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1 The MWAL Algorithm

For reference, the MWAL algorithm from the main paper is atpd below.

Algorithm 1 The MWAL algorithm
1: Given: An MDP\R M and an estimate of the expert’s feature expectations

-1
: Let = <1+\/21TM> :

2

3: DefineG(i, p) 2 (1 — v)((i) — fupp(i)) + 2)/4, wherep € RE.

4: Initialize W™ (i) = 1fori =1,..., k.

5:fort=1,...,7Tdo

6: Setw® (i) = % fori=1,..., k.

7:  Compute ar p-optimal policy#(*) for M with respect to reward functioR(s) = w(®)-¢(s).
8: Compute an z-good estimatgi'!) of p®) = p(7®).

9 WO (G) = WO(i) - exp(In(B) - G(i, pM)) fori = 1,... k.

10: end for

11: Post-processing: Return the mixed poligythat assigns probabilit)l; to 7, for all ¢t €

a,... T}

1.1 Differences betweerG and G

In the main paper, Algorithm 1 was motivated by appealindiedogame matrix

wherey’ are the feature expectations of tjta deterministic policy. However, the algorithm actu-
ally uses

G(i,p) = (1 =) (1(i) — (i) +2)/4
The rationale behind each of the differences betw@eandG follows.

e G depends oniy instead ofu becauseuy is unknown and must be estimated. We
account for the error of this estimate in the proof of TheoBm

e G is defined in terms of arbitrary feature expectatipriastead of’ because lines 7 and 8

of Algorithm 1 produce approximations, and heméé) may not be the feature expectations
of any deterministic policy. The results of Freund and Saieg2] that we rely on are not
affected by this change.



e G is shifted and scaled so thét(z’, w) € [0,1]. This is necessary in order to directly apply
the main result of Freund and Schapire [2].

The last point relies on a simplifying assumption. Recalt ihy is a vector of feature expectations
for some policy, theru € [0, ﬁ]’“, becausep(s) € [0,1]* for all s. For simplicity, we will

assume that this holds evenyifis anestimateof a vector of feature expectations. (This is without
loss of generality: if it does not hold, we can trimso that it falls within the desired range without

increasing the error in the estimate.) Therefgre i) € [{=%, 125 ]*, and henc& (i, u) € [0, 1].
2 Proof of Theorem 2

In this section we prove Theorem 2 from the main paper.

Theorem 2. Given an MDRR M, andm independent trajectories from an expert's policy.
Suppose we execute the MWAL algorithm Foiterations. Letiyy be the mixed policy returned
by the algorithm. Letr and ep be the approximation errors from lines 7 and 8 of the al-
gorithm. LetH > (1/(1 — v))In(1/(ex(1 — ))) be the length of each sample trajectory.
Let e = mingegr max, [R*(s) — w - ¢(s)| be the representation error of the features. Let
v* = maxyew Miny gt [W - w(Y) — w - pg] be the game value. Then in order for

V(@) 2 V(rg) +v" —¢ 1)
to hold with probability at least — ¢, it suffices that
9lnk
> B
T2 -y @
2 2k
> = —
"E -t ©
4)
where
6/ < 6_(2€F+6P+2§H+2€R/(1_7)) (5)

To prove Theorem 2, we will first need to prove several auxili@sults. Define

G(w, 1) £ w(i) - Gli, )

i=1

Now we can directly apply the main result from Freund and Birkd2], which we will call the
MW Theorem.

MW Theorem. At the end of the MWAL algorithm

T T
1 ~ 1 ~
il (t) (0 = mi i)
T ;ZlG(W ) < 7 min ;:1 G(w, ") + Ar
where
2Ink  Ink
Sr=yrrotr
Proof. Freund and Schapire [2]. O

The following corollary follows straightforwardly from éaMW Theorem.
Corollary 1. At the end of the MWAL algorithm
1

T T
N N 1 . N N
T E [W(t)-u(t)—w(t)~uE} < T min [W~u(t)—w-uE + Ar
t=1 t=1



The next lemma bounds the number of samples needed to fraktose top .

Lemma 1. Suppose the trajectory length > (1/(1—~)) In(1/(ex(1—7))). For ||t — plleo <
€ + ey to hold with probability at least — ¢, it suffices that

"= Mln(zf)

Proof. This is a standard proof using Hoeffding’s inequality, $anto that found in Abbeel and Ng
[1]. However, care must be taken in one respggi:is notan unbiased estimate pf;, because the
trajectories are truncated At. So define

H

> A'e(sh)

t=0

pp £ E

7TE79,D‘| .

