Linear Programming Analysis of L oopy Belief
Propagation for Weighted M atching

Sujay Sanghavi, Dmitry M. Malioutov and Alan S. Willsky
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139
{sanghavi , dnm wi | | sky}@ri t . edu

Abstract

Loopy belief propagation has been employed in a wide variety of applications with
great empirical success, but it comes with few theoretical guarantees. In this paper
we investigate the use of the max-product form of belief propagation for weighted
matching problems on general graphs. We show that max-product converges to the
correct answer if the linear programming (LP) relaxation of the weighted matching
problem is tight and does not converge if the LP relaxation is loose. This provides
an exact characterization of max-product performance and reveals connections to
the widely used optimization technique of LP relaxation. In addition, we demon-
strate that max-product is effective in solving practical weighted matching prob-
lems in a distributed fashion by applying it to the problem of self-organization in
sensor networks.

1 Introduction

Loopy Belief Propagation (LBP) and its variants [6, 9, 13] have been shown empirically to be effec-
tive in solving many instances of hard problems in a wide range of fields. These algorithms were
originally designed for exact inference (i.e. calculation of marginals/MAP estimates) in probability
distributions whose associated graphical models are tree-structured. While some progress has been
made in understanding their convergence and accuracy on general “loopy” graphs (see [8, 12, 13]
and their references), it still remains an active research area.

In this paper we study the application of the widely used max-product form of LBP (or simply
max-product (MP) algorithm), to the weighted matching problem. Given a gekaph(V, E') with
non-negative weights. on its edges € E, theweighted matching probleis to find the heaviest

set of mutually disjoint edges (i.e. a set of edges such that no two edges share a node). Weighted
matching is a classic problem that has played a central role in computer science and combinatorial
optimization, with applications in resource allocation, scheduling in communications networks [10],
and machine learning [5]. It has often been perceived to be the “easiest non-trivial problem”, and
one whose analysis and solution has inspired methods (or provided insights) for a variety of other
problems. Weighted matching thus naturally suggests itself as a good candidate for the study of
convergence and correctness of algorithms like max-product.

Weighted matching can be naturally formulated as an integer program. The technijueaof
programming (LP) relaxatioinvolves replacing the integer constraints with linear inequality con-
straints. This relaxation igght if the resulting linear program has an integral optimum. LP relax-
ation isnotalways tight for the weighted matching problem. The primary contribution of this paper
is an exact characterization of max-product performance for the matching problem, which also es-
tablishes a link to LP relaxation. We show that (i) if the LP relaxation is tight then max-product

converges to the correct answer, and (ii) if the LP relaxasarot tight then max-product does not
converge.

Weighted matching is a special case of the weiglhtethtching problem, where there can be up to
b; edges touching nodg(setting allb; = 1 reduces to simple matching). All the results of this paper
hold for the general case 6fmatchings on arbitrary graphs. However, in the interests of clarity, we
provide proofs only for the conceptually easier case of simple matchings Wwherd. The minor
modifications needed for generamatchings will appear in a longer publication. In prior work,
Bayati et. al [2] established that max-product converges for weighted matchirggirtite graphs,
and [5] extended this result tematching. These results are implied by our résus for bipartite
graphs, the LP relaxation is always tight.

In Section 2 we set up the weighted matching problem and its LP relaxation. We describe the max-
product algorithm for weighted matching in Section 3. The main result of the paper is established in
Section 4. Finally, in Section 5 we appiymatching to a sensor-network self-organization problem
and show that max-product provides an effective way to solve the problem in a distributed fashion.

2 Weighted Matching and itsLP Relaxation

Suppose that we are given a gra@hwith weightsw,., we also positive integers for each node

¢ € V. A b-matchingis any set of edges such that the total number of edges in the set incident
to any node is at mostb;. Theweightedb-matching problenis to find theb-matching of largest
weight. Weighted-matching can be naturally formulated as the following integer program (setting
all b, = 1 gives an integer program for simple matching):

