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Abstract

Multi-level hierarchical models provide an attractive framework for incorporating
correlations induced in a response variable that is organized hierarchically. Model
fitting is challenging, especially for a hierarchy with a large number of nodes. We
provide a novel algorithm based on a multi-scale Kalman filter that is both scalable
and easy to implement. For Gaussian response, we show our method provides the
maximum a-posteriori (MAP) parameter estimates; for non-Gaussian response,
parameter estimation is performed through a Laplace approximation. However,
the Laplace approximation provides biased parameter estimates that is corrected
through a parametric bootstrap procedure. We illustrate through simulation studies
and analyses of real world data sets in health care and online advertising.

1 Introduction

In many real-world prediction problems, the response variable of interest is clustered hierarchically.
For instance, in studying the immunization status of a set of children in a particular geographic loca-
tion, the children are naturally clustered by families, which in turn are clustered into communities.
The clustering often induce correlations in the response variable; models that exploit this provide
significant improvement in predictive performance. Multi-level hierarchical models provide an at-
tractive framework for modeling such correlations. Although routinely applied to moderate sized
data (few thousand nodes) in several fields like epidemiology, social sciences, biology [3], model
fitting is computationally expensive and is usually performed through a Cholesky decomposition
of a q (number of nodes in the hierarchy) dimensional matrix. Recently, such models have shown
promise in a novel application of internet advertising [1] where the goal is to select top-k adver-
tisements to be shown on a webpage to maximize the click-through rates. To capture the semantic
meaning of content in a parsimonious way, it is commonplace to classify webpages and ads into
large pre-defined hierarchies. The hierarchy in such applications consist of several levels and the
total number of nodes may run into millions. Moreover, the main goal is to exploit the hierarchy
for obtaining better predictions; computing the full posterior predictive distribution is of secondary
importance. Existing fitting algorithms are difficult to implement and do not scale well for such
problems. In this paper, we provide a novel,fast andeasy to implement algorithm to compute the
posterior mode of parameters for such models on datasets organized hierarchically into millions of
nodes with several levels. The key component of our algorithm is a multi-scale Kalman filter that
expedites the computation of an expensive to compute conditional posterior.

The central idea in multi-level hierarchical (MLH hereafter) models is “shrinkage” across the nodes
in the hierarchy. More specifically, these models assume a multi-level prior wherein parameters of
children nodes are assumed to be drawn from a distribution centered around the parameter of the
parent. This bottom-up, recursive assumption provides a posterior whose estimates at the finest res-
olution are smoothed using data on the lineage path of the node in the hierarchy. The fundamental
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Notation Meaning
Tj Levelj of the hierarchyT
mj The number of nodes at levelj in T
q The total number of nodes inT
pa(r) The parent node of noder in T
ci(r) Theith child node of noder in T
nr The number of observations at leaf noder
yir Theith observation (response) atleaf noder
Y {yir, i = 1, · · · , nr, r ∈ T }
xir Theith observation (p-dimensional covariates) atleaf noder
X {xir, i = 1, · · · , nr, r ∈ T }
β The regression parameter vector associated withX

φj
r The random effect parameter at noder at levelj

φ {φj
r, r ∈ T, j = 1, · · · , L}

V The residual variance ofyir, if yir has a Gaussian model
γj The variance ofφj

r for all the nodes at levelj
γ {γ1, · · · , γL}
φj

r|r The mean ofφj
r|{yir′ , i = 1, · · · , nr′ , ∀r′ ≺ r}

σj

r|r The variance ofφj
r|{yir′ , i = 1, · · · , nr′ , ∀r′ ≺ r}

ˆ
φj

r The mean ofφj
r|{yir′ , i = 1, · · · , nr′ , ∀r′ ∈ TL}

σj
r The variance ofφj

r|{yir′ , i = 1, · · · , nr′ , ∀r′ ∈ TL}

Table 1: A list of the key notations.

