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Abstract

In recent years, the language model Latent Dirichlet Allocation (LDA), which
clusters co-occurring words into topics, has been widely applied in the computer
vision field. However, many of these applications have difficulty with modeling
the spatial and temporal structure among visual words, since LDA assumes that a
document is a “bag-of-words”. It is also critical to properly design “words” and
“documents” when using a language model to solve vision problems. In this pa-
per, we propose a topic model Spatial Latent Dirichlet Allocation (SLDA), which
better encodes spatial structures among visual words that are essential for solving
many vision problems. The spatial information is not encoded in the values of
visual words but in the design of documents. Instead of knowing the partition of
words into documents a priori, the word-document assignment becomes a random
hidden variable in SLDA. There is a generative procedure, where knowledge of
spatial structure can be flexibly added as a prior, grouping visual words which are
close in space into the same document. We use SLDA to discover objects from a
collection of images, and show it achieves better performance than LDA.

1 Introduction

Latent Dirichlet Allocation (LDA) [1] is a language model which clusters co-occurring words into
topics. In recent years, LDA has been widely used to solve computer vision problems. For example,
LDA was used to discover objects from a collection of images [2, 3, 4] and to classify images into
different scene categories [5]. [6] employed LDA to classify human actions. In visual surveillance,
LDA was used to model atomic activities and interactions in a crowded scene [7]. In these ap-
plications, LDA clustered low-level visual words (which were image patches, spatial and temporal
interest points or moving pixels) into topics with semantic meanings (which corresponded to objects,
parts of objects, human actions or atomic activities) utilizing their co-occurrence information.

Even with these promising achievements, however, directly borrowing a language model to solve
vision problems has some difficulties. First, LDA assumes that a document is a bag of words,
such that spatial and temporal structures among visual words, which are meaningless in a language
model but important in many computer vision problems, are ignored. Second, users need to define
the meaning of “documents” in vision problems. The design of documents often implies some
assumptions on vision problems. For example, in order to cluster image patches, which are treated
as words, into classes of objects, researchers treated images as documents [2]. This assumes that
if two types of patches are from the same object class, they often appear in the same images. This
assumption is reasonable, but not strong enough. As an example shown in Figure 1, even though
sky is far from vehicles, if they often exist in the same images in some data set, they would be
clustered into the same topic by LDA. Furthermore, since in this image most of the patches are sky
and building, a patch on a vehicle is likely to be labeled as building or sky as well. These problems
could be solved if the document of a patch, such as the yellow patch in Figure 1, only includes other
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Figure 1: There will be some problems (see text) if the whole image is treated as one document
when using LDA to discover classes of objects.

patches falling within its neighborhood, marked by the red dashed window in Figure 1, instead of
the whole image. So a better assumption is that if two types of image patches are from the same
object class, they are not only often in the same images but also close in space. We expect to utilize
spatial information in a flexible way when designing documents for solving vision problems.

In this paper, we propose a Spatial Latent Dirichlet Allocation (SLDA) model which encodes the
spatial structure among visual words. It clusters visual words (e.g. an eye patch and a nose patch),
which often occur in the same images and are close in space, into one topic (e.g. face). This is
a more proper assumption for solving many vision problems when images often contain several
objects. It is also easy for SLDA to model activities and human actions by encoding temporal
information. However the spatial or temporal information is not encoded in the values of visual
words, but in the design of documents. LDA and its extensions, such as the author-topic model [8],
the dynamic topic model [9], and the correlated topic model [10], all assume that the partition
of words into documents is known a priori. A key difference of SLDA is that the word-document
assignment becomes a hidden random variable. There is a generative procedure to assign words to
documents. When visual words are close in space or time, they have a high probability to be grouped
into the same document. Some approaches such as [11, 3, 12, 4] could also capture some spatial
structures among visual words. [11] assumed that the spatial distribution of an object class could
be modeled as Gaussian and the number of objects in the image was known. Both [3] and [4] first
roughly segmented images using graph cuts and added spatial constraint using these segments. [12]
modeled the spatial dependency among image patches as Markov random fields.

