
Linear Programming Analysis of Loopy Belief
Propagation for Weighted Matching

Sujay Sanghavi, Dmitry M. Malioutov and Alan S. Willsky
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA 02139

{sanghavi,dmm,willsky}@mit.edu

Abstract

Loopy belief propagation has been employed in a wide variety of applications with
great empirical success, but it comes with few theoretical guarantees. In this paper
we investigate the use of the max-product form of belief propagation for weighted
matching problems on general graphs. We show that max-product converges to the
correct answer if the linear programming (LP) relaxation of the weighted matching
problem is tight and does not converge if the LP relaxation is loose. This provides
an exact characterization of max-product performance and reveals connections to
the widely used optimization technique of LP relaxation. In addition, we demon-
strate that max-product is effective in solving practical weighted matching prob-
lems in a distributed fashion by applying it to the problem of self-organization in
sensor networks.

1 Introduction

Loopy Belief Propagation (LBP) and its variants [6, 9, 13] have been shown empirically to be effec-
tive in solving many instances of hard problems in a wide range of fields. These algorithms were
originally designed for exact inference (i.e. calculation of marginals/MAP estimates) in probability
distributions whose associated graphical models are tree-structured. While some progress has been
made in understanding their convergence and accuracy on general “loopy” graphs (see [8, 12, 13]
and their references), it still remains an active research area.

In this paper we study the application of the widely used max-product form of LBP (or simply
max-product (MP) algorithm), to the weighted matching problem. Given a graphG = (V,E) with
non-negative weightswe on its edgese ∈ E, theweighted matching problemis to find the heaviest
set of mutually disjoint edges (i.e. a set of edges such that no two edges share a node). Weighted
matching is a classic problem that has played a central role in computer science and combinatorial
optimization, with applications in resource allocation, scheduling in communications networks [10],
and machine learning [5]. It has often been perceived to be the “easiest non-trivial problem”, and
one whose analysis and solution has inspired methods (or provided insights) for a variety of other
problems. Weighted matching thus naturally suggests itself as a good candidate for the study of
convergence and correctness of algorithms like max-product.

Weighted matching can be naturally formulated as an integer program. The technique oflinear
programming (LP) relaxationinvolves replacing the integer constraints with linear inequality con-
straints. This relaxation istight if the resulting linear program has an integral optimum. LP relax-
ation isnotalways tight for the weighted matching problem. The primary contribution of this paper
is an exact characterization of max-product performance for the matching problem, which also es-
tablishes a link to LP relaxation. We show that (i) if the LP relaxation is tight then max-product

1

converges to the correct answer, and (ii) if the LP relaxationis not tight then max-product does not
converge.

Weighted matching is a special case of the weightedb-matching problem, where there can be up to
bi edges touching nodei (setting allbi = 1 reduces to simple matching). All the results of this paper
hold for the general case ofb-matchings on arbitrary graphs. However, in the interests of clarity, we
provide proofs only for the conceptually easier case of simple matchings wherebi = 1. The minor
modifications needed for generalb-matchings will appear in a longer publication. In prior work,
Bayati et. al [2] established that max-product converges for weighted matching inbipartite graphs,
and [5] extended this result tob-matching. These results are implied by our result1, as for bipartite
graphs, the LP relaxation is always tight.

In Section 2 we set up the weighted matching problem and its LP relaxation. We describe the max-
product algorithm for weighted matching in Section 3. The main result of the paper is established in
Section 4. Finally, in Section 5 we applyb-matching to a sensor-network self-organization problem
and show that max-product provides an effective way to solve the problem in a distributed fashion.

2 Weighted Matching and its LP Relaxation

Suppose that we are given a graphG with weightswe, we also positive integersbi for each node
i ∈ V . A b-matchingis any set of edges such that the total number of edges in the set incident
to any nodei is at mostbi. Theweightedb-matching problemis to find theb-matching of largest
weight. Weightedb-matching can be naturally formulated as the following integer program (setting
all bi = 1 gives an integer program for simple matching):

IP : max
∑

e∈E

wexe,

s.t.
∑

e∈Ei

xe ≤ bi for all i ∈ V,

xe ∈ {0, 1} for all e ∈ E

HereEi is the set of edges incident to nodei. Thelinear programming (LP) relaxationof the above
problem is to replace the constraintxe ∈ {0, 1} with the constraintxe ∈ [0, 1], for eache ∈ E. We
denote the corresponding linear program byLP. Throughout this paper, we will assume thatLP has
aunique optimum. The LP relaxation is said to betight if the unique optimum is integral (i.e. one in
which all xe ∈ {0, 1}). Note that the LP relaxation isnot tight in general. Apart from the bipartite
case, the tightness of LP relaxation is a function of both the weights and the graph structure2.

