT = ATTRYRITHY if AT for t € [1, j] is reduced bys, thenay;
is also reduced by the same factor In addition, using thefsetcursive relat|ons in
Equations 40 and 44, any reduction at the bottom Ievelﬁ; will result in the re-
duction of the symmetric inside ma&i and of the asymmetric inside mas%
for d < D, by the same factor.

Supposeﬁff foralli € [1,] is reduced by a factor of; > 1, the quantitiesﬁ‘f;j
anda{;’ (u) will be reduced by a factor of._, ;. That s

- Ads
Al o = (111)
i=1Hi
d,s
o] (u)

ai(u) (112)

It follows |mmediately from Equation 29 that the partitiaimiction is scaled down by
a factor of]_[ 1 Ki

=Y Al = (113)

sest H =1Kj

whereAl;s = AL2BL2. Clearly, we should deal with the log of this quantity to
avoid numerical overflow. Thus, the log-partition functican be computed as

log(Z) = log Z A 7+ Zlog Kj (114)

seSt

whereAfg,f has been scaled appropriately.

One question is how to choose the set of meaningful scalicigf®{r;}7. The
simplest way is to choose a relatively large number for alisg factors but making
the right choice is not straightforward. Here we describeamematural way to do
so. Assume that we have chosen all the scaling fadters)'. Using the original
Equations 40, 41, and 42, where all the sub- components lemredealed appropriately,

we compute thepartlally -scaledinside massA * for d € [2, D] and asymmetric

inside massxm *(u), ford € [1,D — 1] andi € [1,3]. Then the scaling factor at time
j is computed as

Z a5 ( (115)
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The next step is to rescale all the partially-scaled vagisibl

”d,S
’ Q. u
aifij’s(u) — %() forse S de[1,D—1] (116)
J
”d7S
AL T oforse S de(2,D 1] (117)
K
”D,S
AP T forse 5P (118)
Kj

wherei € [1, j].

8.2 Scaling the Symmetric/Asymmetric Outside Masses

In a similar fashion we can work out the set of factors fromdkevation of symmet-
ric/asymmetric outside masses since these masses sopaEpdien the inside masses
as building blocks. In other words, after we finish scaling thside masses we can
compute the scaled outside masses directly, using the sstroéequations described
in Section 4.3.

The algorithm is summarised in Figure 19. Note that the oodg@erforming the
loops in this case is different from that in Figure 12.

9 Applications

9.1 Recognising Indoor Activities

In this experiment, we evaluate the HSCRFs with a relatigehall dataset from the
domain of indoor video surveillance. The task is to recogimdoor trajectories and ac-
tivities of a person from his noisy positions extracted fraideo. The data, which was
captured in (Nguyent al, 2005), and subsequently used to evaluate DCRFs in (Truyen
et al, 2006), has 90 sequences, each of which corresponds to dhthefpersistent
activities: (1)preparing short-meal(2) having snackand (3)preparing normal-meal
The persistent activities share the some of 12 sub-trajestoEach sub-trajectory is
a sub-sequence of discrete positions. Thus naturally, dtee fths a state hierarchy of
depth 3: the dummy root for each position sequence, thegpensiactivities, and the
sub-trajectories. The input observations to the modeliarplg sequences of discrete
positions.

We split the data into two sets of equal size for training asling, respectively.
For learning, labels for each sequence are provided futlhfe case of fully observed
state data, and partially for the case of missing state data.testing, no labels are
given to the decoder, and decoded labels obtained from thiepnmualuct algorithm are
compared against the ground-truth.

In designing features, we assume that state features @t&vebn nodes) such as
initialisation, transition and exiting are indicator fuions. For the data-associations
(i.,e. embedded in state-persistence potentials) at therhdevel, we use the same
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features as in (Truyeet al, 2006). At the second level, we use average velocities and
a vector of positions visited in the state duration. To erdbe duration into the state-
persistence potentials, we employ the sufficient stasisifcthegammadistribution as
featuresfy (s, At) = I(s) log(At) and fir41(s, At) = I(s)(At).