As an example application, we use the SLDA model to discover objects from a collection of images.
As shown in Figure 2, there are different classes of objects, such as cows, cars, faces, grasses,
sky, bicycles, etc., in the image set. And an image usually contains several objects of different
classes. The goal is to segment objects from images, and at the same time, to label these segments
as different object classes in an unsupervised way. It integrates object segmentation and recognition.
In our approach images are divided into local patches. A local descriptor is computed for each
image patch and quantized into a visual word. Using topic models, the visual words are clustered
into topics which correspond to object classes. Thus an image patch can be labeled as one of the
object classes. Our work is related to [2] which used LDA to cluster image patches. As shown in
Figure 2, SLDA achieves much better performance than LDA. We will compare more results of
LDA and SLDA in the experimental section.

2 Computation of Visual Words

To obtain the local descriptors, images are convolved with the filter bank proposed in [13], which is
a combination of 3 Gaussians, 4 Laplacian of Gaussians, and 4 first order derivatives of Gaussians,
and was shown to have good performance for object categorization. Instead of only computing
visual words at interest points as in [2], we divide an image into local patches on a grid and densely
sample a local descriptor for each patch. A codebook of size W is created by clustering all the
local descriptors in the image set using K-means. Each local patch is quantized into a visual word
according to the codebook. In the next step, these visual words (image patches) will be further
clustered into classes of objects. We will compare two clustering methods, LDA and SLDA.
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Figure 2: Given a collection of images as shown in the first row (which are selected from the MSRC
image dataset [13]), the goal is to segment images into objects and cluster these objects into different
classes. The second row uses manual segmentation and labeling as ground truth. The third row is
the LDA result and the fourth row is the SLDA result. Under the same labeling approach, image
patches marked in the same color are in one object cluster, but the meaning of colors changes across
different labeling methods.

3 LDA

When LDA is used to solve our problem, we treat local patches of images as words and the whole
image as a document. The graphical model of LDA is shown in Figure 3 (a). There are M docu-
ments (images) in the corpus. Each document j has Nj words (image patches). wji is the observed
value of word i in document j. All the words in the corpus will be clustered into K topics (classes
of objects). Each topic k is modeled as a multinomial distribution over the codebook. α and β are
Dirichlet prior hyperparameters. φk, πj , and zji are hidden variables to be inferred. The generative
process of LDA is:

1. For a topic k, a multinomial parameter φk is sampled from Dirichlet prior φk ∼ Dir(β).
2. For a document j, a multinomial parameter πj over the K topics is sampled from Dirichlet

prior πj ∼ Dir(α).
3. For a word i in document j, a topic label zji is sampled from discrete distribution zji ∼
Discrete(πj).

4. The value wji of word i in document j is sampled from the discrete distribution of topic
zji, wji ∼ Discrete(φzji).

zji can be sampled through a Gibbs sampling procedure which integrates out πj and φk [14].

p(zji = k|z−ji,w, α, β) ∝
n

(k)
−ji,wji

+ βwji∑W
w=1

(
n

(k)
−ji,w + βw

) · n
(j)
−ji,k + αk∑K

k′=1

(
n

(j)
−ji,k′ + αk′

) (1)

where n(k)
−ji,w is the number of words in the corpus with value w assigned to topic k excluding word

i in document j, and n(j)
−ji,k is the number of words in document j assigned to topic k excluding

word i in document j. Eq 1 is the product of two ratios: the probability of word wji under topic k
and the probability of topic k in document j. So LDA clusters the visual words often co-occurring
in the same images into one object class.

As shown by some examples in Figure 2 (see more results in the experimental section), there are
two problems in using LDA for object segmentation and recognition. The segmentation result is
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Figure 3: Graphical model of LDA (a) and SLDA (b). See text for details.

noisy since spatial information is not considered. Although LDA assumes that one image contains
multiple topics, from experimental results we observe that the patches in the same image are likely
to have the same labels. Since the whole image is treated as one document, if one object class, e.g.
car in Figure 2, is dominant in the image, the second ratio in Eq 1 will lead to a large bias towards
the car class, and thus the patches of street are also likely to be labeled as car. This problem could
be solved if a local patch only considers its neighboring patches as being in the same document.