3 Max-Product for Weighted Matching

We now formulate weightedb-matching onG as a MAP estimation problem by constructing a
suitable probability distribution. This construction is naturally suggested by the form of the integer
programIP. Associate a binary variablexe ∈ {0, 1} with each edgee ∈ E, and consider the
following probability distribution:

p(x) ∝
∏

i∈V

ψ(xEi
)

∏

e∈E

exp(wexe), (1)

which contains a factorψ(xEi
) for each nodei ∈ V , the value of which isψ(xEi

) = 1 if
∑

e∈Ei
xe ≤ bi, and 0 otherwise. Note that we usei to referboth to the nodes ofG and factors

of p, ande to refer both to the edges ofG and variables ofp. The factorψ(xEi
) enforces the con-

straint that at most one edge incident to nodei can be assigned the value “1”. It is easy to see that,
for anyx, p(x) = exp(

∑

e wexe) if the set of edges{e|xe = 1} constitute ab-matching inG, and
p(x) = 0 otherwise. Thus the max-weightb-matching ofG corresponds to the MAP estimate ofp.

1However, [2] uses a graphical model which is different from ours to represent weighted matching.
2A simple example:G is a cycle of length 3, all thebi = 1. If all we = 1, LP relaxation is loose: setting

eachxe =
1

2
is the optimum. However, if instead the weights are{1, 1, 3}, then LP relaxation is tight.

2

The factor-graph version of the max-product algorithm [6] passes messages between variables and
the factors that contain them (for the formulation in (1), each variable is a member of exactly two
factors). The output is an estimatex̂ of the MAP of p. We now present the max-product update
equations simplified forp in (1). In the followinge and(i, j) denote the same edge. Also, for two
setsA andB the set difference is denoted by the notationA − B.

Max-Product for Weighted Matching

(INIT) Set t = 0 and initialize each message to be uniform.

(ITER) Iteratively compute new messages until convergence as follows:
Variable to Factor: mt+1

e→i[xe] = exp(xewe) × mt
j→e[xe]

Factor to Variable: mt+1
i→e[xe] = max

xEi−e

{

ψ(xEi
)

∏

e′∈Ei−e

mt
e′→i[xe′]

}

Also, at eacht compute beliefsnt
e[xe] = exp(wexe) × mt

i→e[xe] × mt
j→e[xe]

(ESTIM) Upon convergence, output estimatex̂: for each edge set̂xe = 1 if ne[1] > ne[0], and
x̂e = 0 otherwise.

Remark: If the degree|Ei| of a node is large, the corresponding factorψ(xEi
) will depend on many

variables. In general, for very large factors it is intractable to compute the “factor to variable” update
(and even to store the factors in memory). However, for our problem the special form ofψ makes

this step easy even for large degrees: for each edgee ∈ Ei computeae = max
(

1,
mt

e→i
[1]

mt

e→i
[0]

)

. Then,

if all bi = 1, we have that

mt+1
i→e[1] =

∏

e′∈Ei−e

mt
e′→i[0] , mt+1

i→e[0] = max
e′∈Ei−e

ae′ ×
∏

e′∈Ei−e

mt
e′→i[0]

The simplification for generalb is as follows: letFe ⊂ Ei − e be the set ofbi variables inEi − e
with the largest values ofae, and letGe ⊂ Ei−e be the set ofbi−1 variables with largestae. Then,

mt+1
i→e[1] =

∏

e′∈Ge

ae′

∏

e′∈Ei−e

mt
e′→i[0] , mt+1

i→e[0] =
∏

e′∈Fe

ae′

∏

e′∈Ei−e

mt
e′→i[0]

These updates are linear in the degree|Ei|.

The Computation Tree for Weighted Matching

Our proofs rely on the computation tree interpretation [12, 11] of loopy max-product beliefs, which
we now describe for the special case of simple matching (bi = 1). Recall the variables ofp corre-
spond to edges inG, and nodes inG correspond to factors. For any edgee, the computation tree
Te(1) at time1 is just the edgee, theroot of the tree. Both endpoints of the root are leaves. The tree
Te(t) at timet is generated fromTe(t − 1) by adding to each leaf ofTe(t − 1) a copy of each of
its neighbors inG, except for the neighbor that is already present inTe(t − 1). The weights of the
edges inTe are copied from the corresponding edges inG.