IP: max E Wele,

eck

s.t. Z z. <b; forallieV,
eceE;

z. €{0,1} forallee F

Here E; is the set of edges incident to nodeThelinear programming (LP) relaxationf the above
problem is to replace the constraint € {0, 1} with the constraint:. € [0, 1], for eache € E. We
denote the corresponding linear prograniBy Throughout this paper, we will assume th& has
aunique optimum. The LP relaxation is said tatigét if the unique optimum is integral (i.e. one in
which allz. € {0,1}). Note that the LP relaxation ot tightin general. Apart from the bipartite
case, the tightness of LP relaxation is a function of both the weights and the graph structure

3 Max-Product for Weighted M atching

We now formulate weighted-matching onG as a MAP estimation problem by constructing a
suitable probability distribution. This construction is naturally suggested by the form of the integer
programIP. Associate a binary variable. € {0,1} with each edge € E, and consider the
following probability distribution:

p@) o J]¢@e) [] explweze), @)

i€V ecE

which contains a factot)(zg,) for each nodei € V, the value of which is)(zg,) = 1 if
ZeEEi z. < b;, and 0 otherwise. Note that we uséo referbothto the nodes ofy and factors

of p, ande to refer both to the edges ¢f and variables op. The factory(x g,) enforces the con-
straint that at most one edge incident to noedan be assigned the value “1”. It is easy to see that,
foranyz, p(z) = exp(}_, wez.) if the set of edgege|z. = 1} constitute &-matching inG, and
p(z) = 0 otherwise. Thus the max-weigbimatching ofG corresponds to the MAP estimate;of

'However, [2] uses a graphical model which is different from ours to represent weighted matching.
2A simple example(is a cycle of length 3, all thé; = 1. If all w. = 1, LP relaxation is loose: setting
eachz. = % is the optimum. However, if instead the weights gte1, 3}, then LP relaxation is tight.

The factor-graph version of the max-product algorithm [63ges messages between variables and
the factors that contain them (for the formulation in (1), each variable is a member of exactly two
factors). The output is an estimateof the MAP of p. We now present the max-product update
equations simplified fop in (1). In the followinge and(i,) denote the same edge. Also, for two
setsA and B the set difference is denoted by the notatibr B.

M ax-Product for Weighted M atching

(INIT) Sett = 0 and initialize each message to be uniform.
(ITER) lteratively compute new messages until convergence as follows:
Variable to Factor: m!"L[z.] = exp(zow,) x m

e—1 J*)el:xe}

Factor to Variable: ~ m!*![z.] = max {@/}(in) H mi/_,i[xe/]}
e'c€FE;—e
Also, at eacht compute beliefa:l [z.] = exp(weze) x mi_ [x.] x mi_ [z.]

i—e j—e
(ESTIM) Upon convergence, output estimate for each edge set, = 1 if n.[1] > n.[0], and
Z. = 0 otherwise.

Remark: If the degreeF;| of a node is large, the corresponding faator z,) will depend on many
variables. In general, for very large factors it is intractable to compute the “factor to variable” update
(and even to store the factors in memory). However, for our problem the special faprmakes

this step easy even for large degrees: for each edg#; computea, = max (1 :Z H) Then,
if all b; = 1, we have that
t+1 _ t+1 — ,
mi—>e[1} - H m(’ —>z ’ mi—)@[o} - e’IenEai}Ee Qer X H me —>1
e'ceE;—e e'c€E;—e

The simplification for general is as follows: letF, C F; — e be the set ob; variables inE; — ¢
with the largest values af,,, and letG. C FE; — e be the set ob; — 1 variables with largest.. Then,

fi{e H Qer H mz’—»i [0] ’ file H Qe H mé’—n[o]

e'€Ge e'e€E;—e e'cF, e'€E;—e
These updates are linear in the dedigg.

The Computation Tree for Weighted Matching

Our proofs rely on the computation tree interpretation [12, 11] of loopy max-product beliefs, which
we now describe for the special case of simple matchipg=(4). Recall the variables qf corre-
spond to edges if7, and nodes irG correspond to factors. For any edgethe computation tree
T.(1) attimel is just the edge, theroot of the tree. Both endpoints of the root are leaves. The tree
T.(t) at timet is generated from. (¢ — 1) by adding to each leaf df. (¢t — 1) a copy of each of

its neighbors in&, except for the neighbor that is already preserifift — 1). The weights of the
edges inl, are copied from the corresponding edge&in

SupposeV! is a matching on the original grapgh, and7, is a computation tree. Then, timage
of M in T, is the set of edges ifi, whose corresponding copy @ is a member of\/. We now
illustrate the ideas of this section with a simple example.