At each leveld and timet we count an error if the predicted state is not the same
as the ground-truth. Firstly, we examine the fully obsergagde where the HSCRF
is compared against the DCRF at both data levels, and agasmfiat-CRF at bottom
level. Table 4 (the left half) shows that (a) both the mwilemodels significantly
outperform the flat model and (b) the HSCRF outperforms th&B.C

We also test the ability of the model to learn the hierardhicpology and state
transitions. We find the it is very informative to examinegraeters which correspond
to the state transition features. Typically, negativeiestn the transition parame-
ter matrix means that the transition is improbable. Thisdsduse state features are
non-negative, so negative parameters mean the probeditfi these transitions are
very small (due to the exponential), compared to the p@siives. For the transition
at the second level (the complex activity level), we obtdimagative entries. This
clearly match the training data, in which each sequencadjrbelongs to one of three
complex activities. With this method, we are able to cordittine correct hierarchical
topology as in Figure 20. The state transition model is priegskin Figure 21. There
is only one wrong transition, from state 12 to state 10, wléchot presented in the
training data. The rest is correct.

Next we consider partially-supervised learning in thatata®% of start/end times
of a segment and segment labels are observed at the secehdNikending indicators
are known at the bottom level. The results are reported ineTak(the right half).
As can be seen, although only 50% of the state labels and statéend times are
observed, the model learned is still performing well witb@@acy of 80.2% and 90.4%
atlevels 2 and 3, respectively.

We now consider the issue of using partial observed labeisgldecoding to im-
prove prediction accuracy of poorly estimated models. Weaekthe parameters from
the 10th iteration of the fully observed data case. The &bed provided at random
time indexes. Figure 22a shows the decoding accuracy asctdomf available state
labels. It is interesting to observe that a moderate amotiobserved labels (e.g.
20 — 40%) causes the accuracy rate to go up considerably.

9.2 POS Tagging and Noun-Phrase Chunking

In this experiment we apply the HSCRF to the task of noungdchunking. The
data is from the CoNLL-2000 shared task (Sang and Buchh®0}x in which 8926
English sentences from the Wall Street Journal corpus ae fgs training and 2012
sentences are for testing. Each word in a pre-processeensenis labeled by two
labels: the part-of-speech (POS) and the noun-phrase {[Meje are 48 POS differ-
ent labels and 3 NP labels (B-NP for beginning of a noun-ghriaslP for inside a
noun-phrase or O for others). Each noun-phrase generadlyrtose than one word.
To reduce the computational burden, we reduce the POS tag-Segroups:noun,
verb, adjective, adverb and otherSince in our HSCRFs we do not have to explicitly
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indicate which node is at the beginning of a segment, the K&l ket can be reduced
further into NP for noun-phrase, and O for anything else.

The POS tags are actually the output of the Brill's taggeill(Br995), while the
NPs are manually labeled. We extract raw features from tkteriehe way similar to
that in (Suttoret al,, 2007). However, we consider only a limited vocabulary &sted
from the training data in that we only select words with mdrant 3 occurrences. This
reduces the vocabulary and the feature size significan#yalb make use of bi-grams
with similar selection criteria. Furthermore, we use thetestual window of 5 instead
of 7 as in (Suttoret al., 2007). This setting gives rise to about 32K raw featuree Th
model feature is factorised g%z, z) = I(z.)g.(z), wherel(z.) is a binary function
on the assignment of the clique variablesandg.(z) are the raw features.

We build an HSCRF topology of 3 levels where the root is justiaohy node, the
second level has 2 NP states and the bottom level has 5 P@S. skair comparison,
we implement a DCRF, a simple sequential CRF (SCRF), and &ankov CRF
(SemiCRF) (Sarawagi and Cohen, 2004). The DCRF has grictsteuiof depth 2, one
for modelling the NP process and another for the POS pro&sse the state spaces
are relatively small, we are able to run exact inference@DICRF by collapsing both
the NP and POS state spaces to a combined state space dfsize- 15. The SCRF
and SemiCRF model only the NP process, taking the POS tagpats i

The raw feature set used in the DCRF is identical to thoselitH@CRF. However,
the set shared by the SCRF and the SemiCRF is a little moreralibsince it takes
the POS tags into account (Suttetal.,, 2007).

