
A Game-Theoretic Approach to Apprenticeship
Learning

Umar Syed
Computer Science Department

Princeton University
35 Olden St

Princeton, NJ 08540-5233
usyed@cs.princeton.edu

Robert E. Schapire
Computer Science Department

Princeton University
35 Olden St

Princeton, NJ 08540-5233
schapire@cs.princeton.edu

Abstract

We study the problem of an apprentice learning to behave in anenvironment with
an unknown reward function by observing the behavior of an expert. We follow
on the work of Abbeel and Ng [1] who considered a framework in which the true
reward function is assumed to be a linear combination of a setof known and ob-
servable features. We give a new algorithm that, like theirs, is guaranteed to learn
a policy that is nearly as good as the expert’s, given enough examples. However,
unlike their algorithm, we show that ours may produce a policy that is substantially
better than the expert’s. Moreover, our algorithm is computationally faster, is eas-
ier to implement, and can be applied even in the absence of an expert. The method
is based on a game-theoretic view of the problem, which leadsnaturally to a direct
application of the multiplicative-weights algorithm of Freund and Schapire [2] for
playing repeated matrix games. In addition to our formal presentation and analysis
of the new algorithm, we sketch how the method can be applied when the transi-
tion function itself is unknown, and we provide an experimental demonstration of
the algorithm on a toy video-game environment.

1 Introduction

When an agent is faced with the task of learning how to behave ina stochastic environment, a com-
mon approach is to model the situation using a Markov Decision Process. An MDP consists of
states, actions, rewards and a transition function. Once anMDP has been provided, the usual objec-
tive is to find a policy (i.e. a mapping from states to actions)that maximizes expected cumulative
reward collected by the agent.

Building the MDP model is usually the most difficult part of this process. One reason is that it is
often hard to correctly describe the environment’s true reward function, and yet the behavior of the
agent is quite sensitive to this description. In practice, reward functions are frequently tweaked and
tuned to elicit what is thought to be the desired behavior. Instead of maximizing reward, another
approach often taken is to observe and follow the behavior ofan expert in the same environment.
Learning how to behave by observing an expert has been calledapprenticeship learning, with the
agent in the role of the apprentice.

Abbeel and Ng [1] proposed a novel and appealing framework for apprenticeship learning. In this
framework, the reward function, while unknown to the apprentice, is assumed to be equal to a linear
combination of a set of known features. They argued that while it may be difficult to correctly
describe the reward function, it is usually much easier to specify the features on which the reward
function depends.

1

With this setting in mind, Abbeel and Ng [1] described an efficient algorithm that, given enough
examples of the expert’s behavior, produces a policy that does at least as well as the expert with
respect to the unknown reward function. The number of examples their algorithm requires from the
expert depends only moderately on the number of features.

While impressive, a drawback of their results is that the performance of the apprentice is both upper-
and lower-bounded by the performance of the expert. Essentially, their algorithm is an efficient
method for mimicking the expert’s behavior. If the behaviorof the expert is far from optimal, the
same will hold for the apprentice.

In this paper, we take a somewhat different approach to apprenticeship learning that addresses this
issue, while also significantly improving on other aspects of Abbeel and Ng’s [1] results. We pose
the problem as learning to play a two-player zero-sum game inwhich the apprentice chooses a
policy, and the environment chooses a reward function. The goal of the apprentice is to maximize
performance relative to the expert, even though the reward function may be adversarially selected by
the environment with respect to this goal. A key property of our algorithm is that it is able to leverage
prior beliefs about the relationship between the features and the reward function. Specifically, if it is
known whether a feature is “good” (related to reward) or “bad” (inversely related to reward), then the
apprentice can use that knowledge to improve its performance. As a result, our algorithm produces
policies that can be significantly better than the expert’s policy with respect to the unknown reward
function, while at the same time are guaranteed to be no worse.

Our approach is based on a multiplicative weights algorithmfor solving two-player zero-sum games
due to Freund and Schapire [2]. Their algorithm is especially well-suited to solving zero-sum games
in which the “game matrix” is extremely large. It turns out that our apprenticeship learning setting
can be viewed as a game with this property.