Example 1: Consider the figure abové: appears on the left, the numbers are the edge weights and
the letters are node labels. The max-weight matchifig= {(a,b), (¢,d)} is depicted in bold. In

the center plot we sho, ;) (4), the computation tree at time= 4 rooted at edgéa, b). Each
node is labeled in accordance to its cop¥inThe bold edges in the middle tree depict the matching
which is the image of\/* onto T(, ;)(4). The weight of this matching is 6.6, and it is easy to see
thatanymatching oril(, ;) (4) that includes the root edge will have weight at most 6.6. On the right
we depict)/, the max-weight matching on the trég, ;) (4). M has weight 7.3. In this example we
see that even thougfa, b) is in the unique optimal matchlng if?, the beliefs at the root are such
thatn(, ,)[0] > n(, ,[1]. Note also that the dotted edges aatan image of any matching in the
original graphGG. This example thus illustrates how “spurious” matchings in the computation tree
can lead to incorrect beliefs, and estimates.

4 Main Result: Equivalence of L P Relaxation and L oopy M ax-product

In this section we formally state the main result of this paper, and give an outline of the proofs.

Theorem 1 Let G = (V, E) be a graph with nonnegative real weights on the edgeg € FE.
Assume the linear programming relaxatibR has a unique optimal solution. Then, the following
holds:

1. If the LP relaxation is tight, i.e. if the unique solution is integral, then the max-product
converges and the resulting estimate is the optimal matching.

2. If the LP relaxation is not tight, i.e. if the unique solution contains fractional values, then
the max-product does not converge.

The above theorem implies that LP relaxation and Max-product will both succeed, or both fail, on
the same problem instances, and thus are equally powerful for the weighted matching problem. We
now prove the two parts of the theorem. In the interest of brevity and clarity, the theorem and the
proofs are presented for the conceptually easier case of simple matchings, in whjch all Also,

for the purposes of the proofs we will assume that “convergence” means that there existsa

such that the maximizing assignmeng max, n’(x.) remains constant for afl> 7.

Proof of Part 1: Max-Product is as Powerful as L P Relaxation

Supposd._P has an integral optimum. Consider now the linear-programming duaP pflenoted
below asDUAL.

DUAL: min Y z
s.t. wi; < 2z + 25 forall (i,j) € E,
z >0 foralli eV

The following lemma states that the standard linear programming properties of complimentary
slackness hold in the strict sense for the weighted matching problem (this is a special case of [3,
ex. 4.20]).

Lemma 1 (strict complimentary slackness) If the solution toLPis unique and integral, and/*
is the optimal matching, then there exists an optimal dual solutitmDUAL such that

1. Forall (i,5) € M*, we havew;; = z; + z;
2. There exists > 0 such that for all(z, j) ¢ M* we havew;; < z; + z; — ¢
3. if no edge inM/* is incident on nodé, thenz; = 0

4. z; < max, w, for all 7

Lett > 2‘”% wherew,,., = max. w, iS the weight of the heaviest edge, ang as in part 2 of
Lemma 1 above. Suppose now that there exists an edgel/* for which the belief at time is
incorrect, i.en’[1] > n![0]. We now show that this leads to a contradiction.

Recall that:! [1] > n![0] means that there is a matchingin 7. (¢) such thata) the roote € M, and

(b) M is a max-weight matching ofi.(¢). Let M3 be the image of\/* ontoT,(t). By definition,

e ¢ MZ. Frome, build analternating pathP by successively adding edges as follows: first add

then add all edges adjacentdaehat are in)/}., then alltheir adjacent edges that are Md, and so

forth until no more edges can be added — this will occur either because no edges are available that
maintain the alternating structure, or a leafloft) has been reached. Note that this will be a path,
becausel/ and M. are matchings and so any nodefif(t) can have at most one edge adjacent to

it in each of the two matchings.