Although both the HSCRF and the SemiCRF are capable of niodeltbitrary
segment durations, we use a simple exponential distribwsit can be processed
sequentially and thus is very efficient. For learning, weaisanple online stochastic
gradient ascent method since it has been shown to workvelhativell and fast in CRFs
(Vishwanatharet al, 2006). At test time, as the SCRF and the SemiCRF are able to
use the Brill's POS tags as input, it is not fair for the DCRFE &#SCRF to predict
those labels during inference. Instead, we also give the R@Sto the DCRF and
HSCRF and perform constrained inference to pregiity the NP labels. This boosts
the performance of the two multi-level models significantly

The performance of these models is depicted in Figure 23 anarevinterested in
only the prediction of the noun-phrases since this data s BOS tags. Without
Brill's POS tags given at test time, both the HSCRF and the B@&form worse than
the SCRF. This is not surprising because the Brill's POS taigsalways given in the
case of SCRF. However, with POS tags the HSCRF consisteptlysibetter than all
other models. The DCRF does worse than the SCRF, even witht&®§3Sjiven. This
does not share the observation made in (Swgtad, 2007). However, we use a much
smaller POS tag set than (Suttetral,, 2007) does. Our explanation is that the SCRF is
able to make use of wider context of the given POS tags (hett@yvthe window of 5
tags) than the DCRF (limited to 1 POS tag per NP chunk). TheiSRR although in
theory it is more expressive than the SCRF, does not showdwanéage under current
setting. Recall that the SemiCRF is a special case of HSCRirairthe POS level is
not modelled, it is possible to conclude that joint modegllof NP and POS levels is
important.
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10 Conclusions

In this paper, we have presented a novel model called HigicicSemi-Markov Con-
ditional Random Field which extends the standard CRFs tarpurate hierarchical and
multilevel semantics. We have developed a graphical mlikkeHynamic representa-
tion of the HSCRF. This appears similar to the DBN repredemntaf the HHMMs in
(Murphy and Paskin, 2002), and somewhat resembles a dyriactiz graph (Kschis-
changet al, 2001). However, it is not exactly the standard graphicatlehdecause
the contextual cliques in HSCRFs are not fixed during infeeen

We have derived efficient algorithms for learning and infieies especially the abil-
ity to learn and inference with partially given labels. Weed@emonstrated the capac-
ity of the HSCRFs on home video surveillance data and thémshalarsing of English
text, in which the hierarchical information inherent in tentext helps to increase the
recognition.

In future work we plan to attack the computational bottldneclarge-scale set-
tings. Although the AIO family has cubic time complexity,i#t still expensive in
large-scale application, especially those with long seqgas. It is therefore desirable
to introduce approximation methods that can provide spewdity trade-offs.

We also need to make a choice between pre-computing all ttenipels prior
to inference and learning, and computing them on-the-flye fittst choice requires
O(D|S|?>T?) space, which is very significant with typical real-world prems, even
with today’s computing power. The second choice, howevét siow the inference
and learning very significantly due to repeated computadtoevery step of the AIO
algorithm.