Our results represent a strict improvement over those of Abbeel and Ng [1] in that our algorithm
is considerably simpler, provides the same lower bound on the apprentice’s performance relative to
the expert, and removes the upper bound on the apprentice’s performance. Moreover, our algorithm
requires less computational expense – specifically, we are able to achieve their performance guar-
antee after onlyO(ln k) iterations, instead of theO(k ln k), wherek is the number of features on
which the reward function depends. Additionally, our algorithm can be applied to a setting in which
no examples are available from the expert. In that case, our algorithm produces a policy that is op-
timal in a certain conservative sense. We are also able to extend our algorithm to a situation where
the MDP’s transition functionθ is unknown. We conducted experiments from a small car driving
simulation that illustrate some of our theoretical findings.

Ratliff et al [3] formulated a related problem to apprenticeship learning, in which the goal is to find
a reward function whose optimal policy is similar to the expert’s policy. Quite different from our
work, mimicking the expert was an explicit goal of their approach.

2 Preliminaries

Our problem setup largely parallels that outlined in Abbeeland Ng [1]. We are given an infinite-
horizon Markov Decision Process in which the reward function has been replaced by a set of
features. Specifically, we are given an MDP\R M = (S,A, γ,D, θ,φφφ), consisting of finite
state and action setsS and A, discount factorγ, initial state distributionD, transition function
θ(s, a, s′) , Pr(st+1 = s′ | st = s, at = a), and a set ofk features defined by the function
φφφ : S → R

k.

The true reward functionR∗ is unknown. For ease of exposition, we assume thatR∗(s) = w
∗ ·φφφ(s),

for somew∗ ∈ R
k, although we also show how our analysis extends to the case when this does not

hold.

For any policyπ in M , the value ofπ (with respect to the initial state distribution) is defined by

V (π) , E

[
∞∑

t=0

γtR∗(st)
∣∣∣ π, θ,D

]
.

2

where the initial states0 is chosen according toD, and the remaining states are chosen according to
π andθ. We also define ak-lengthfeature expectationsvector,

µ(π) , E

[
∞∑

t=0

γtφφφ(st)
∣∣∣ π, θ,D

]
.

From its definition, it should be clear that “feature expectations” is a (somewhat misleading) abbre-
viation for “expected, cumulative, discounted feature values.” Importantly, sinceR∗(s) = w

∗ ·φφφ(s),
we haveV (π) = w

∗ · µ(π), by linearity of expectation.

We say that a feature expectations vectorµ̂ is anε-goodestimate ofµ(π) if ‖µ̂ − µ(π)‖∞ ≤ ε.
Likewise, we say that a policŷπ is ε-optimal for M if |V (π̂) − V (π∗)| ≤ ε, whereπ∗ is an optimal
policy for M , i.e. π∗ = arg maxπ V (π).1

We also assume that there is a policyπE , called theexpert’s policy, which we are able to observe
executing inM . Following Abbeel and Ng [1], our goal is to find a policyπ such thatV (π) ≥
V (πE) − ε, even though the true reward functionR∗ is unknown. We also have the additional goal
of finding a policy whennoobservations from the expert’s policy are available. In that case, we find
a policy that is optimal in a certain conservative sense.

Like Abbeel and Ng [1], the policy we find will not necessarilybe stationary, but will instead be
a mixed policy. A mixed policyψ is a distribution overΠ, the set of alldeterministicstationary
policies inM . BecauseΠ is finite (though extremely large), we can fix a numbering of the policies
in Π, which we denoteπ1, . . . , π|Π|. This allows us to treatψ as a vector, whereψ(i) is the
probability assigned toπi. A mixed policyψ is executed by randomly selecting the policyπi ∈ Π
at time 0 with probabilityψ(i), and exclusively followingπi thereafter. It should be noted that the
definitions of value and feature expectations apply to mixedpolicies as well:V (ψ) = Ei∼ψ[V (πi)]
andµ(ψ) = Ei∼ψ[µ(πi)]. Also note that mixed policies do not have any advantage overstationary
policies in terms of value: ifπ∗ is an optimal stationary policy forM , andψ∗ is an optimal mixed
policy, thenV (ψ∗) = V (π∗).