assumption is that the hierarchy, determined from domain knowledge, provides a natural clustering
to account for latent processes generating the data which, when incorporated into the model, im-
prove predictions. Although MLH models are intuitive, parameter estimation presents a formidable
challenge, especially for large hierarchies. For Gaussian response, the main computational bottle-
neck is the Cholesky factorization of a dense covariance matrix whose order depends on the number
of nodes, this is expensive for large problems. For non-Gaussian response (e.g binary data), the non-
quadratic nature of the log-likelihood adds on an additional challenge of approximating an integral
whose dimension depends on the number of nodes in the hierarchy. This is an active area of research
in statistics with several solutions being proposed, such as [5] (see references therein as well). For
Cholesky factorization, techniques based on sparse factorization of the covariance matrix have been
recently proposed in [5]. For non-Gaussian models, solutions require marginalization over a high di-
mensional integral and is often accomplished through higher order Taylor series approximations[6].
However, these techniques involve linear algebra that is often non-intuitive and difficult to imple-
ment. A more natural computational scheme that exploits the structure of the model is based on
Gibbs sampling; however, it is not scalable due to slow convergence.

Ourcontributions are as follows: We provide a novel fitting procedure based on multi-scale Kalman
filter algorithm that directly exploits the hierarchical structure of the problem and computes the pos-
terior mode of MLH parameters. The complexity of our method is almost linear in the number of
nodes in the hierarchy. Other than scalability, our fitting procedure is more intuitive and easy to
implement. We note that although multi-scale Kalman filters have been studied in the electrical
engineering literature [2] and spatial statistics, their application to fitting MLH is novel. Moreover,
fitting such models to non-Gaussian data present formidable challenges as we illustrate in the paper.
We provide strategies to overcome those through a bootstrap correction and compare with the com-
monly used cross-validation approach. Our methods are illustrated on simulated data, benchmark
data and data obtained from an internet advertising application.

2 MLH for Gaussian Responses

Assume we have a hierarchyT consisting ofL levels (root is level0), for whichmj , j = 0, · · · , L,
denotes the number of nodes at levelj. Denote the set of nodes at levelj in the hierarchyT asTj.
For noder in T , denote the parent ofr aspa(r), and theith child of noder asci(r). If a noder′ is
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a descendent ofr, we sayr′ ≺ r. Since the hierarchy hasL levels,TL denotes the set of leaf nodes
in the hierarchy. Letyir, i = 1, · · · , nr denote theith observation atleaf noder, andxir denote the
p-dimensional covariate vector associated withyir. For simplicity, we assume all observations are
available at leaf nodes (a more general case where each node in the hierarchy can have observations
is easily obtained from our algorithm). Consider the Gaussian MLH defined by

yir|φL
r ∼ N(x

′

irβ + φL
r , V ), (1)

where β is a fixed effect parameter vector andφj
r is a random effect associated with noder

at level j with joint distribution defined through a set of hierarchical conditional distributions
p(φj

r|φj−1
pa(r)), j = 0, · · · , L, whereφ0

0 = 0. The form ofp(φj
r|φj−1

pa(r)), j = 1, · · · , L is assumed
to be

φj
r|φj−1

pa(r) ∼ N(φj−1
pa(r), γj); j = 1, · · · , L, (2)

whereγ = (γ1, · · · , γL) is a vector of level-specific variance components that control the amount
of smoothing. To complete the model specification in a Bayesian framework, we put a vague prior
onV (π(V ) ∝ 1/V ) and a mild quadratic prior onγi (π(γi|V ) ∝ V/(V + γi)

2). Forβ, we assume
a non-informative prior, i.e.,π(β) ∝ 1.