Perhaps one of the most interesting point is that how gootH8@RFs can be an
approximation to general multilevel processes, which ateacessarily recursive. For
example, it is interesting to see if any data which is natyrapresented as a DCRF
can be approximately represented by an HSCRF. This is imapbbecause HSCRFs
are tractable while DCRFs are generally not. Some datarigisntally sequential in
the sense that there is no really ‘exiting’ point. The HSCRifse some transitions at
the edge of segments to be broken, so the best HSCRFs canadm@lel quite long
segments.
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A Proofs

A.1 Proof of Propositions 1 and 2
Before proving Proposition 1 and 2 let us introduce a lemma.
Lemma 1. Given a distribution of the form

Pr(z) = %@[m] (119)

wherex = (z,, x5, 23 ), if there exists a factorisation
Blr] = Dlara, 2]l D[y, ) (120)
thenz, andz; are conditionally independent given.
Proof: We want to prove that
Pr(q, 2p|25) = Pr(zq|u,) Pr(z|a.) (121)
SincePr(zq, zp|zs) = Pr(2a, 20, 25)/ 3, ., Pr(za, zp, xs), the LHS of Equa-
tion 121 becomes

(I)[xav xS](I)[xS](I)[xs, xb]
Zma,mb (I)[xa’ :Cs](I)[xS]CI)[xS, xb]
_ (I)[xmxs] (I)[xs, xb]
= S o] S, Ol ) (122)

where we have used the following fact

S Dfra, 220D, 11] = @[xs1(;@[xa,xs1) (;cb[xs,xb]) (123)

Ta,Th

Pr(zq, xp|xs)

and canceled out the normalisation factband®|x;].

To provePr(z,|zs) = ®[za,7s]/ Y, P[ra,zs], we need only to shoWr(z,|zs) oc
®[z,, 2] since the normalisation over, is due to) |, Pr(z,|zs) = 1. Using the
Bayes rule, we have

Pr(zqlzs) o Pr(zg,zs)
= Z Pr(zq, zs, xp)
Ty

= Lol w0z, S 0, m)

Z
X Pzg, ] (124)

where we have ignored all the factors that do not depend,on
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A similar proof givesPr(z|z5) = ®[xs, xp]/ >, ®[zs, 7). Combining this re-
sult and Equation 124 with Equation 122 gives us Equation I2is completes the
proofl

In fact, x5 acts as a separator betweenandzx;. In standard Markov networks
there are no paths from, to x; that do not go through,. Now we proceed to proving
Proposition 1 and 2.

Given the symmetric Markov blankﬂfj, there are no potentials that are associ-

ated with variables belonging to borfﬁ’js andgf:’;. The blanket completely separates
the(;f’js andgj. Therefore, Lemma 1 ensures the conditional independesteesbn
¢y’ andg .

Similarly, the asymmetric Markov blankéﬁf(u) separatesfff(u) andgf:’;(u)
and thus these two variable sets are conditionally indegrtdlie to Lemma Bl

A.2 Proof of Proposition 3

Here we want to derive Equations 32, 33 and 34. With the samdittons as in
Lemma 1, in Equation 124 we have shown tRatz,|zs) < ®[z,, xs]. Similarly, this
extends to

d,s|11d,s d,s d,s

2 0

= O[C] (125)
which is equivalent to
1 ~d
Pr(¢ho|Ids) = @[]
’ ! Zg;{vf (I)[Cldj ] !
1 rd,s
= P[] (126)
d,s (2]
Ai:j

The last equation follows from the definition of the symnetriside mass in Equa-
tion 25. Similar procedure will yield Equation 33.
To prove Equation 34, notice the Equation 21 that says

(2

Pr(¢) = Pr(I1{y) Pr(¢ 1) Pr(¢o (1) (127)
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or equivalently
ds 1 1

Pr(II:: = Pr 128
e e Pr(¢;IIL) .
1 ALs Ads
= SO (129)
Z el el
1 ds. ALS o ADs
= IR Ot — (130)
Z ‘P[CZ;]@[QZ’J,]
1 d,s pd,s A d,s
= EAi:j‘Ri:in:j (131)

In the proof proceeding, we have made use of the relation rafion 24. This com-
pletes the prool

B Computing the State Marginals of HSCRF
We are interested in computing the marginals of state vimsdh(z). We have

Pr(z?) = ZPr(wf,C\xf)

C\zf
= ZPr(Oé(a:f €¢)
= —Zcp 6(zd € ¢) (132)