4 SLDA

We assume that if visual words are from the same class of objects, they not only often co-occur in the
same images but also are close in space. So we try to group image patches which are close in space
into the same documents. One straightforward way is to divide the image into regions as shown in
Figure 4 (a). Each region is treated as a document instead of the whole image. However, since these
regions are not overlapped, some patches, such as A (red patch) and B (cyan patch) in Figure 4 (a),
even though very close in space, are assigned to different documents. In Figure 4 (a), patch A on
the cow is likely to be labeled as grass, since most other patches in its document are grass. To solve
this problem, we may put many overlapped regions, each of which is a document, on the images as
shown in Figure 4 (b). If a patch is inside a region, it “could” belong to that document. Any two
patches whose distance is smaller than the region size “could” belong to the same document if the
regions are placed densely enough. We use the word “could” because each local patch is covered
by several regions, so we have to decide to which document it belongs. Different from the LDA
model, in which the word-document relationship is known a priori, we need a generative procedure
assigning words to documents. If two patches are closer in space, they have a higher probability
to be assigned to the same document since there are more regions covering both of them. Actually
we can go even further. As shown in Figure 4 (c), each document can be represented by a point
(marked by magenta circle) in the image, assuming its region covers the whole image. If an image
patch is close to a document, it has a high probability to be assigned to that document.

The graphical model is shown in Figure 3 (b). In SLDA, there areM documents andN words in the
corpus. A hidden variable di indicates which document word i is assigned to. For each document
j there is a hyperparameter cdj =

(
gd

j , x
d
j , y

d
j

)
known a priori. gd

j is the index of the image where
document j is placed and

(
xd

j , y
d
j

)
is the location of the document. For a word i, in addition to the

observed word value wi, its location (xi, yi) and image index gi are also observed and stored in
variable ci = (gi, xi, yi). The generative procedure of SLDA is:

1. For a topic k, a multinomial parameter φk is sampled from Dirichlet prior φk ∼ Dir(β).
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Figure 4: There are several ways to add spatial information among image patches when designing
documents. (a): Divide the image into regions without overlapping. Each region, marked by a
dashed window, corresponds to a document. Image patches inside the region are assigned to the
corresponding document. (b): densely put overlapped regions over images. One image patch is
covered by multiple regions. (c): Each document is associated with a point (marked in magenta
color). These points are densely placed over the image. If a image patch is close to a document, it
has a high probability to be assigned to that document.

2. For a document j, a multinomial parameter πj over the K topics is sampled from Dirichlet
prior πj ∼ Dir(α).

3. For a word (image patch) i, a random variable di is sampled from prior p(di|η) indicating
to which document word i is assigned. We choose p(di|η) as a uniform prior.

4. The image index and location of word i is sampled from distribution p(ci|cddi , σ). We may
choose this as a Gaussian kernel.

p((gi, xi, yi) |
(
gd

di , x
d
di , y

d
di

)
, σ) ∝ δgddi (gi) exp

{
−
(
xd

di
− xi

)2 +
(
yd

di
− yi

)2
σ2

}
p(ci|cddi , σ) = 0 if the word and the document are not in the same image.

5. The topic label zi of word i is sampled from the discrete distribution of document di,
zi ∼ Discrete(πdi).

6. The value wi of word i is sampled from the discrete distribution of topic zi, wi ∼
Discrete(φzi).

4.1 Gibbs Sampling

zi and di can be sampled through a Gibbs sampling procedure integrating out φk and πj . In SLDA
the conditional distribution of zi given di is the same as in LDA.

p(zi = k|di = j,d−i, z−i,w, α, β) ∝
n

(k)
−i,wi

+ βwi∑W
w=1

(
n

(k)
−i,w + βw

) · n
(j)
−i,k + αk∑K

k′=1

(
n

(j)
−i,k′ + αk′

) (2)

where n(k)
−i,w is the number of words in the corpus with value w assigned to topic k excluding word

i, and n(j)
−i,k is the number of words in document j assigned to topic k excluding word i. This is

easy to understand since if the word-document assignment is fixed, SLDA is the same as LDA.

In addition, we also need to sample di from the conditional distribution given zi.
p
(
di = j|zi = k, z−i,d−i, ci, {cdj′}, α, β, η, σ

)
∝ p (di = j|η) p

(
ci|cdj , σ

)
p (zi = k, z−i|di = j,d−i, α)

p (zi = k, z−i|di = j,d−i, α) is obtained by integrating out πj′ .