SupposeM is a matching on the original graphG, andTe is a computation tree. Then, theimage
of M in Te is the set of edges inTe whose corresponding copy inG is a member ofM . We now
illustrate the ideas of this section with a simple example.

Example 1: Consider the figure above.G appears on the left, the numbers are the edge weights and
the letters are node labels. The max-weight matchingM∗ = {(a, b), (c, d)} is depicted in bold. In
the center plot we showT(a,b)(4), the computation tree at timet = 4 rooted at edge(a, b). Each
node is labeled in accordance to its copy inG. The bold edges in the middle tree depict the matching
which is the image ofM∗ ontoT(a,b)(4). The weight of this matching is 6.6, and it is easy to see
thatanymatching onT(a,b)(4) that includes the root edge will have weight at most 6.6. On the right
we depictM , the max-weight matching on the treeT(a,b)(4). M has weight 7.3. In this example we
see that even though(a, b) is in the unique optimal matching inG, the beliefs at the root are such
thatn4

(a,b)[0] > n4
(a,b)[1]. Note also that the dotted edges arenot an image of any matching in the

original graphG. This example thus illustrates how “spurious” matchings in the computation tree
can lead to incorrect beliefs, and estimates.

3

a

b

c

d

a b

dc

d b

aa a b

c

a

d a

a b

dc

d b

aa a b

c

d a

1.1

1

1

1.1 1

b b

c d c a d

4 Main Result: Equivalence of LP Relaxation and Loopy Max-product

In this section we formally state the main result of this paper, and give an outline of the proofs.

Theorem 1 Let G = (V,E) be a graph with nonnegative real weightswe on the edgese ∈ E.
Assume the linear programming relaxationLP has a unique optimal solution. Then, the following
holds:

1. If the LP relaxation is tight, i.e. if the unique solution is integral, then the max-product
converges and the resulting estimate is the optimal matching.

2. If the LP relaxation is not tight, i.e. if the unique solution contains fractional values, then
the max-product does not converge.

The above theorem implies that LP relaxation and Max-product will both succeed, or both fail, on
the same problem instances, and thus are equally powerful for the weighted matching problem. We
now prove the two parts of the theorem. In the interest of brevity and clarity, the theorem and the
proofs are presented for the conceptually easier case of simple matchings, in which allbi = 1. Also,
for the purposes of the proofs we will assume that “convergence” means that there exists aτ < ∞
such that the maximizing assignmentarg maxxe

nt
e(xe) remains constant for allt > τ .

Proof of Part 1: Max-Product is as Powerful as LP Relaxation

SupposeLP has an integral optimum. Consider now the linear-programming dual ofLP, denoted
below asDUAL.

DUAL : min
∑

i∈V

zi

s.t. wij ≤ zi + zj for all (i, j) ∈ E,

zi ≥ 0 for all i ∈ V

The following lemma states that the standard linear programming properties of complimentary
slackness hold in the strict sense for the weighted matching problem (this is a special case of [3,
ex. 4.20]).

Lemma 1 (strict complimentary slackness) If the solution toLPis unique and integral, andM∗

is the optimal matching, then there exists an optimal dual solutionz to DUAL such that

1. For all (i, j) ∈ M∗, we havewij = zi + zj

2. There existsε > 0 such that for all(i, j) /∈ M∗ we havewij ≤ zi + zj − ε

3. if no edge inM∗ is incident on nodei, thenzi = 0

4. zi ≤ maxe we for all i

Let t ≥ 2wmax

ε
, wherewmax = maxe we is the weight of the heaviest edge, andε is as in part 2 of

Lemma 1 above. Suppose now that there exists an edgee /∈ M∗ for which the belief at timet is
incorrect, i.ent

e[1] > nt
e[0]. We now show that this leads to a contradiction.

4

Recall thatnt
e[1] > nt

e[0] means that there is a matchingM in Te(t) such that(a) the roote ∈ M , and
(b) M is a max-weight matching onTe(t). Let M∗

T be the image ofM∗ ontoTe(t). By definition,
e /∈ M∗

T . Frome, build analternating pathP by successively adding edges as follows: first adde,
then add all edges adjacent toe that are inM∗

T , then alltheir adjacent edges that are inM , and so
forth until no more edges can be added – this will occur either because no edges are available that
maintain the alternating structure, or a leaf ofTe(t) has been reached. Note that this will be a path,
becauseM andM∗

T are matchings and so any node inTe(t) can have at most one edge adjacent to
it in each of the two matchings.