Let s = 2 and assume that the statestarts ati and end atj, andt € [i, j].
For each configuratiog that respects this assumption, we have the factorisation of
Equation 24 that says
2d,s 2ds s
B[C) = @(¢1PIC, VRS (133)
Then Equation 132 becomes
7 LS o JIRES(E € i)
¢
1
- Z AdGAdG d‘? (134)
i€[1,t] jE[t,T]
The summing ovei and; is due to the fact that we do not know these indices.
There are two special cases, (1) whénr= 1 we cannot scan the left and right
indices, the marginals are simply

Abs (135)



sinceA};. = 1forall s € S'; and (2) wheni = D, the start and end times must be
the samei(= j), thus

1.
Pr(zP = s) = =AD" (136)

sinceA;* = 1forallt € [1,7] ands € SP.
Since}", g Pr(z{ = s) = 1, it follows from Equation 134 that

Z=>"3" > AlALSRL: (137)

s€Sdig[1,t] je[t,T)

This turns out to be the most general way of computing thatartfunction. Some
special cases have been shown earlier. For example, wken, i = 1 andj = T
Equation 137 becomes Equation 29 sinée} = 1. Similarly, whend = D, = j = t,
Equation 137 recovers Equation 30 sinsf;* =

C Semi-Markov CRFs as Special Case of HSCRFs

In this Appendix we first describe the semi-Markov CRF (SeRH (Sarawagi and
Cohen, 2004) in our HSCRF framework and show how to conveeraiSRF into an
HSCRF. Then under the light of HSCRF inference we show howddify the original
SemiCRF to handle (a) partial supervision and constrainfedence, and (b) numerical
scaling to avoid overflow. The modifications are of interaghieir own right.

C.1 SemiCRF as an HSCRF

SemiCREF is an interesting flat segmental undirected modg¢lgbneralises the chain
CRF. In the SemiCRF framework the Markov process operatdseategment level,
where a segment is a non-Markovian chain of nodes. A chaiagrfients is a Markov
chain. However, since each segment can potentially haveasblength, inference in
SemiCRFs is more involved than the chain CRFs.

Represented in our HSCRF framework (Figure 24), each npdéthe SemiCRF
is associated with an ending indicatgr with the following contextual cliques

e Segmental stafevhich corresponds to a single segmentand is essentially the
state persistenceontextual clique in the context= (e;,—1.; = (1,0,..,0,1)) in
the HSCRF’s terminology.

e State transitiopwhich is similar to the state transition contextual cliguehe
HSCRFs, corresponding to the context (e; = 1).

Associated with the segmental state clique is the poteftjgl and with the state
transition is the potential, s ., wheres, s’ € S, andS = {1, 2, ...,|S|}.

A SemiCRF is a three-level HSCRF, where the root and bott@ndammy states.
This gives a simplified way to compute the partition functi&$S, and the MAP as-
signment using the AIO algorithms. Thus, techniques dgezldn this paper for nu-
merical scaling and partially observed data can be appitiiet SemiCRF. To be more
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consistent with the literature of flat models such as HMMs@RdFs, we call the asym-
metric inside/outside masses by floeward/backward respectively. Since the model
is flat, we do not need the inside and outside variables.

Forward

With some abuse of notation, Ief:j = (z1j-1,€1:j-1,2; = s,e; = 1). In other

words, there is a segment of statending atj. We write the forwardy;(s) as
DR ICATE (138)
Cf;j

As a result the partition function can be written in term o tbrward as
Z(z) = Z [Cr.r, 2] = Z Z (Y., 2]
Cu:r s (ip

= Z ap(s) (139)

We now derive a recursive relation for the forward. Assunae tine segment ending
atj starts somewhere at [1, j]. Thenfor: > 1, there exists the decompositiof); =

(¢l 1 i = s, 451 = 0) for somes’, which leads to the following factorisation

(I)[C‘f:j,z] = (I)[Cf:/iq]As’,s,iflRf:j (140)

The transition potentially, s ;_; occurs in the context = (e;—; = 1), and the seg-
mental potentiak??. ; in the context = (ij = s,ei-1 = 1,e5-1 =0).