The observations from the expert’s policyπE are in the form ofm independent trajectories inM ,
each for simplicity of the same lengthH. A trajectory is just the sequence of states visited by the
expert:

(
si
0, s

i
1, . . . , s

i
H

)
for theith trajectory. LetµE = µ(πE) be the expert’s feature expectations.

We compute an estimatêµE of µE by averaging the observed feature values from the trajectories:

µ̂E =
1

m

m∑

i=0

H∑

t=0

γtφφφ(si
t).

3 Review of the Projection Algorithm

We compare our approach to the “projection algorithm” of Abbeel and Ng [1], which finds a policy
that is at least as good as the expert’s policy with respect tothe unknown reward function.2

Abbeel and Ng [1] assume thatφφφ(s) ∈ [0, 1]k, and thatR∗(s) = w
∗ ·φφφ(s) for somew∗ ∈ B

k, where
B

k = {w : ‖w‖1 ≤ 1}. Givenm independent trajectories from the expert’s policy, the projection
algorithm runs forT iterations. It returns a mixed policyψ such that‖µ(ψ) −µE‖2 ≤ ε as long as
T andm are sufficiently large. In other words, their algorithm seeks to “match” the expert’s feature
expectations. The value ofψ will necessarily be close to that of the expert’s policy, since

|V (ψ) − V (πE)| = |w∗ · µ(ψ) − w
∗ · µE |

≤ ‖w∗‖2‖µ(ψ) − µE‖2 (1)

≤ ε

where in Eq. (1) we used the Cauchy-Schwartz inequality and‖w∗‖2 ≤ ‖w∗‖1 ≤ 1.

1Note that this is weaker than the standard definition of optimality, as the policy only needs to be optimal
with respect to the initial state distribution, and not necessarily at every statesimultaneously.

2Abbeel and Ng [1] actually presented two algorithms for this task. Both hadthe same theoretical guaran-
tees, but the projection algorithm is simpler and was empirically shown to be slightly faster.

3

The following theorem is the main result in Abbeel and Ng [1].However, some aspects of their
analysis are not covered by this theorem, such as the complexity of each iteration of the projec-
tion algorithm, and the sensitivity of the algorithm to various approximations. These are discussed
immediately below.

Theorem 1 (Abbeel and Ng [1]). Given an MDP\R, andm independent trajectories from an ex-
pert’s policyπE . Suppose we execute the projection algorithm forT iterations. Letψ be the mixed
policy returned by the algorithm. Then in order for

|V (ψ) − V (πE)| ≤ ε (2)

to hold with probability at least1 − δ, it suffices that

T ≥ O

(
k

(ε(1 − γ))2
ln

k

ε(1 − γ)

)

and

m ≥
2k

(ε(1 − γ))2
ln

2k

δ
.

We omit the details of the algorithm due to space constraints, but note that each iteration involves
only two steps that are computationally expensive:

1. Find an optimal policy with respect to a given reward function.
2. Compute the feature expectations of a given policy.

The algorithm we present in Section 5 performs these same expensive tasks in each iteration, but
requires far fewer iterations — justO(ln k) rather thanO(k ln k), a tremendous savings when the
number of featuresk is large. Also, the projection algorithm has a post-processing step that requires
invoking a quadratic program (QP) solver. Comparatively, the post-processing step for our algorithm
is trivial.

Abbeel and Ng [1] provide several refinements of the analysisin Theorem 1. In particular, suppose
that each sample trajectory has lengthH ≥ (1/(1 − γ)) ln(1/(εH(1 − γ))), and that anεP -optimal
policy is found in each iteration of the projection algorithm (see Step 1 above). Also letεR =
minw∈Bk maxs |R∗(s) − w · φφφ(s)| be the “representation error” of the features. Abbeel and Ng
[1] comment at various points in their paper thatεH , εP , andO(εR) should be added to the error
bound of Theorem 1. In Section 5 we provide a unified analysis of these error terms in the context
of our algorithm, and also incorporate anεF term that accounts for computing anεF -good feature
expectations estimate in Step 2 above. We prove that our algorithm is sensitive to these error terms
in a similar way as the projection algorithm.