Then we have,

Vie[l,....k] Pr(lpg() - pg (i) e < 2eXp( m(e(1 = 7))*/2)
= Pr(3i € [1,... . k] s.t.|fap (i) — ppH ()] > €) < 2kexp(—m(e(1 - 7))*/2)
= Pr(vie[L,.... Kkl [pp(i) - E( )l <€) 21— 2kexp(-m(e(1 - 7))*/2)
= Pr(lpp — pE Hoo <€) =1 2kexp(—m(e(1 - 7))%/2)

We used in order: Hoeffding’s inequality apd! < [0, ﬁ]k; the union bound; the probability of
disjoint events; the definition df ., norm.

It is not hard to show thatul — pplle < e (See Kearns and Singh [4], Lemma 2). Hence if
m > ﬁ In(2E k), then with probabilty at leagt— 6 we have

lig — bplleo < lig — p5llo + 185 — ppllee < €+ €.
0

The next lemma bounds the impact of “representation eribsays that ifR*(s) andw™ - ¢(s) are
not very different, then neither afé(v>) andw™ - p(1p).

Lemma 2. If max, [R*(s) — W™ - ¢(s)| < ep, then|V () — w™ - u(ep)| < ;£ for every MDP/R
M and mixed policyp.

Proof.

V(h) —w" - p(h)]

= |[E|D_A'R*(s)| - E thW*-fﬁ(St)H
t=0 . t=0 u
= |lm B ;VtR*(St) = Jim E ;vtw*-fﬁ(%)H
H
= | Jim E ;)Vt(R*(St)—W*"P(St))}

< Ilim F
H—oo

H
S AR (1) — W -¢<st>|]
t=0

€R

1—7
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We are now ready to prove Theorem 2. The proof closely foll§esstion 2.5 of Freund and Schapire

2.



Proof of Theorem 2Letw = 4 >°/_ w(®). Then we have

vio= max min (W p(h) —w-pgl

— ; . Jp— 6
min max[w - p(9h) — W - pug] (6)

< i . — W [ ! 7

< ﬁl&ggg[w p(p) —w- gl +€ +en (7

< W - W - [ !

< gg&f[w r(Y) =W gl +€ +en

1 T

_ - (t) _w® . h /

= gea;sz::[ p(h) — w NE}‘FG ten (8)
1 T

< T2 ) ]
1 T

< f; {Wu),u(ﬁ(t))_w(t),ﬂE] Fepte e )
1 T

< thzl{w(t)oﬂ(t)w(t)-/lE}+eF+6p+e'+eH (10)
1 T

< Tffélé}e;{w ,u,(t)7W'[A1,E:|+AT+€F+€P+EI+EH (11)
1 T
= mi (A . /

< T‘ff%lé}”;{w pu(m@Y) —w ;LE]—FAT—l—QeF—l—eP—&—e +eqg (12)

= Héié}c[W-“(E)—W-ﬂE]+AT+26F+EP+6/+6H (13)

< miSn [W p,('(b)—w-p,E]—|—AT—|—26F—|—ep+26’+26H (14)
wEe

< wrep(h) —wpp + Ar + 2ep +ep + 26 + 2ey (15)

< V() —V(rg) + Ar +2ep +ep + 26 + 2 + (2er) /(1 — ) (16)

In (6), we used von Neumann’s minmax theorem. In (7), Lemnia (8), the definition of~. In (9),
the fact thati’ is e p-optimal w.r.t. R(s) = w'-¢(s). In (10), the fact thaf*) is ane z-good estimate
of u(#®"). In (11), Corollary 1. In (12), again the fact that" is anez-good estimate ofs(#(®)).
In (13), the definition okp. In (14), Lemma 1. In (15), we le¥* = arg miny,cgr max, |R*(s) —
(w-@(s))|. In (16), Lemma 2.

Plugging in the choice fdf" into A1 and rearranging implies the theorem. O

3  When transition function is unknown

We will employ several technical lemmas developed in Keamd Singh [4] and Abbeel and Ng
[5]. This is not a complete proof, but just a sketch of the nt@imponents of one.

Foran MDP/RM = (S, A,~, 0, ¢), suppose that we knot(s, a, -) exactly on a subsef C S x A.
Then we can construct a estimatg, of M according to the following definition, which is similar
to Definition 9 in Kearns and Singh [4].

Definition 1. LetM = (S, A,~,0,¢) be a MDP/R, and leZ C S x .A. Then thenduced MDP/R
Mz = (SU{so}, A,7,0z,¢z) is defined as follows, whe®; = {s : (s,a) € Z for somea €

e 07(s0,a,s0) = 1forall a € A, i.e.sqis an absorbing state.

o If (s,a) € Zands' € Sz, thend(s,a,s’) =0(s,a,s’).



o If (s,a) € Z, thenfz(s,a,s0) =1 -3 s, 0(s,a,5).
o If (s,a) ¢ Z,thenf;(s,a,so) = 1.

e ¢z(s) = ¢(s) forall s € S, andg;(sp) = —1, where—1 is thek-length vector of all
—1’s.