Fori = 1, the factorisation reduces #®|(; ;, z| = R ;. Since we do not know the
startingi, we must consider all possible values in the intefvaj. Thus, Equation 138

can be rewritten as
Z Z Z Cl i— 1 ‘3' 371—1Rf:j + Rig (141)

!
i€[2,5] 8" ¢sl

S N () A i1 R + RY (142)

i€[2,5]

a;(s)

Backward

The backward is the ‘mirrored’ version of the forward. In tarlar, Ietgle =
(zj41.7, €51, 25 = s,e;_1 = 1). and we define the backwafi(s) as

> @] (143)
G

Clearly, the partition function can be written in term of theckward as

> Bils) (144)
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The recursive relation for the backward

Bils) = > D RiAcwiBipa(s) + Rip (145)

jE[,T—1] s

Typically, we want to limit the segment to the maximum lengttL € [1, T]. This
limitation introduces some special cases when perforngognsive computation of the
the forward and backward. Equation 141 and 145 are rewidiseiollows

aj(s) = > > ai1(s) Ay si1 R + Ry (146)
i€j—L+1,j],i>1 s’

S Y RLAe B () + R (147)

jEii+L—1],5<T s’

Bi(s)

Since it is a bit clumsy to represent a SemiCRF as a thre¢HSERF, we can
extend the HSCRF straightforwardly by allowing the bottawel states to persist.
With this relaxation we have mested SemiCRF modelthe sense that each segment
in a Markov chain is also a Markov chain of sub-segments.

C.2 Partially Supervised Learning and Constrained Infererce

Following the intuition in Section 7.1, we require that dletforward and backward
quantities and the potential$;,; used in Equations 146 and 147 mustdmmnsistent
with the labels in the case of partial supervision and cairstd inference.

Specifically, any quantities that are not consistent aréose¢ro. Let the labels be
Y = (z,€). Then the potential; ; is consistent if it satisfies the following require-
ments:

e if there are any labeled states in the interffvaf], they must bes,
e if there is any labeled ending indicater_, thene;_; = 1,

e if there is any labeled ending indicatéy for somek € [i,j — 1], thené;, = 0,
and

e if any ending indicatog; is labeled, the; = 1.
These conditions are captured by using the following idgftinction:

Notice how these conditions and equation resembles thdke lBquation 103. This is
because a SemiCRF is just a simplified version of an HSCRFentherpotentiak;,;

plays the role of the insida;.
Similarly, the forwardy; (s) is consistent if the following conditions are satisfied:

o if there is a labeled ending indicator agtthene; = 1, and

o if there is a labeled state gtthenz; = s.
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The consistency is captured in the following identity fuont
I[a(s)] = de; = 1]6[z; = 5] (149)
Furthermore, the backwarg](s) is consistent where:
e if there is a labeled ending indicatoriat 1, thene;_; = 1, and
e if there is a labeled state athenz; = s.

And again, we have the following identity function

By installing the consistency identity functions in Eqoats 148, 149 and 150 into
Equations 146 and 147, we now arrive at

a;(s) = T[a(s)] ( S D i) Ag i allRYIRY + H[Ri:j]Ri:j)(lsl)

i€[j—L+1,4,i>1 s

@(s)zﬂ[@(s)]( S D URIR Asw B (s) + I[RE] f:T)asz)

jElii+L—1],j<T s

C.3 Numerical Scaling

We have already shown that a SemiCRF is indeed a 3-level HS@Fe the top and
the bottom levels are dummy states, that is, the state simeeiand all the potentials
associated with them have a value of one. To apply the scalettpod described in
Section 8, we notice that

e «ay(s) plays the role of the asymmetric inside ma&}s} (s)
e (:(s) plays the role of the asymmetric outside ma§;§(s)

What we do not have here is the explicit notion of inside ma,%; but it can be
considered as having a value of one. So to apply the scalgayitdm in Figure 19
we may scale the state-persistence potetjal instead. The simplified version of
Figure 19 is given in Figure 25.