The specification of MLH given by Equation 2 is referred to as thecentered parametrization and
was shown to provide good performance in a fully Bayesian framework by [9]. An equivalent way
of specifying MLH is obtained by associating independent random variablesbjr ∼ N(0, γj) to the
nodes and replacingφL

r in (1) by the sum of thebjr parameters along the lineage path from root to
leaf node in the hierarchy. We denote this compactly asz′

rb, whereb is a vector ofbjr for all the
nodes in the hierarchy, andzr is a vector of 0/1’s turned on for nodes in the path of noder. More
compactly, lety = {yir, i = 1, · · · , nr, r ∈ T }, andX as well asZ be the corresponding matrix of
vectorsxir andzr for i = 1, · · ·nr andr ∈ T , theny ∼ N(X

′

β+Zb, V I) with b ∼ N(0,Ω(γ)).
The problem is to compute the posterior mode of(βp×1, bq×1,γL×1, V ) whereq =

∑L

j=1mj . The

main computational bottleneck is computing the Cholesky factor of aq×qmatrix(Z
′

Z+Ω
−1), this

is expensive for large values ofq. Existing state-of-the-art methods are based on sparse Cholesky
factorization; we provide a more direct way. In fact, our method provides a MAP estimate of the
parameters for the Gaussian case. For non-Gaussian case, we provide an approximation to the MAP
through the Laplace method coupled with a bootstrap correction. We also note that our method
apply if the random effects are vectors and enter into equation (2) as linear combination with some
covariate vector. In this paper, we illustrate through a scalar.

2.1 Model Fitting

Throughout, we work with the parametrization specified byφ. The main component of our fitting
algorithm is computing the conditional posterior distribution ofφ = {φj

r, r ∈ T, j = 1, · · · , L}
given (β, V,γ). Since the parametersV andγ are unknown, we estimate them through an EM
algorithm. The multi-scale Kalman filter (described next) computes the conditional posterior ofφ
mentioned above and is used in the inner loop of the EM.

As in temporal state space models, the Kalman filter consists of two steps - a)Filtering: where one
propagates information from leaves to the root and b)Smoothing: where information is propagated
from root all the way down to the leaves.

Filtering:

Denote the current estimates ofβ, γ andV asβ̂, γ̂, andV̂ respectively. Then,eir = yir − x
′

irβ̂

are the residuals andV ar(φj
r) = Σj =

∑j

i=1 γ̂i, r ∈ Tj are the marginal variances of the random
effects. If the conditional posterior distributionφL

r |{yir, i = 1, · · · , nr} ∼ N(φL
r|r, σ

L
r|r), the first

step is to updateφL
r|r andσL

r|r for all leaf random effectsφL
r using standard Bayesian update formula

for Gaussian models

φL
r|r =

ΣL

nr∑
i=1

eir

V̂ + nrΣL

, (3)

σL
r|r =

ΣLV̂

V̂ + nrΣL

. (4)
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Next, the posteriorsφj
r|{yir′ , i = 1, · · · , nr′ , ∀r′ ≺ r} ∼ N(φj

r|r, σ
j

r|r), are recursively updated
from j = L − 1 to j = 1, by regressing the parent node effect towards each child and combining
information from all the children.

To provide intuition about regression step, it is useful to invert the state equation (2) and express the
distribution ofφj−1

pa(r) conditional onφj
r. Note that

φj−1
pa(r) = E(φj−1

pa(r)|φ
j
r) + (φj−1

pa(r) − E(φj−1
pa(r)|φ

j
r)) (5)

Simple algebra provides the conditional expectation and variance ofφj−1
pa(r)|φj

r as

φj−1
pa(r) = Bjφ

j
r + ψj

r , (6)

whereBj =
∑j−1

i=1 γ̂i/
∑j

i=1 γ̂i, correlation between any two siblings at levelj and ψj
r ∼

N(0, Bj γ̂j).

First, a new prior is obtained for the parent node based on the current estimate of each child by
plugging-in the current estimates of a child into equation (6). For theith child of noder (here we
assume thatr is at levelj − 1, andci(r) is at levelj),

φj−1
r|ci(r) = Bjφ

j

ci(r)|ci(r), (7)

σj−1
r|ci(r) = B2

jσ
j

ci(r)|ci(r) +Bj γ̂j , (8)

Next, we combine information obtained by the parent from all its children.