p (zi = k, z−i|di = j,d−i, α) =
M∏

j′=1

∫
p(πj′ |α)p(zj′ |πji)dπj′

=
M∏

j′=1

Γ
(∑K

k′=1 αk′

)
∏K

k′=1 Γ (αk′)
·

∏K
k′=1 Γ

(
n

(j′)
k′ + αk′

)
Γ
(∑K

k′=1 n
(j′)
k′ +

∑K
k′=1 αk′

) .
5



We choose p (di = j|η) as a uniform prior and p
(
ci|cdj , σ

)
as a Gaussian kernel. Thus the condi-

tional distribution of di is

p
(
di = j|zi = k, z−i,d−i, ci, {cdj′}, α, β, η, σ

)
∝ δgdj (gi) · e−

(xdj−xi)2
+(ydj−yi)2

σ2 ·
n

(j)
−i,k + αk∑K

k′=1

(
n

(j)
−i,k′ + αk′

) (3)

Word i is likely to be assigned to document j if they are in the same image, close in space and word
i has the same topic label as other words in document j. In real applications, we only care about the
distribution of zi while dj can be marginalized by simply ignoring its samples. From Eq 2 and 3,
we observed that a word tends to have the same topic label as other words in its document and words
closer in space are more likely to be assigned to the same documents. So essentially under SLDA a
word tends to be labeled as the same topic as other words close to it. This satisfies our assumption
that visual words from the same object class are closer in space.

Since we densely place many documents over one image, during Gibbs sampling some documents
are only assigned a few words and the distributions cannot be well estimated. To solve this problem
we replicate each image patch to get many particles. These particles have the same word value and
location but can be assigned to different documents and have different labels. Thus each document
will have enough samples of words to estimate the distributions.

4.2 Discussion

SLDA is a flexible model intended to encode spatial structure among image patches and design
documents. If there is only one document placed over one image, SLDA simply reduces to LDA.
If p(ci|cdj ) is an uniform distribution inside a local region, SLDA implements the scheme described
in Figure 4 (b). If these local regions are not overlapped, it is the case of Figure 4 (a). There are
also other possible ways to add spatial information by choosing different spatial priors p(ci|cdj ). In
SLDA, the spatial information is used when designing documents. However the object class model
φk, simply a multinomial distribution over the codebook, has no spatial structure. So the objects of
a class could be in any shape and anywhere in the images, as long as they smoothly distribute in
space. By simply adding a time stamp to ci and cdj , it is easy for SLDA to encode temporal structure
among visual words. So SLDA also can be applied to human action and activity analysis.

5 Experiments

We test LDA and SLDA on the MSRC image dataset [13] with 240 images. Our codebook size is
200 and the topic number is 15. In Figure 2, we show some examples of results using LDA and
SLDA. Colors are used indicate different topics. The results of LDA are noisy and within one image
most of the patches are labeled as one topic. SLDA achieves much better results than LDA. The
results are smoother and objects are well segmented. The detection rate and false alarm rate of four
classes, cows, cars, faces, and bicycles are shown in Table 1. They are counted in pixels. We use the
manual segmentation and labeling in [13] as ground truth.

The two models are also tested on a tiger video sequence with 252 frames. We treat all the frames
in the sequence as an image collection and ignore their temporal order. Figure 5 shows their results
on two sampled frames. Please see the result of the whole video sequence from our website [15].
Using LDA, usually there are one or two dominant topics distributed like noise in a frame. Topics
change as the video background changes. LDA cannot segment out any objects. SLDA clusters
image patches into tigers, rock, water, and grass. If we choose the topic of tiger, as shown in the last
row of Figure 5, all the tigers in the video can be segmented out.

6 Conclusion

We propose a novel Spatial Latent Dirichlet Allocation model which clusters co-occurring and spa-
tially neighboring visual words into the same topic. Instead of knowing word-document assignment
a priori, SLDA has a generative procedure partitioning visual words which are close in space into
the same documents. It is also easy to extend SLDA to including temporal information.
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Figure 5: Discovering objects from a video sequence. The first column shows two frames in the
video sequence. In the second column, we label the patches in the two frames as different topics
using LDA. The thrid column plots the topic labels using SLDA. The red color indicates the topic
of tigers. In the fourth column, we segment tigers out by choosing the topic marked in red.

Table 1: Detection(D) rate and False Alarm (FA) rate of LDA and SLDA on the MSRC data set

cows cars faces bicycles
LDA(D) 0.3755 0.5552 0.7172 0.5563
SLDA(D) 0.5662 0.6838 0.6973 0.5661
LDA(FA) 0.5576 0.3963 0.5862 0.5285
SLDA(FA) 0.0334 0.2437 0.3714 0.4217
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