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Abstract

We present an efficient generalization of the sparse pseudo-input Gaussian pro-
cess (SPGP) model developed by Snelson and Ghahramani [1], applying it to
binary classification problems. By taking advantage of the SPGP prior covari-
ance structure, we derive a numerically stable algorithm with O(NM2) training
complexity—asymptotically the same as related sparse methods such as the in-
formative vector machine [2], but which more faithfully represents the posterior.
We present experimental results for several benchmark problems showing that
in many cases this allows an exceptional degree of sparsity without compromis-
ing accuracy. Following [1], we locate pseudo-inputs by gradient ascent on the
marginal likelihood, but exhibit occasions when this is likely to fail, for which we
suggest alternative solutions.

1 Introduction

Gaussian processes are a flexible and popular approach to non-parametric modelling. Their con-
ceptually simple architecture is allied with a sound Bayesian foundation, so that not only does their
predictive power rival state-of-the-art discriminative methods such as the support vector machine,
but they also have the additional benefit of providing an estimate of variance, giving an error bar for
their prediction. However, there is a computational price to pay for this robust framework: the time
for training scales asN3 for N data points, and the cost of prediction isO(N2) per test case.

Recently, there has been great interest in finding sparse approximations to the full Gaussian process
(GP) in order to accelerate training and prediction times respectively toO(NM2) andO(M2),
whereM ≪ N is the size of an auxiliary set, often a subset of the trainingdata, termed variously
the inducing inputs, pseudo-inputs or the active set [3, 4, 5, 2, 6, 7, 1]; in this paper, we use the
terms interchangeably. Quiñonero-Candela and Rasmussen[8] demonstrated how many of these
schemes are related through different approximations to the joint prior over training and test points.
In this paper we consider the “fully independent training conditional” or FITC approximation, which
appeared originally in Snelson and Ghahramani [1] as the sparse pseudo-input GP (SPGP).

Restricted to a Gaussian noise model, the FITC approximation is entirely tractable; however, for
many problems, the Gaussian assumption is inappropriate. In this paper, we describe an extension
for non-Gaussian likelihoods, considering as an example probit noise for binary classification. This
is not only a common problem, but our results bear out the intuition that sparse methods are well-
suited: many data sets enjoy the property that class label does not fluctuate rapidly in the input space,
often allowing large regions to be summarized with very few inducing inputs. Contrast this with
regression problems, where higher frequency components inthe latent signal demand the pseudo-
inputs appear in much higher density.

The informative vector machine (IVM) of Lawrence et al. [2] is another sparse GP method that has
been extended to non-Gaussian noise models. It is a subset ofdata method in which the active set
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is grown incrementally from the training data using a fast information gain heuristic to find at each
stage the optimal inclusion. When a threshold number of points have been added, the algorithm
terminates: only data accumulated into the active set are relevant for prediction; remaining points
influence the model only in the weak sense of guiding previoussteps of the algorithm. Our method is
an improvement in three regards: firstly, the FITC approximation makes use of all the data, yielding
for the same active set a closer approximation to the posterior distribution. Secondly, unlike the
standard IVM approach, we fit a stable posterior at each iteration, providing more accurate marginal
likelihood estimates, and derivatives thereof, to allow more reliable model selection. Finally, we
argue with experimental justification that the ability to locate inducing inputs independently of the
training data, as compared with the greedy approach that drives the IVM, can be a great advantage
in finding the sparsest solutions. We discuss these points and other related work in greater detail in
section 6.

The structure of this paper is as follows: in section 2 we describe the FITC approximation; this is
followed in section 3 by a detailed description of its representation for a non-Gaussian noise model;
section 4 provides a brief account of the procedure for modelselection; experimental results appear
in section 5, which we discuss in section 6; our concluding remarks are in section 7.

2 The FITC approximation

Given a domainX and covariance functionK(·, ·) ∈ X × X → R, a Gaussian process (GP) over
the space of real-valued functions ofX specifies the joint distribution at any finite setX ⊂ X :

p(f |X) = N (f ; 0 , Kff ) ,

where thef = {fn}N
n=1 are (latent) values associated with eachxn ∈ X, andKff is theGram

matrix, the evaluation of the covariance function at all pairs(xi,xj). We apply Bayes’ rule to obtain
the posterior distribution over thef , given the observedX andy, which with the assumption of
i.i.d. Gaussian corrupted observations is also normally distributed. Predictions atX⋆ are made by
marginalizing overf in the (Gaussian) jointp(f , f⋆|X,y,X⋆). See [9] for a thorough introduction.