For illustration, consider Example 1 of section BL7. is in the center plot and/ is on the right.
The above procedure for buildifgwould yield the patludcabeda that goes from the left-most leaf
to the right-most leaf. It is easy to see that this path alternates between eddesnid)M ;..

We now show thaiv(P N M}) > w(P N M). Letz be the dual optimum corresponding to the
e above. Suppose first that neither endpointofs a leaf ofT..(¢). Then, from parts 1 and 3 of
Lemma 1 it follows that
w(PﬂM:T«) = Z wi; = Z zZi +zj = Zzl
(i,5)ePNM} (i,5)€PNM i€eP
On the other hand, from part 2 of Lemma 1 it follows that

w(PNM) = Z w; < Z Zzi+zj—€ = (Z’Z‘> —€|P N M]|.

(t,7)ePNM (t,7)ePNM iEP

Now by construction the roetc PN.S, and hencev(P N M}) > w(P N M). A similar argument,
with minor modifications, holds for the case when one or both endpoinsas€ leaves of .. For
these cases we would need to make explicit use of the fact thaﬁwgi

We now show thafi/ cannot be an optimal matching T (¢). We do so by “flipping” the edges in
P to obtain a matching with higher weight. Specifically, t = M — (PN M) + (P N M%) be
the matching containing all edges M except the ones i®, which are replaced by the edges in
PN Mz. ltis easy to see tha/’ is a matching i, (¢), and thatv(M’) > w(M). This contradicts
the choice of\/, and shows that far ¢ M* the beliefs satisfy:’ [1] < n.[0] for all ¢ large enough.
This means that the estimate has converged and is correet #drsimilar argument can be used
to show that the max-product estimate converges to the correct answeefdr* as well. Hence
max-product converges globally to the corra¢t.

Proof of Part 2: LP Relaxation is as Powerful as M ax-Product

Suppose the optimum solution bP contains fractional values. We now show that in this case
max-product does not converge. As a first step we have the following lemma.

Lemma 2 If Max-Product converges, the resulting estimat@4s.

The proof of this lemma uses the result in [12], that states that if max-product converges then the re-
sulting estimates are “locally optimal”: the posterior probability of the max-product assignment can
not be increased by changing values in any induced subgraph in which each connected component
contains at most one loop. For the weighted matching problem this local optimality implies global
optimality, because the symmetric difference of any two matchings is a union of disjoint paths and
cycles. The above lemma implies that, for the proof of part 2 of the theorem, it is sufficient to show
that max-product does not converge to the correct andwerWe do this by showing that for any
givenr, there exists a > 7 such that the max-product estimate at tihwell not be M *.

We first provide a combinatorial characterization of when the LP relaxation is loos&/ L ée the
max-weight matching od/. An alternating path itz is a path in which every alternate edge is in
M*, and each node appears at most oncénlossomis an alternating path that wraps onto itself,
such that the result is a single odd cy€leand a pathR leading out of that cycfe The importance
of blossoms for matching problems is well-known [4]. bad blossoms a blossom in which the
edge weights satisfy

w(C N M*) +2w(RNM*) < w(C — M*) + 2w(R — M*).

3The path may be of zero length, in which case the blossom is just the odd cycle.

Example: On the right is a bad blossom:
bold edges are inV/*, numbers are edge
weights and alphabets are node labels. Cycle
C'in this case isibcdu, and pathR is cf ghi.

A dumbbellis an alternating path that wraps onto itself twice, such that the result is two disjoint odd
cyclesC, andCs and an alternating patR connecting the two cycles. Inmad dumbbelthe edge
weights satisfy

w(Cy N M*) +w(Coy N M)+ 2w(RNM*) < w(Cy — M*) +w(Cy — M*) + 2w(R — M*).

Example: On the right is a bad dumbbell.
CyclesC; andC5 areabedu and fghij, and
(¢, f) is the pathR.

Proposition 1 If LP relaxation is loose, then id7 there exists either a bad blossom, or a bad
dumbbell.

Proof. The proof of this proposition will appear in a longer version of this paper. (It is also in the
appendix submitted along with the paper).