φj−1
r|r = σj−1

r|r

kr∑

i=1

(φj−1
r|ci(r)/σ

j−1
r|ci(r)), (9)

1/σj−1
r|r = Σ−1

j−1 +

kr∑

i=1

((1/σj−1
r|ci(r)) − Σ−1

j−1). (10)

wherekr is the number of children of noder at levelj − 1.

Smoothing:
In the smoothing step, parents propagate information recursively from root to the leaves to provide
us with the posterior of eachφj

r based on the entire data. Denoting the posterior mean and variance

of φj
r given all the observations byˆφj

r andσj
r respectively, the update equations are given below.

For level 1 nodes, set̂φ1
r = φ1

r|r, andσ1
r = σ1

r|r.

For noder at other levels,

ˆ
φj

r = φj

r|r + σj

r|rBj(
ˆ

φj−1
pa(r) − φj−1

pa(r)|r)/σ
j

pa(r)|r, (11)

σj
r = σj

r|r + σj2

r|rB
2
j (σj−1

pa(r) − σj−1
pa(r)|r)/σ

j2

pa(r)|r, (12)

and let
σj,j−1

r,pa(r) = σj

r|rBjσ
j−1
pa(r)/σ

j−1
pa(r)|r. (13)

The computational complexity of the algorithm is linear in the number of nodes in the hierarchy and
for each parent node, we perform an operation which is cubic in the number of children. Hence,
for most hierarchies that arise in practical applications, the complexity is “essentially” linear in the
number of nodes.

Expectation Maximization:

To estimate all parameters simultaneously, we use an EM algorithm which assumes theφ parameters
to be the missing latent variables. The expectation step consists of computing the expected value of
complete log-posterior with respect to the conditional distribution of missing dataφ, obtained using
the multi-scale Kalman filter algorithm. The maximization step obtains revised estimates of other
parameters by maximizing the expected complete log-posterior.
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V̂ =
∑

r∈TL

nr∑
i=1

(eir − φ̂L
r )2 + nrσ

L
r

∑
r∈TL

nr

, (14)

For j = 1, · · · , L,

γ̂j =

∑
r∈Tj

(σj
r + σj−1

pa(r) − 2σj,j−1
r,pa(r) + (φ̂r

j − ˆφpa(r)

j−1
)2)

|mj |
. (15)

Updating β̂:

We use the posterior mean ofφ obtained from the Kalman filtering step, to compute the posterior
mean ofβ as given in equation (16).

β̂ = (X ′X)−1X ′(Y − φ̂L), (16)

whereφ̂L is the vector ofφ̂L
r corresponding to each observationyir at different leaf noder.

2.2 Simulation Performance

We first perform a simulation study with a hierarchy described in [7, 8]. The data focus on2449
Guatemalan children who belong to1558 families who in turn live in161 communities. The re-
sponse variable of interest is binary with a positive label assigned to a child if he/she received a
full set of immunizations. The actual data contains15 covariates capturing individual, family and
community level characteristics as shown in Table 2. For our simulation study, we consider only
three covariates, with the coefficient vectorβ set with entries all equal to1. We simulated Gaussian
response as follows:yir|b ∼ N(x

′

irβ + b1r + b2r, 10) whereb1r ∼ N(0, 4), andb2r ∼ N(0, 1). We
simulated100 data sets and compared the estimates from Kalman filter to the one obtained from
standard routinelme4 in the statistical softwareR. Results from our procedure agreed almost ex-
actly with those obtained fromlme4, our computations was many times faster thanlme4. The EM
method converged rapidly and required at most30 iterations.