~Of course, the partial scaling step can be the source of ricah@verflow with
[Ti_} kx. The trick here is to realise that [, ax = exp(logb — 3", log ;) so that
we never comput&/ [, ax directly but the equivalenaexp(logb — ), logay).
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Notation Description

zf" Subset of state variables from levktiown to leveld’
and starting from time and ending at timg, inclusive.
edd”  Subset of ending indicators from levétown to leveld’
and starting from time and ending at timg, inclusive.
g‘f’j Set of state variables and ending indicators of a
sub model rooted at?, leveld, spanning a sub-string, 5]
o Contextual clique
i,j,t Time indices
¢  Set of all ending time indices, e.qg.iitc 7¢ thened = 1
r,s,u,v,w State
R%%%  state-persistence potential of statéeveld, spanningdi, j]
m,; Initialisation potential of state at leveld, time: initialising sub-state
A%**  Transition at levell, time from stateu to v under the same parent
E;’>*  Ending potential of state at leveld and timei, and receiving
the return control from the child
®[¢,z] The global potential of a particular configuration
S?  The number of state symbols at levil
A‘f_ﬂs The symmetric inside mass for a statat leveld,
spanning a substring, ;]
A‘f_ﬂs The full symmetric inside mass for a statat leveld,
spanning a substring, ;]
A%* The symmetric outside mass for a statat leveld,
spanning a substring, ;]
A%*  The full symmetric outside mass for a statat leveld,
spanning a substring, ;]
os?(u)  The asymmetric inside mass for a parent stadeleveld, starting at
and having a child-state which returns control
to parent or transits to new child-statejat
A:5(w)  The asymmetric outside mass, as a counterpart of
asymmetric inside mass.* (u)
¥(.),p(.) Potential functions.

Table 1: Notations used in this paper.
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Notation

Description

Ajfj‘x’d’s The optimal potential function of the subset of variab;léﬁ
Amaxds The ‘full’ version ofAfJf“’d’s

fj"?‘g’s(u) The optimal potential function of the subset of variab;l;é'jé(u)
A4 The optimal childu?™ of s

:J
arg,d, s
i ()

Z‘d

The optimal childv;"}" that transits tai;." " and the time index.

The set of optimal ‘segments’ at each ledel

Table 2: Notations used in this section.

| Log-space equations | Equations.]
log Aznfx’d’s = max,cga+1{log EZ: + log ozzlfx’d’s(u)} Eg. 59
log afj‘?x,d,s(u) = max {maxte[Hl’j] max, ¢ ga+1{10g azltafid’s(v)—k
+log Afj‘x’dﬂ’“ +log Afji,H}; log Afﬁx’dﬂ’“ + log 71'3;1’8} Eq. 61
log a5} 771 (u) = max,esp {log ;" *(0) +
+log AT 4 log A} Eq. 62
log affx’d’s(u) = log Azlfx’dﬂ’" + log WZ: Eg. 63
Table 3: MAP equations in the log-space.
| Alg. |d=2]d=3] Alg. |d=2]d=3]
HSCRF 100 93.9 || PO-HSCRF| 80.2 | 90.4
DCRF 96.5 | 89.7 || PO-CRF - 83.5
flat-CRF - 82.6 || - - -

Table 4: Accuracy (%) for fully observed data (left), andtly observed (PO) data

(right).
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Input: D, T, all the potential function values.
Output: the bookkeepers;
AVELS fors e Standl <i<j<T;
AZEDS ford € [2,D — 1], s € S%
A¥EP for s € SP andi € [1,T];

O‘irjg"d’s(u) forde [1,D—1],ue Sl andl <i<;<T

/* Initialisation */
AP@Ps — qforalli e [1,7] ands € SP
/* At the level d=D-1 */
Fori:=1,2,...,T