4 Apprenticeship Learning via Game Playing

Notice the two-sided bound in Theorem 1: the theorem guarantees that the apprentice will do almost
as well as the expert, butalso almost as badly. This is because the value of a policy is a linear
combination of its feature expectations, and the goal of theprojection algorithm is to match the
expert’s feature expectations.

We will take a different approach. We assume thatφφφ(s) ∈ [−1, 1]k, and thatR∗(s) = w
∗ · φφφ(s) for

somew∗ ∈ S
k, whereS

k = {w ∈ R
k : ‖w‖1 = 1 andw � 0}.3 The impact of this minor change

in the domains ofw andφφφ is discussed further in Section 5.2. LetΨ be the set of all mixed policies
in M . Now consider the optimization

v∗ = max
ψ∈Ψ

min
w∈Sk

[w · µ(ψ) − w · µE] . (3)

Our goal will be to find (actually, to approximate) the mixed policy ψ∗ that achievesv∗. Since
V (ψ) = w

∗ · µ(ψ) for all ψ, we have thatψ∗ is the policy inΨ that maximizesV (ψ) − V (πE)
with respect to the worst-case possibility forw

∗. Sincew∗ is unknown, maximizing for the worst-
case is appropriate.

3We use� to denote componentwise inequality. Likewise, we use� to denote strict inequality inevery
component.

4

We begin by noting that, becausew andψ are both distributions, Eq. (3) is in the form of a two-
person zero-sumgame. Indeed, this is the motivation for redefining the domain ofw as we did.
The quantityv∗ is typically called thegame value. In this game, the “min player” specifies a reward
function by choosingw, and the “max player” chooses a mixed policyψ. The goal of the min player
is to cause the max player’s policy to perform as poorly as possible relative to the expert, and the
max player’s goal is just the opposite. A game is defined by itsassociatedgame matrix. In our case,
the game matrix is thek × |Π| matrix

G(i, j) = µj(i) − µE(i) (4)

whereµ(i) is theith component ofµ and we have letµj = µ(πj) be the vector of feature expecta-
tions for thejth deterministic policyπj . Now Eq. (3) can be rewritten in the form

v∗ = max
ψ∈Ψ

min
w∈Sk

w
T
Gψ. (5)

In Eq. (3) and (5), the max player plays first, suggesting thatthe min player has an advantage.
However, the well-knownminmax theoremof von Neumann says that we can swap the min and max
operators in Eq. (5) without affecting the game value. In other words,

v∗ = max
ψ∈Ψ

min
w∈Sk

w
T
Gψ = min

w∈Sk

max
ψ∈Ψ

w
T
Gψ. (6)

Findingψ∗ will not be useful unless we can establish thatv∗ ≥ 0, i.e. thatψ∗ will do at least as well
as the expert’s policy with respect to the worst-case possibility for w

∗. This fact is not immediately
clear, since we are restricting ourselves to mixtures of deterministic policies, while we do not assume
that the expert’s policy is deterministic. However, note that in the rightmost expression in Eq. (6),
the maximization overΨ is done afterw — and hence the reward function — has been fixed. So
the maximum is achieved by the best policy inΨ with respect to this fixed reward function. Note
that if this is also an optimal policy, thenv∗ will be nonnegative. It is well-known that in any MDP
there always exists a deterministic optimal policy. Hencev∗ ≥ 0.

In fact, we may havev∗ > 0. Suppose it happens thatµ(ψ∗) � µ(πE). Thenψ∗ will dominateπE ,
i.e. ψ∗ will have higher value thanπE regardless of the actual value ofw

∗, because we assumed
thatw∗ � 0. Essentially, by assuming that each component of the true weight vector is nonnegative,
we are assuming that we have correctly specified the “sign” ofeach feature. This means that, other
things being equal, a larger value for each feature implies alarger reward.

So whenv∗ > 0, the mixed policyψ∗ to some extent ignores the expert, and instead exploits prior
knowledge about the true reward function encoded by the features. We present experimental results
that explore this aspect of our approach in Section 7.