For illustration, consider Example 1 of section 3.M∗

T is in the center plot andM is on the right.
The above procedure for buildingP would yield the pathadcabcda that goes from the left-most leaf
to the right-most leaf. It is easy to see that this path alternates between edges inM andM∗

T .

We now show thatw(P ∩ M∗

T) > w(P ∩ M). Let z be the dual optimum corresponding to the
ε above. Suppose first that neither endpoint ofP is a leaf ofTe(t). Then, from parts 1 and 3 of
Lemma 1 it follows that

w(P ∩ M∗

T) =
∑

(i,j)∈P∩M∗

T

wij =
∑

(i,j)∈P∩M∗

T

zi + zj =
∑

i∈P

zi.

On the other hand, from part 2 of Lemma 1 it follows that

w(P ∩ M) =
∑

(i,j)∈P∩M

wij ≤
∑

(i,j)∈P∩M

zi + zj − ε =

(

∑

i∈P

zi

)

− ε|P ∩ M |.

Now by construction the roote ∈ P ∩S, and hencew(P ∩M∗

T) > w(P ∩M). A similar argument,
with minor modifications, holds for the case when one or both endpoints ofP are leaves ofTe. For
these cases we would need to make explicit use of the fact thatt ≥ 2wmax

ε
.

We now show thatM cannot be an optimal matching inTe(t). We do so by “flipping” the edges in
P to obtain a matching with higher weight. Specifically, letM ′ = M − (P ∩ M) + (P ∩ M∗

T) be
the matching containing all edges inM except the ones inP , which are replaced by the edges in
P ∩M∗

T . It is easy to see thatM ′ is a matching inTe(t), and thatw(M ′) > w(M). This contradicts
the choice ofM , and shows that fore /∈ M∗ the beliefs satisfynt

e[1] ≤ nt
e[0] for all t large enough.

This means that the estimate has converged and is correct fore. A similar argument can be used
to show that the max-product estimate converges to the correct answer fore ∈ M∗ as well. Hence
max-product converges globally to the correctM∗.

Proof of Part 2: LP Relaxation is as Powerful as Max-Product

Suppose the optimum solution ofLP contains fractional values. We now show that in this case
max-product does not converge. As a first step we have the following lemma.

Lemma 2 If Max-Product converges, the resulting estimate isM∗.

The proof of this lemma uses the result in [12], that states that if max-product converges then the re-
sulting estimates are “locally optimal”: the posterior probability of the max-product assignment can
not be increased by changing values in any induced subgraph in which each connected component
contains at most one loop. For the weighted matching problem this local optimality implies global
optimality, because the symmetric difference of any two matchings is a union of disjoint paths and
cycles. The above lemma implies that, for the proof of part 2 of the theorem, it is sufficient to show
that max-product does not converge to the correct answerM∗. We do this by showing that for any
givenτ , there exists at ≥ τ such that the max-product estimate at timet will not beM∗.

We first provide a combinatorial characterization of when the LP relaxation is loose. LetM∗ be the
max-weight matching onG. An alternating path inG is a path in which every alternate edge is in
M∗, and each node appears at most once. Ablossomis an alternating path that wraps onto itself,
such that the result is a single odd cycleC and a pathR leading out of that cycle3. The importance
of blossoms for matching problems is well-known [4]. Abad blossomis a blossom in which the
edge weights satisfy

w(C ∩ M∗) + 2w(R ∩ M∗) < w(C − M∗) + 2w(R − M∗).

3The path may be of zero length, in which case the blossom is just the odd cycle.

5

Example: On the right is a bad blossom:
bold edges are inM∗, numbers are edge
weights and alphabets are node labels. Cycle
C in this case isabcdu, and pathR is cfghi. 3

3

3

3
3

1 1

1

0.5

b

a

c

d

u

f

g

h

i

A dumbbellis an alternating path that wraps onto itself twice, such that the result is two disjoint odd
cyclesC1 andC2 and an alternating pathR connecting the two cycles. In abad dumbbellthe edge
weights satisfy

w(C1 ∩ M∗) + w(C2 ∩ M∗) + 2w(R ∩ M∗) < w(C1 − M∗) + w(C2 − M∗) + 2w(R − M∗).

Example: On the right is a bad dumbbell.
CyclesC1 andC2 areabcdu andfghij, and
(c, f) is the pathR.