Forj=d4i+1,...T

Computens”~1*(u) using Equation 62 and
a1 P~ () using Equation 67

ComputeA’”~1* using Equation 59 and
AZB P71 using Equation 64
EndFor
EndFor
/* The main recursion loops: bottom-up and forward */
Ford=D-2,D-3,...,1
Fori:=1,2,...,T
Forj=id,i+1,...T
If j =i
Computex
Else
Computeaﬁf‘j‘x’d’s(u) using Equation 61 and
o245 () using Equation 65

max,d,s
[

(u) using Equation 63

EndIf
Ifd>1
ComputeA}’#** using Equation 59 and
A% using Equation 64
EndIf
EndFor
EndFor
EndFor
ComputeA %" using Equation 59 and
A¥E1® ysing Equation 64

Figure 16: Computing the bookkeepers.
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Input: D, T, all the filled bookkeepers.
Output: the optimal assignmeigt"/ 4*

Aax,T
s* = argmax,c i A7

Initialise triple bucketg! = {(s*,1,7)} andZ? = {} for d € [2, D]
Ford=1,2,....D—1
For each triple(s*, i, j) in Z¢
Letu* = AFES
For i <j
If o845 (4*) is definedThen
%) = a2 ()
Add the triple(v*, t*, j) to Z¢+! and Setj = t* — 1 andu* = v*
Else
Add the triple(u*, 4, j) to Z¢+! and Break this loop
EndIf
EndFor
EndFor
EndFor
For each stored triplés*, 4, 1) in the bucketZ?, for d el
create a corresponding set of vanatilﬁé =s* el | =
The joining of these sets is the optimal as&gnm[éﬁf‘P

Dj,

b
d _ d
1,e ej = 1,ei:j_1

=0).

Figure 17: Backtracking for optimal assignment (nestedidablankets).

Input: D, T, all the potential function values.

Output: the optimal assignmeigt"/4”

Run the bottom-up discrete optimisation procedure desdriiy Figure 16.
Run the top-down backtracking procedure described in Eidc

Figure 18: The generalised Viterbi algorithm.
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Input: D, T and all the contextual potentials.
Output: Scaled quantities: inside/asymmetric inside masses,
outside/asymmetric outside masses.

Forj=1,2,..,T
Computeaf;j(u), d € [1, D — 1] using Equations 40, 41 and 42
Computes; using Equation 115
Rescale,;’(u) using Equation 116
Fori=1,2,..,j
Ford=2,3,..,.D—1
Rescalex’* (u) using Equation 116
RescaleA;’” using Equation 117
EndFor
EndFor
RescaleA ) using Equation 118
EndFor
Compute true log-partition function using Equation 114.
Compute the outside/asymmetric outside masses using the
scaled inside/asymmetric inside masses instead of thimalig
inside/asymmetric inside in Equations 47 and 51.

Figure 19: Scaling algorithm to avoid numerical overflow.

Figure 20: The topo learned from data
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Figure 21: The state transition model learned from dataniflvie states are duplicated
for clarity only. They are shared among complex states
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Figure 22: Performance of the constrained max-productrifgo as a function of
available information on label/start/end time.
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Figure 23: Performance of various models on Conll2000 noluase chunking.
HSCRF+POS and DCRF+POS mean HSCRF and DCRF with POS givest dihte,
respectively.

state persistence state transition

Figure 24: The SemiCRFs in our contextual clique framework.
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Input: T, the transition potentials and the state-persistencenpate.
Output: Scaled quantities: state-persistence potentials, faiAlvackward.

Forj=1,2,..,T
[*Partial scaling*/
Fori=53—-L+1,..,5—1
RescaleR,; ; — Ri;_1/ T4} kn
EndFor
Computex; (s) using Equation 138
Computes; = 3" a(s)
[*Full scaling*/
Rescalay;(s) < a;(s)/k;
Fore=353—-L+1,..,5
RescaleRR; ; — R:,/k;
EndFor
EndFor
Compute true log-partition function using Equation 114.
Compute the backward/ESSes using the scaled potentials.

Figure 25: Scaling SemiCRF.
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