5 The Multiplicative Weights for Apprenticeship Learning (MWAL)
Algorithm

In the previous section, we motivated the goal of finding the mixed policyψ∗ that achieves the
maximum in Eq. (3) (or equivalently, in Eq. (5)). In this section we present an efficient algorithm
for solving this optimization problem.

Recall the game formulated in the previous section. In the terminology of game theory,w andψ are
calledstrategiesfor the min and max player respectively , andψ∗ is called an optimal strategy for
the max player. Also, a strategẏw is calledpure if ẇ(i) = 1 for somei.

Typically, one finds an optimal strategy for a two-player zero-sum game by solving a linear program.
However, the complexity of that approach scales with the size of the game matrix. In our case, the
game matrixG is huge, since it has as many columns as the number of deterministic policies in the
MDP\R.

Freund and Schapire [2] described a multiplicative weightsalgorithm for finding approximately
optimal strategies in games with large or even unknown game matrices. To apply their algorithm to
a game matrixG, it suffices to be able to efficiently perform the following two steps:

1. Given a min player strategyw, find arg maxψ∈Ψ w
T
Gψ.

5

2. Given a max player strategyψ, computeẇT
Gψ for each pure strategẏw.

Observe that these two steps are equivalent to the two steps of the projection algorithm from Section
3. Step 1 amounts to finding the optimal policy in a standard MDP with a known reward function.
There are a huge array of techniques available for this, suchas value iteration and policy iteration.
Step 2 is the same as computing the feature expectations of a given policy. These can be computed
exactly by solvingk systems of linear equations, or they can be approximated using iterative tech-
niques. Importantly, the complexity of both steps scales with the size of the MDP\R, and not with
the size of the game matrixG.

Our Multiplicative Weights for Apprenticeship Learning (MWAL) algorithm is described below.
Lines 7 and 8 of the algorithm correspond to Steps 1 and 2 directly above. The algorithm is es-
sentially the MW algorithm of Freund and Schapire [2], applied to a game matrix very similar to
G.4 We have also slightly extended their results to allow the MWAL algorithm, in lines 7 and 8, to
estimate the optimal policy and its feature expectations, rather than requiring that they be computed
exactly.

Algorithm 1 The MWAL algorithm

1: Given: An MDP\R M and an estimate of the expert’s feature expectationsµ̂E .

2: Let β =

(
1 +

√
2 ln k

T

)−1

.

3: DefineG̃(i,µ) , ((1 − γ)(µ(i) − µ̂E(i)) + 2)/4, whereµ ∈ R
k.

4: Initialize W
(1)(i) = 1 for i = 1, . . . , k.

5: for t = 1, . . . , T do

6: Setw(t)(i) = W
(t)(i)

P

i
W(t)(i)

for i = 1, . . . , k.

7: Compute anεP -optimal policyπ̂(t) for M with respect to reward functionR(s) = w
(t) ·φφφ(s).

8: Compute anεF -good estimatêµ(t) of µ(t) = µ(π̂(t)).
9: W

(t+1)(i) = W
(t)(i) · exp(ln(β) · G̃(i, µ̂(t))) for i = 1, . . . , k.

10: end for
11: Post-processing: Return the mixed policyψ that assigns probability1

T
to π̂(t), for all t ∈

{1, . . . , T}.

Theorem 2 below provides a performance guarantee for the mixed policyψ returned by the MWAL
algorithm, relative to the performance of the expert and thegame valuev∗. Its correctness is largely
based on the main result in Freund and Schapire [2]. A proof isavailable in the supplement [4].
Theorem 2. Given an MDP\R M , and m independent trajectories from an expert’s policyπE .
Suppose we execute the MWAL algorithm forT iterations. Letψ be the mixed policy returned
by the algorithm. LetεF and εP be the approximation errors from lines 7 and 8 of the al-
gorithm. LetH ≥ (1/(1 − γ)) ln(1/(εH(1 − γ))) be the length of each sample trajectory.
Let εR = minw∈Sk maxs |R∗(s) − w · φφφ(s)| be the representation error of the features. Let
v∗ = maxψ∈Ψ minw∈Sk [w · µ(ψ) − w · µE] be the game value. Then in order for