Suppose now that max-product convergedfd by iterationr, and suppose also there exists a bad
blossomB; in G. For an edge € B; N M* consider the computation trég (7 + |V]) for e at time

T+ |V|. Let M be the optimal matching on the tree. From the definition of convergence, it follows
that near the root, M will be the image ofd/* ontoT,: for any edge’ in the tree at distance less
than|V| from the roote’ € M if and only if its copy inG is in M*.

This means that the copiesTi of the edges irB; will contain an alternating patk in T.: every
alternate edge of will be in M. For the bad blossom example above, the alternating path is
thg fcbaudcf ghi (it will go once around the cycle and twice around the path of the blossom). Make
a new matching!’ onT.(7 + |V]) by “switching” the edges in this patld’ = M — (M N P) +

(P — M). Then, itis easy to see that

w(M) — w(M') = w(C N M*) + 2w(RNM*) — w(C — M*) — 2w(R — M*).

By assumptionB; is a bad blossom, and hence we have th@¥/) < w(M’), which violates the
optimality of M. Thus, max-product does not convergeMtx if there exists a bad blossom. A
similar proof precludes convergence X* for the case when there is a bad dumbbell. It follows
from Proposition 1 that if LP relaxation is loose, then max-product cannot convefgé.to

5 Sensor network self-organization via b-matching

We now consider the problem of sensor network self-organization. Suppose a large number of low-
cost sensors are deployed randomly over an area, and as a first step of any communication or remote
sensing application the sensors have to organize themselves into a network [1]. The network should
be connected, and robust to occasional failing links, but at the same time it should be sparse (i.e.
have nodes with small degrees) due to severe limitations on power available for communication.

Simply connecting every pair of sensors that lie within some distdrafeach other (close enough

to communicate reliably) may lead to large clusters of very densely connected components, and
nodes with high degrees. Hence, sparser networks with fewer edges are needed [7]. The throughput
of a link drops fast with distance, so the sparse network should mostly contain short edges. The
sparsest connected network is achieved by a spanning tree solution. However, a spanning tree may
have nodes with large degrees, and a single failed link disconnects it. An interesting set of sparse
subgraph constructions with various tradeoffs addressing power efficiency in wireless networks is
proposed in [7].

-1 -08 -06 -04 -0.2 0 02 04 06 08 1 -1 -08 -06 -04 -0.2 0 02 04 06 08 1

(a) (b)
Figure 1: Network withvV- = 100 nodes. (a) Nodes withid = 0.5 are connected by an edge. (b)
Sparse network obtained bymatching withb = 5.

N =50 1
N=100]. .|
N=200 0.998

0.986 == = LP b=
0.0214 i - = =LP,b=10
\ 0.984
0 10 20 30 40 50 60 40 60 80 100 120 140 160 180 200

Figure 2: (a) Histogram of node degrees versus node density. (b) Average fraction of the LP upper
bound on optimal cost obtained using LP relaxation and max-product.

We consider using-matching to find a sparse power-efficient subgraph. We assign edge weights to
be proportional to the throughput of the link. For typical sensor network applications the received
power (which can be used as a measure of throughput) decdy$ asth distance, wherg € [2,4].

We setp = 3 for concreteness, and let the edge weightsupe= d_P. Theb-matching objective

is now to maximize the total throughput (received power) among sparse subgraphs with degree at
mostb. We use the max-product algorithm to solve weighitedatching in a distributed fashion.

For our experiments we randomly disper§enodes in a square regidn-1, 1] x [—1, 1]. First we

create the adjacency graph for nodes that are close enough to communicate, we set the threshold to
bed = 0.5. In Figure 2(a) we plot the histogram over a 100 trials of resulting node degrees. Clearly,
asN increases, nodes have increasingly higher degrees.

Next we apply max-product (MP) and LP relaxatida solve theh-matching objective. As we have
established earlier, the performance of LP relaxation, and hence, of MP for b-matching depends on
the existence of ’bad blossoms’, i.e. odd-cycles where the weights on the edges are quite similar.
We show in simulations that bad blossoms appear rarely for the random graphs and weights in our
construction, and LP-relaxation and MP produce nearly optinmhtchings. For the cases where

LP relaxation has fractional edges, and MP has oscillating (or non-converged) edges, we erase them
from the final matching and ensure that LP and MP solutions are valid matchings. Also, instead of
comparing LP and MP costs to the optimahatching cost, we compare them to the LP upper bound

on the cost (the cost of the fractional LP solution). This avoids the need to find optimeichings.