3 MLH for Non-Gaussian Responses

We discuss model fitting for Bernoulli response but note that other distributions in the general-
ized linear model family can be easily fitted using the procedure. Letyir ∼ Bernoulli(pir), i.e.
P (yir) = pyir

ir (1 − pir)
1−yir . Let θir = log pir

1−pir
be the log-odds. The MLH logistic regression is

defined as:
θir = x

′

irβ + φL
r , (17)

with the same multi-level prior as described in equation (2). The non-conjugacy of the normal
multi-level prior makes the computation more difficult. We take recourse to Taylor series approxi-
mation coupled with the Kalman filter algorithm. The estimates obtained are biased; we recommend
cross-validation and parametric bootstrap (adapted from [4]) to correct for the bias. The bootstrap
procedure though expensive is easily parallelizable and accurate.

3.1 Approximation Methods

Let ηir = xirβ̂ + φ̂L
r , whereβ̂, φ̂L

r are current estimates of the parameters in our algorithm. We do
a quadratic approximation of the log-likelihood through a second order Taylor expansion (Laplace
approximation) aroundηir. This enables us to do the calculations as in the Gaussian case with the
responseyir being replaced byZir where

Zir = ηir +
2yir − 1

g((2yir − 1)ηir)
, (18)
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Algorithm 1 The bootstrap procedure

Let θ = (β,γ).
Obtainθ̃ as an initial estimate ofθ. Biasb(0) = 0.
for i = 1 to N do

θ̂ = θ̃ − b(i).
for j = 1 to M do

Useθ̂ to simulate new dataj, by simulatingφ and the correspondingY .
For dataj, obtain an new estimate ofθ asθ̃(j).

end for

b(i+1) = 1
M

M∑
j=1

θ̃(j) − θ̂.

end for

andg(x) = 1/(1 + exp(−x)). Approximately,

Zir ∼ N(x′
irβ + φL

r ,
1

g(ηir)g(−ηir)
). (19)

Now denoteeir = Zir − x′
irβ̂, and the approximated variance ofZir asVir. Analogous to equa-

tion (3) and (4), the resulting filtering step for the leaf nodes becomes:

φL
r|r = σL

r|r

nr∑

i=1

eir

Vir

, (20)

σL
r|r = (

1

ΣL

+

nr∑

i=1

1

Vir

)−1. (21)

The step for estimatingβ becomes:

β̂ = (X ′WX)−1X ′W (Z − φ̂L), (22)

whereW = diag( 1
Vir

). All the other computational steps remain the same as in the Gaussian case.

3.2 Bias correction

Table 2 shows estimates of parameters obtained from our approximation method in the column titled
KF . Compared to the unbiased estimates obtained from the slow Gibbs sampler, it is clear our
estimates are biased. Our bias correction procedure is described in Algorithm 1. In general, a value
of M = 50 with about100 − 200 iterations worked well for us. The bias corrected estimates are
reported under KF-B in Table 2. The estimates after bootstrap correction are closer to the estimates
obtained from Gibbs sampling. It is also customary to estimate hyper parameters like theγ using
a tuning dataset. To test the performance of such a strategy, we created a two-dimensional grid for
(
√
γ1,

√
γ2) for the epidemiological Guatemalan data set ranging in[.1, 3]× [.1, 3] and computed the

log-likelihood on a10% randomly sampled hold-out data. For each point on the two-dimensional
grid, we estimated the other parametersφ andβ, using our EM algorithm that does not update the
value ofγ. The estimates at the optimal value ofγ are shown in Table 2 under KF-C. The estimates
are better than KF but worse than KF-B.

Based on our findings, we recommend KF-B when computing resources are available (especially
multiple processors) and running time is not a big constraint; if runtime is an issue we recommend
grid search using a small number of points around the initial estimate.