3

3

3

3
3

1

3

3
3

3

3

a

b

c

d

u

f

g

h

i

j

Proposition 1 If LP relaxation is loose, then inG there exists either a bad blossom, or a bad
dumbbell.

Proof. The proof of this proposition will appear in a longer version of this paper. (It is also in the
appendix submitted along with the paper).

Suppose now that max-product converges toM∗ by iterationτ , and suppose also there exists a bad
blossomB1 in G. For an edgee ∈ B1 ∩M∗ consider the computation treeTe(τ + |V |) for e at time
τ + |V |. Let M be the optimal matching on the tree. From the definition of convergence, it follows
that near the roote, M will be the image ofM∗ ontoTe: for any edgee′ in the tree at distance less
than|V | from the root,e′ ∈ M if and only if its copy inG is in M∗.

This means that the copies inTe of the edges inB1 will contain an alternating pathP in Te: every
alternate edge ofP will be in M . For the bad blossom example above, the alternating path is
ihgfcbaudcfghi (it will go once around the cycle and twice around the path of the blossom). Make
a new matchingM ′ onTe(τ + |V |) by “switching” the edges in this path:M ′ = M − (M ∩ P) +
(P − M). Then, it is easy to see that

w(M) − w(M ′) = w(C ∩ M∗) + 2w(R ∩ M∗) − w(C − M∗) − 2w(R − M∗).

By assumptionB1 is a bad blossom, and hence we have thatw(M) < w(M ′), which violates the
optimality of M . Thus, max-product does not converge toM∗ if there exists a bad blossom. A
similar proof precludes convergence toM∗ for the case when there is a bad dumbbell. It follows
from Proposition 1 that if LP relaxation is loose, then max-product cannot converge toM∗.

5 Sensor network self-organization via b-matching

We now consider the problem of sensor network self-organization. Suppose a large number of low-
cost sensors are deployed randomly over an area, and as a first step of any communication or remote
sensing application the sensors have to organize themselves into a network [1]. The network should
be connected, and robust to occasional failing links, but at the same time it should be sparse (i.e.
have nodes with small degrees) due to severe limitations on power available for communication.

Simply connecting every pair of sensors that lie within some distanced of each other (close enough
to communicate reliably) may lead to large clusters of very densely connected components, and
nodes with high degrees. Hence, sparser networks with fewer edges are needed [7]. The throughput
of a link drops fast with distance, so the sparse network should mostly contain short edges. The
sparsest connected network is achieved by a spanning tree solution. However, a spanning tree may
have nodes with large degrees, and a single failed link disconnects it. An interesting set of sparse
subgraph constructions with various tradeoffs addressing power efficiency in wireless networks is
proposed in [7].

6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 1: Network withN = 100 nodes. (a) Nodes withind = 0.5 are connected by an edge. (b)
Sparse network obtained byb-matching withb = 5.

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

N = 50

N = 100

N = 200

40 60 80 100 120 140 160 180 200

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

BP, b=3

BP, b=5

BP, b=10

LP, b=3

LP, b=5

LP, b=10

(a) (b)

Figure 2: (a) Histogram of node degrees versus node density. (b) Average fraction of the LP upper
bound on optimal cost obtained using LP relaxation and max-product.

We consider usingb-matching to find a sparse power-efficient subgraph. We assign edge weights to
be proportional to the throughput of the link. For typical sensor network applications the received
power (which can be used as a measure of throughput) decays asd−p with distance, wherep ∈ [2, 4].
We setp = 3 for concreteness, and let the edge weights bewe = d−p

e . Theb-matching objective
is now to maximize the total throughput (received power) among sparse subgraphs with degree at
mostb. We use the max-product algorithm to solve weightedb-matching in a distributed fashion.

For our experiments we randomly disperseN nodes in a square region[−1, 1] × [−1, 1]. First we
create the adjacency graph for nodes that are close enough to communicate, we set the threshold to
bed = 0.5. In Figure 2(a) we plot the histogram over a 100 trials of resulting node degrees. Clearly,
asN increases, nodes have increasingly higher degrees.

Next we apply max-product (MP) and LP relaxation4 to solve theb-matching objective. As we have
established earlier, the performance of LP relaxation, and hence, of MP for b-matching depends on
the existence of ’bad blossoms’, i.e. odd-cycles where the weights on the edges are quite similar.
We show in simulations that bad blossoms appear rarely for the random graphs and weights in our
construction, and LP-relaxation and MP produce nearly optimalb-matchings. For the cases where
LP relaxation has fractional edges, and MP has oscillating (or non-converged) edges, we erase them
from the final matching and ensure that LP and MP solutions are valid matchings. Also, instead of
comparing LP and MP costs to the optimalb-matching cost, we compare them to the LP upper bound
on the cost (the cost of the fractional LP solution). This avoids the need to find optimalb-matchings.