In order to derive the FITC approximation, we follow [8] and introduce a set ofM inducing inputs
X̄ = {x̄1, x̄2, . . . , x̄M} with associated latent valuesu. By the consistency of GPs, we have

p(f , f⋆|X,X⋆, X̄) =

∫

p(f , f⋆|u,X,X⋆)p(u|X̄)du ≈

∫

q(f |u,X)q(f⋆|u, X̄)p(u|X̄)du,

wherep(u|X̄) = N (u ; 0 , Kuu). In the final expression we make the critical approximation by
imposing a conditional independence assumption on the joint prior over training and test cases:
communication between them must pass through the bottleneck of the inducing inputs. The FITC
approximation follows by letting

q(f |u,X) = N
(

f ; KfuK
−1
uu

u , diag (Kff − Qff )
)

, (1)

q(f⋆|u,X⋆) = N
(

f⋆ ; K⋆uK
−1
uu

u , diag (K⋆⋆ − Q⋆⋆)
)

, (2)

whereQab

.
= KauK

−1
uuKub. Of interest for predictions is the posterior distributionover the induc-

ing inputs; this is most efficiently obtained via Bayes’ ruleafter inferring the distribution overf .1

Using (1) and marginalizing over the exact prior onu we obtain the approximate prior onf

q(f |X) =

∫

N
(

f ; KfuK
−1
uuu , diag (Kff − Qff )

)

N (u ; 0 , Kuu) du

= N (f ; 0 , Qff + diag (Kff − Qff )) . (3)

In the original paper, Snelson and Ghahramani placed the pseudo-inputs randomly and learned their
locations by non-linear optimization of the marginal likelihood. We have adopted the idea in this
paper, but as emphasized in [8], the FITC approximation is applicable regardless of how the inducing

1We could also infer the posterior overu directly, rather than marginalizing over the inducing inputs as here.
Running EP in this setting, each site maintains a belief about the fullM×M covariance, and we obtain a slower
O(NM

3) algorithm. Furthermore, calculations to evaluate the derivatives of the log marginal likelihood with
respect to inducing inputs̄xm are significantly complicated by their presence in both prior and likelihood.
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inputs are obtained, and other schemes for their initialization could equally well be married with our
algorithm.

In the case of classification, a sigmoidal function assigns class labelsyn ∈ {±1} with a probability
that increases monotonically with the latentfn. We use the probit with biasβ,

p(yn|fn, β) = σ(yn(fn + β))
.
=

∫ yn(fn+β)

−∞

N (z ; 0 , 1) dz. (4)

The posterior distributionp(f |X,y) is only tractable for Gaussian likelihoods, hence we must resort
to a further approximation, either by generating Monte Carlo samples from it or fitting deterministi-
cally a Gaussian approximation. Of the latter methods, expectation propagation is possibly the most
accurate (at least for GP classification; see [10]), and it isthe approach we follow below.

3 Inference

We begin with a very brief account of expectation propagation (EP); for more details, see [11,
12]. Suppose we have an intractable distribution overf whose unnormalized form factorizes into
a product of terms, such as a dense Gaussian priort0(f) and a series of independent likelihoods
{tn(yn|fn)}N

n=1. EP constructs the approximate posterior as a product of scaled site functions̃tn.
For computational tractability, these sites are usually chosen from an exponential family with natural
parametersθ, since in this case their product retains the same functional form as its components.
The Gaussian(µ,Σ) has a natural parameterization(b,Π) = (Σ−1µ,− 1

2Σ
−1). If the prior is of

this form, its site function is exact:

p(f |y) =
1

Z
t0(f)

N
∏

n=1

tn(yn|fn) ≈ q(f ; θ) = t0(f)

N
∏

n=1

znt̃n(fn; θn), (5)

whereZ is the marginal likelihood andzn are the scale parameters. Ideally, we would chooseθ at
the global minimum of some divergence measured(p‖q), but the necessary optimization is usually
intractable. EP is an iterative procedure that finds a minimizer ofKL

(

p(f |y)‖q(f ; θ)
)

on a pointwise
basis: at each iteration, we select a new siten, and from the product of thecavitydistribution formed
by the current marginal with the omission of that site, and the true likelihood termtn, we obtain the
so-calledtilted distributionqn(fn; θ\n). A simpler optimizationminθn

KL
(

qn(fn; θ\n)‖q(fn; θ)
)

then fits only the parametersθn: this is equivalent tomoment matchingbetween the two distributions,
with scalezn chosen to match the zeroth-order moments. After each site update, the moments at the
remaining sites are liable to change, and several iterations may be required before convergence.