The following lemma, due to Kearns and Singh [4] (Lemma 7pvehthat); is essentially a
pessimistic estimate faV/.

Lemma 3. Let M = (S, A, ~,0,¢) be a MDP/R where(s) € [-1,1]*, and letZ C S x A. Then
forall w € S* andy € ¥, we havew - pu(v, M) > w - u(, Mz).

Proof. As above, letS; = {s : (s,a) € Zforsomea € A}. Alsolet Az = {a : (s,a) €
Z for somes € S}. All transitions inM, between states iz using an action ind are the same
as inM, while all other transitions are routed to the absorbintesi@ Observing tha$(sg) = —1
andg(s) = —1 for all s proves the lemma. O

Definition 2. LetM = (S, A,~,0,¢) be an MDP/R. Lef be the length of each sample trajectory
from the expert’s policy. Then we say a subget S x A is (n, H)-visitedby g in M if

Z = {(s,a) \ Pr(3t € [1,..., H] such that(s;, a;) = (s, a) | 7z, M) > #} 17)

The following lemma, due to Abbeel and Ng [5], says th&f i S x A is (n, H)-visited byrg in
M, thenmg has a similar value id/; as it does inV/.

Lemma 4. LetM = (S, A,v,6,¢) be aMDP/R, letH > (1/(1 —v))In(1/(ex (1 —7))), and let
7Z C 8 x Abe(n, H)-visited byr in M. Then for allw € S¥

‘W-IJ,(TFE,M)—W-N(TFE,Mzﬂg%—FGH. (18)

Proof. By the definition of)/; and the union bound, we ha¥e ({(s;,a:)}L, C Z | g, Mz) =
Pr({(st,ar)}{Ly € Z | mp, M) > 1 — 1. Now supposew - p(mp, M) > w - p(mg, Mz). Then

|w-p(rp, M) —w - p(rg, Mz)| (19)
H o
= B3 twg(s) ’ e M|+ B S Atweg(s) ‘ WE,M] (20)
t=0 t=H+1
H o)
—E | 'w-d(s1) ‘ e, Mz| —E| > y'w-g(s) ‘ WE»MZ‘| (21)
t=0 t=H+1
. H H+1
< g 42 (22)
1—7 1—7
< N ey (23)
1—y
A parallel argument can be made in case yu(rg, M) < w - u(ng, Mz). O

Since we will not knowM ; exactly, we will need to estimate it. The following lemma,edio
Abbeel and Ng [5] (Lemma 14), says that if two MDP/R'$ and M do not differ much, then the
value of the same policy i and M is not very different.

Lemmab. Let M = (S, A,~,60,¢) and M = (S,A,fy,@,(ﬁ) be two MDP/R’s that differ only in
their transition functions. Suppogeandé satisfy

Vs € Sva €A ”0(870'7 ')7 (870,, )”1 <e (24)
Then for allyp € ¥ andw € S*, we have

W (), M) — w - p(3p, M)| <

A= )



The following lemma, due to Abbeel and Ng [5] (Lemma 17), kaisithe number of trajectories
needed fromrg to maked andé similar on a subset C S x A thatis(n, H)-visited byng.

Lemma 6. Let M = (S, A,~,0,¢). LetZ C S x A be (e, H)-visited byrg in M. Letd be the
MLE for 6 formed by observingn independent trajectories fromg. Also, letK (s, a) denote the
actual number of timeés, a) is visited in then trajectories. Then for

2 3
V(s,a) € Z, K(s,a) > T—LIHM (26)
€
V(s,a) € Z, ||0(s,a,-),0(s,a, )1 < ¢ (27)
to hold with probabilityl — ¢, it suffices that

ISP ISPIA 2|S|| Al

> -
m2 e In 5e + S| Al In 5 (28)

3.1 Putting it all together

Here is the algorithm:

1. Collectm > ‘85% In ‘SE% +|S||A| In % sample trajectories from the expert.
2. Define the following:

(a) LetZ be the set of all state-action pairs a) such thatk (s, a) > % In %.

(b) Letd be the MLE foré.
(©) LetM = (S, A,~,0,¢) andM = (S, A,v,0,¢).
3. Submit]/\iz andfi; to the MWAL algorithm, which returng.

Lemma 3 shows thalt (v, M) is more thanV (i, Mz). Lemma 5 says that' (i, M) is close
V(, Mz). SinceM is the MDP\R that we gave to the MWAL algorithm, Theorem 2 says that

V (b, Mz) is more thanV (7z, Mz). Lemma 5 says thal/(wE,J\?Z) is close toV (rg, Mz).
Lemma 4 says that (7, Mz) is close toV (g, M).
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