V (ψ) ≥ V (πE) + v∗ − ε (7)

to hold with probability at least1 − δ, it suffices that

T ≥
9 ln k

2(ε′(1 − γ))2
(8)

m ≥
2

(ε′(1 − γ))2
ln

2k

δ
(9)

(10)

where

ε′ ≤
ε − (2εF + εP + 2εH + 2εR/(1 − γ))

3
. (11)

4Note that eG in Algorithm 1, in contrast toG in Eq. (4), depends on̂µ
E

instead ofµ
E

. This is because
µ

E
is unknown, and must be estimated. The other differences betweeneG andG are of no real consequence,

and are further explained in the supplement [4].

6

Note the differences between Theorem 1 and Theorem 2. Because v∗ ≥ 0, the guarantee of the
MWAL algorithm in (7) is at least as strong as the guarantee ofthe projection algorithm in (2), and
has the further benefit of being one-sided. Additionally, the iteration complexity of the MWAL algo-
rithm is much lower. This not only implies a faster run time, but also implies that the mixed policy
output by the MWAL algorithm consists of fewer stationary policies. And if a purely stationary
policy is desired, it is not hard to show that the guarantee in(7) must hold for at least one of the
stationary polices in the mixed policy (this is also true of the projection algorithm [1]).

The sample complexity in the Theorem 2 is also lower, but we believe that this portion of our anal-
ysis applies to the projection algorithm as well [Abbeel, personal communication], so the MWAL
algorithm does not represent an improvement in this respect.

5.1 When no expert is available

Our game-playing approach can be very naturally and easily extended to the case where we do not
have data from an expert. Instead of finding a policy that maximizes Eq. (3), we find a policyψ∗

that maximizes
max
ψ∈Ψ

min
w∈Sk

[w · µ(ψ)] . (12)

Hereψ∗ is the best policy for the worst-case possibility forw
∗. The MWAL algorithm can be

trivially adapted to find this policy just by settingµE = 0 (compare (12) to (3)).

The following corollary follows straightforwardly from the proof of Theorem 2.

Corollary 1. Given an MDP\R M . Suppose we execute the ‘no expert’ version of the MWAL
algorithm forT iterations. Letψ be the mixed policy returned by the algorithm. LetεF , εP , εR be
defined as in Theorem 2. Letv∗ = maxψ∈Ψ minw∈Sk [w · µ(ψ)]. Then

V (ψ) ≥ v∗ − ε (13)

if

T ≥
9 ln k

2(ε′(1 − γ))2
(14)

where

ε′ ≤
ε − (2εF + εP + 2εR/(1 − γ))

3
. (15)

5.2 Representation error

Although the MWAL algorithm makes different assumptions about the domains ofw andφφφ than the
projection algorithm, these differences are of no real consequence. The same class of reward func-
tions can be expressed under either set of assumptions by roughly doubling the number of features.
Concretely, consider a feature functionφφφ that satisfies the assumptions of the projection algorithm.
Then for eachs, if φφφ(s) = (f1, . . . , fk), defineφφφ′(s) = (f1, . . . , fk,−f1, . . . ,−fk, 0). Observe that
φφφ′ satisfies the assumptions of the MWAL algorithm, and thatminw∈Bk maxs |R∗(s) −w ·φφφ(s)| ≥
minw∈S2k+1 maxs |R∗(s) − w · φφφ′(s)|. So by only doubling the number of features, we can en-
sure that the representation errorεR does not increase. Notably, employing this reduction forces the
game valuev∗ to be zero, ensuring that the MWAL algorithm, like the projection algorithm, will
mimic the expert. This obsevation provides us with some useful guidance for selecting features for
the MWAL algorithm: both the original and negated version ofa feature should be used if we are
uncertain how that feature is correlated with reward.