In figure 1 we plot the dense adjacency graphfo= 100 nodes, and the much sparsamatching
subgraph withh = 5 obtained by MP. Now, consider figure 2(b). We plot the percentage of the LP

LP is not practical for sensor networks, as it is not easily distributed.

b=5 b=7 b=10
0.95 1 Fraction disconnected 5/100 0/100 0/100
Mean power stretch| 3.64 1.45 1.06

0.9
0 5 10 15 20 25 30

(a) (b)
Figure 3: (a) Average fraction of the LP upper bound on optimal cost obtained #sitegations
of max-product. (b) A table showing probability of disconnect, and the power stretch factor for
N =100 averaged over 100 trials.

upper bound obtained by MP and by rounded LP relaxation. It can be seen that both LP and MP
produce nearly optimatmatchings, with more tha$8 percent of the optimal cost. The percentage
decreases slowly with sensor density (with high®r but improves for largeb. An important per-
formance metric for sensor network self-organization is the power-stretchYaatoich compares

the weights of shortest pathsd@hto weights of shortest paths in the sparse subgraph. In figure 3(b)
we display the maximum power stretch factor over all pairs of nodes, averaged over 100 trials. For
b = 10 there is almost no loss in power by using the sparse subgraph. A limitation@htlaéching
solution is that connectedness of the subgraph is not guaranteed. In fagt=fdr it is always
disconnected. However, asncreases, the graph gets rarely disconnected. In figure 3(b) we display
probability of disconnect over 100 trials. Fpe= 10 andN = 100 in a longer simulation, the sparse
subgraph got disconnected twice 0%@0 trials.

In figure 3(a) we study the performance of MP versus the number of iterations. We run MP for a fixed
number of iterations, remove oscillating edges to get a valid matching, and plot the average fraction
of the LP upper bound that the solution gets. Webset5, andN = 100. Quite surprisingly, MP
achieves a large percentage of the optimal cost even with as faweations. After20 this figure
exceed99 percent.

References
[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor netwolEEE
Communications Magazine, vol. 40, no. 8, pp. 102-114, Aug. 2002.

[2] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching via max-product belief propagation,” in
ISIT, Sept. 2005, pp. 1763 — 1767.

[3] D. Bertsimas and J. Tsitsiklid.inear Opitimization. Athena Scientific, 1997.
[4] J. Edmonds, “Paths, trees and flowefSdnadian Journal of Mathematicgol. 17, pp. 449—467, 1965.

[5] B.Huang and T. Jebara, “Loopy belief propagation for bipartite maximum weight b-matchirgtificial
Intelligence and Statistics (AISTAT®)arch 2007.

[6] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product algofit Transac-
tions on Information Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.

[7] X.Y.Li, P.J. Wan, Y. Wang, and O. Frieder, “Sparse power efficient topology for wireless networks,” in
Proc. IEEE Hawaii Int. Conf. on System Scienclzs. 2002.

[8] D. Malioutov, J. Johnson, and A. Willsky, “Walk-sums and belief propagation in Gaussian graphical mod-
els,” Journal of Machine Learning Research, vol. 7, pp. 2031-2064, Oct. 2006.

[9] J. Pearl.Probabilistic inference in intelligent systemglorgan Kaufmann, 1988.

[10] L. Tassiulas and A. Ephremides Stability properties of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio networllEEE Trans. on Automatic Control, vol. 37,
no. 12, Dec. 1992.

[11] S. Tatikonda and M. Jordan, “Loopy belief propagation and Gibbs measurésjtiertainty in Artificial
Intelligence, vol. 18, 2002, pp. 493-500.

[12] Y. Weiss and W. Freeman, “On the optimality of solutions of the max-product belief-propagation algo-
rithm in arbitrary graphs JEEE Trans. on Information Theory, vol. 47, no. 2, pp. 736—744, Feb. 2001.

[13] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its generaliEagpbosng
Al in the new millennium, pages 239-269, 2003.

To compute the power-stretch the edges are weighteld hiye. the power needed to get a fixed throughput.