In figure 1 we plot the dense adjacency graph forN = 100 nodes, and the much sparserb-matching
subgraph withb = 5 obtained by MP. Now, consider figure 2(b). We plot the percentage of the LP

4LP is not practical for sensor networks, as it is not easily distributed.

7

0 5 10 15 20 25 30
0.9

0.95

1

b = 5 b = 7 b = 10
Fraction disconnected 5/100 0/100 0/100
Mean power stretch 3.64 1.45 1.06

(a) (b)

Figure 3: (a) Average fraction of the LP upper bound on optimal cost obtained usingT iterations
of max-product. (b) A table showing probability of disconnect, and the power stretch factor for
N = 100 averaged over 100 trials.

upper bound obtained by MP and by rounded LP relaxation. It can be seen that both LP and MP
produce nearly optimalb-matchings, with more than98 percent of the optimal cost. The percentage
decreases slowly with sensor density (with higherN), but improves for largerb. An important per-
formance metric for sensor network self-organization is the power-stretch factor5, which compares
the weights of shortest paths inG to weights of shortest paths in the sparse subgraph. In figure 3(b)
we display the maximum power stretch factor over all pairs of nodes, averaged over 100 trials. For
b = 10 there is almost no loss in power by using the sparse subgraph. A limitation of theb-matching
solution is that connectedness of the subgraph is not guaranteed. In fact, forb = 1 it is always
disconnected. However, asb increases, the graph gets rarely disconnected. In figure 3(b) we display
probability of disconnect over 100 trials. Forb = 10 andN = 100 in a longer simulation, the sparse
subgraph got disconnected twice over500 trials.

In figure 3(a) we study the performance of MP versus the number of iterations. We run MP for a fixed
number of iterations, remove oscillating edges to get a valid matching, and plot the average fraction
of the LP upper bound that the solution gets. We setb = 5, andN = 100. Quite surprisingly, MP
achieves a large percentage of the optimal cost even with as few as3 iterations. After20 this figure
exceeds99 percent.

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,”IEEE
Communications Magazine, vol. 40, no. 8, pp. 102–114, Aug. 2002.

[2] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching via max-product belief propagation,” in
ISIT, Sept. 2005, pp. 1763 – 1767.

[3] D. Bertsimas and J. Tsitsiklis.Linear Opitimization. Athena Scientific, 1997.

[4] J. Edmonds, “Paths, trees and flowers,”Canadian Journal of Mathematics, vol. 17, pp. 449–467, 1965.

[5] B. Huang and T. Jebara, “Loopy belief propagation for bipartite maximum weight b-matching,” inArtificial
Intelligence and Statistics (AISTATS), March 2007.

[6] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product algorithm,”IEEE Transac-
tions on Information Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[7] X. Y. Li, P. J. Wan, Y. Wang, and O. Frieder, “Sparse power efficient topology for wireless networks,” in
Proc. IEEE Hawaii Int. Conf. on System Sciences, Jan. 2002.

[8] D. Malioutov, J. Johnson, and A. Willsky, “Walk-sums and belief propagation in Gaussian graphical mod-
els,” Journal of Machine Learning Research, vol. 7, pp. 2031–2064, Oct. 2006.

[9] J. Pearl.Probabilistic inference in intelligent systems. Morgan Kaufmann, 1988.

[10] L. Tassiulas and A. Ephremides Stability properties of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio networksIEEE Trans. on Automatic Control, vol. 37,
no. 12, Dec. 1992.

[11] S. Tatikonda and M. Jordan, “Loopy belief propagation and Gibbs measures,” inUncertainty in Artificial
Intelligence, vol. 18, 2002, pp. 493–500.

[12] Y. Weiss and W. Freeman, “On the optimality of solutions of the max-product belief-propagation algo-
rithm in arbitrary graphs,”IEEE Trans. on Information Theory, vol. 47, no. 2, pp. 736–744, Feb. 2001.

[13] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations.Exploring
AI in the new millennium, pages 239–269, 2003.

5To compute the power-stretch the edges are weighted byd3, i.e. the power needed to get a fixed throughput.

8