4 Content Match Data Analysis

We analyze data from an internet advertising application where every showing of an ad on a web
page (called animpression) constitutes an event. The goal is to rank ads on a given page based on
click-through rates. Building a predictive model for click-rates via features derived from pages and

6



Effects KF KF-B KF-C Gibbs
Fixed effects
Individual
Child age≥ 2 years 0.99 1.77 1.18 1.84
Mother age≥ 25 years -0.09 -0.16 -0.10 -0.26
Birth order 2-3 -0.10 -0.18 -0.25 -0.29
Birth order 4-6 0.13 0.25 0.10 0.21
Birth order≥ 7 0.20 0.36 0.21 0.50
Family
Indigenous, no Spanish -0.05 -0.11 0.02 -0.22
Indigenous Spanish 0.00 0.01 0.02 -0.11
Mother’s education primary 0.22 0.44 0.32 0.48
Mother’s education secondary 0.23 0.44 0.27 0.46
or better
Husband’s education primary 0.30 0.53 0.39 0.59
Husband’s education secondary 0.27 0.48 0.35 0.55
or better
Husband’s education missing 0.02 0.04 -0.08 0.00
Mother ever worked 0.21 0.35 0.24 0.42
Community
Rural -0.50 -0.91 -0.62 -0.96
Proportion indigenous, 1981 -0.67 -1.23 -0.89 -1.22

Random effects
Standard deviationsγ
Family 0.74 2.40 1.92 2.60
Community 0.56 1.05 0.81 1.13

Table 2: Estimates for the binary MLH model of complete immunization (Kalman Filtering results)

ads is an attractive approach. In our case, semantic features are obtained by classifying pages and
ads into a large seven-level content hierarchy that is manually constructed by humans. We form
a new hierarchy (a pyramid) by taking the cross product of the two hierarchies. This is used to
estimate smooth click-rates of (page,ad) pairs.

4.1 Training and Test Data

Although the page and ad hierarchies consist of7 levels, classification is often done at coarser levels
by the classifier. In fact, the average level at which classification took place is3.8. To train our
model, we only consider the top3 levels of the original hierarchy. Pages and ads that are classified at
coarser levels are randomly assigned to the children nodes. Overall, the pyramid has441, 25751 and
241292 nodes for the top3 levels. The training data were collected by confining to a specific subset
of data which is sufficient to illustrate our methodology but in no way representative of the actual
publisher traffic received by the ad-network under consideration. The training data we collected
spans23 days and consisted of approximately11M binary observations with approximately 1.9M
clicks. The test set consisted of1 day’s worth of data with approximately.5M observations. We
randomly split the test data into20 equal sized partitions to report our results. The covariates include
the position at which an ad is shown; ranking ads on pages after adjusting for positional effects is
important since the positional effects introduce strong bias in the estimates In the training data a large
fraction of leaf nodes in the pyramid (approx95%) have zero clicks, this provides a good motivation
to fit the binary MLH on this data to get smoother estimates at leaf nodes by using information at
coarser resolutions.

4.2 Results

We compare the following models using log-likelihood on the test data: a) The model which predicts
a constant probability for all examples, b) 3 level MLH but without positional effects, c) top 2 level
MLH to illustrate the gains of using information at a finer resolution, and d) 3 level MLH with
positional effects to illustrate the generality of the approach; one can incorporate both additional
features and the hierarchy into a single model. Figure 1 shows the distribution of average test
likelihood on the partitions. As expected, all variations of MLH are better than the constant model.
The MLH model which uses only 2 levels is inferior to the 3 level MLH while the general model
that uses both covariates and hierarchy is the best.
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Figure 1: Distribution of test log-likelihood on20 equal sized splits of test data.

5 Discussion

In applications where data is aggregated at multiple resolutions with sparsity at finer resolutions,
multi-level hierarchical models provide an attractive class to reduce variance by smoothing estimates
at finer resolutions using data at coarser resolutions. However, the smoothing provides a better bias-
variance tradeoff only when the hierarchy provides a natural clustering for the response variable and
captures some latent characteristics of the process; often true in practice. We proposed a fast novel
algorithm to fit these models based on a multi-scale Kalman filter that is both scalable and easy to
implement. For the non-Gaussian case, the estimates are biased but performance can be improved
by using a bootstrap correction or estimation through a tuning set. In future work, we will report on
models that generalize our approach to arbitrary number of hierarchies that may all have different
structure. This is a challenging problem since in general cross-product of trees is not a hierarchy but
a graph.
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