6 When the transition function is unknown

In the previous sections, as well as in Abbeel and Ng [1], it was assumed that the transition function
θ(s, a, ·) was known. In this section we sketch how to remove this assumption. Our approach to
applying the MWAL algorithm to this setting can be informally described as follows: LetM =

(S,A, θ, γ, φ) be the true MDP\R for which we are missingθ. Consider the MLE estimatêθ of θ
that is formed from the expert’s sample trajectories. LetZ ⊆ S × A be the set of state-action pairs
that are visited “most frequently” by the expert. Then afterobserving enough trajectories,θ̂ will

7

be an accurate estimate ofθ on Z. We form a pessimistic estimatêMZ of M by usingθ̂ to model
the transitions inZ, and route all other transitions to a special “dead state.” Following Kearns and
Singh [5], who used a very similar idea in their analyis of theE3 algorithm, we call̂MZ theinduced
MDP\R onZ.

By a straightforward application of several technical lemmas due to Kearns and Singh [5] and
Abbeel and Ng [6], it is possible to show that if the number of expert trajectoriesm is at least

O(|S|3|A|
8ε3

ln |S|3|A|
δε

+ |S||A| ln 2|S||A|
δ

), and we letZ be the set of state-action pairs visited by the

expert at leastO(|S|2

4ε2
ln |S|3|A|

ε
) times, then usinĝMZ in place ofM in the MWAL algorithm will

add onlyO(ε) to the error bound in Theorem 2. More details are available inthe supplement [4],
including a precise procedure for constructinĝMZ .

7 Experiments

For ease of comparison, we tested the MWAL algorithm and the projection algorithm in a car driving
simulator that resembled the experimental setup from Abbeel and Ng [1]. Videos of the experiments
discussed below are available in the supplement [4].

In our simulator, the apprentice must navigate a car throughrandomly-generated traffic on a three-
lane highway. We define three features for this environment:a collision feature (0 if contact with
another car, and1/2 otherwise), an off-road feature (0 if on the grass, and1/2 otherwise), and a
speed feature (1/2, 3/4 and1 for each of the three possible speeds, with higher values corresponding
to higher speeds). Note that the features encode that, otherthings being equal, speed is good, and
collisions and off-roads are bad.

Fast Expert Proj MWAL Bad Expert Proj. MWAL No Expert MWAL
Speed Fast Fast Fast Slow Slow Medium - Medium

Collisions (per sec) 1.1 1.1 0.5 2.23 2.23 0 - 0
Off-roads (per sec) 0 0 0 8.0 8.0 0 - 0

The table above displays the results of using the MWAL and projection algorithms to learn a driving
policy by observing two kinds of experts: a “fast” expert (drives at the fastest speed; indifferent to
collisions), and a “bad” expert (drives at the slowest speed; tries to hit cars and go off-road). In both
cases, the MWAL algorithm leverages information encoded inthe features to produce a policy that
is significantly better than the expert’s policy.

We also applied the MWAL algorithm to the “no expert” setting(see Section 5.1). In that case, it
produced a policy that drives as fast as possible without risking any collisions or off-roads. Given
our features, this is indeed the best policy for the worst-case choice of reward function.

Acknowledgments

We thank Pieter Abbeel for his helpful explanatory commentsregarding his proofs. We also thank
the anonymous reviewers for their suggestions for additional experiments and other improvements.
This work was supported by the NSF under grant IIS-0325500.

References

[1] P. Abbeel, A. Ng (2004). Apprenticeship Learning via Inverse Reinforcement Learning.ICML 21.

[2] Y. Freund, R. E. Schapire (1999). Adaptive Game Playing Using Multiplicative Weights.Games and
Economic Behavior29, 79–103.

[3] N. Ratliff, J. Bagnell, M. Zinkevich (2006). Maximum Margin Planning. ICML 23.

[4] U. Syed, R. E. Schapire (2007). “A Game-Theoretic Approach toApprenticeship Learning — Supple-
ment”.http://www.cs.princeton.edu/˜usyed/nips2007/ .

[5] M. Kearns, S. Singh (2002). Near-Optimal Reinforcement Learning in Polynomial Time.Machine Learn-
ing 49, 209–232.

[6] P. Abbeel, A. Ng (2005). Exploration and Apprenticeship Learningin Reinforcement Learning.ICML 22.
(Long version; available athttp://www.cs.stanford.edu/˜pabbeel/)

8