In the discussion below we omit the moment calculations for the probit model, since they correspond
to those of traditional GP classification (for more details,consult [9]). Of greater interest is how the
mean and covariance structure of the approximate posterioris preserved. Examining the form of the
prior (3), we see the covariance consists of a diagonal componentD0 and a rank-M termP0M0P

T
0 ,

whereP0 = Kfu andM0 = K−1
uu

(zero subscripts refer to these initial values; the matrices are
updated during the course of the EP iterations). Since the observationsyn are generated i.i.d., we
can expect this decomposition to persist in the posterior.

EP requires efficient operations for marginalization to obtain p(fn), and for updating the posterior
distribution after refining a site, as well as for refreshingthe posterior to avoid loss of numerical
precision. DecomposingM = RTR into its Cholesky factor,2 we represent the posterior covariance
A and meanh by

A = D + PRTRPT , h = ν + Pγ,

2Care must be taken that the factors share the correct orientation. When our environment offers only upper
Cholesky factorsRT

R, the initialization ofR0 = chol
`

K
−1
uu

´

can be achieved without computing the explicit
inverse via the following matrix rotations:

R0 := rot180

“

chol
`

rot180 (Kuu)
´T

\ I

”

.
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whereD is diagonal,ν is N × 1 andγ is M × 1. Writing pT
n = P(n,·) anddn = Dnn,

Ann = dn + ‖Rpn‖ hn = νn + pT
nγ, obtaining marginals inO(M2).

Now consider a change in the precision at siten by πn. Define the vectore of lengthN such that
en = 1 and all other elements are zero. The new covarianceAnew is obtained by inverting the sum
of the old precision matrix and the change in precision. If welet E = D−1 + πneeT , so that

E−1 = D −
πnd2

n

1 + πndn

eeT and (DED)−1 = D−1 −
πn

1 + πndn

eeT ,

then from the matrix inversion lemma,A−1 = D−1−D−1PRT (RPTD−1PRT +I)−1RPTD−1,
and incorporating the update to siten,

Anew = E−1 − E−1D−1PRT
(

RPT (DED)−1PRT − I − RPTD−1PRT
)−1

RPTD−1E−1

= Dnew + PnewR
T
newRnewP

T
new,

where we expand the inversion to obtain a rank-1 downdate to the Cholesky factorR;3 in summary

Dnew = D−
πnd2

n

1 + πndn

eeT O(1) update, Pnew = P−
πndn

1 + πndn

epT
n O(M) update,

Rnew = chol↓

(

RT

(

I− Rpn

πn

1 + πnAnn

pT
nRT

)

R

)

O(M2) update.

If the second site parameter, corresponding to precision times mean, is changed bybn, then

A−1
newhnew = A−1h + bne =⇒ hnew = Anew

(

A−1
new− πneeT

)

h + Anewbne

= νnew + Pnewγnew,

where

νnew = ν +
(bn + πnνn)dn

1 + πndn

e (O(1)), γnew = γ +
bn − πnhn

1 + πndn

RT
newRnewpn

(

O(M2)
)

.

It is necessary to refresh the covariance and mean every complete EP cycle to avoid loss of precision.

Dnew = (I + D0Π)
−1

D0 (O(N)), Pnew = (I + D0Π)
−1

P0 (O(NM)),

Rnew = rot180

(

chol
(

rot180
(

I + R0P
T
0 Π (I + D0Π)

−1
P0R

T
0

)

)T
)

∖

R0

(

O(NM2)
)

,

whereRnew is obtained being careful to ensure the orientations of the factorizations are not mixed.
Finally, the mean is refreshed using

νnew = Dnewb in O(N), γnew = RT
newRnewP

T
newb in O(NM),

where we have assumedh0 = 0.

Reviewing the algorithm above, we see that EP costs are dominated by theO(M2) Cholesky down-
date at each site inclusion. After visiting each of theN sites, we are advised to perform a full refresh,
which isO(NM2), together leading to asymptotic complexity ofO(NM2).

3.1 Predictions

To make predictions, we marginalize outu from (2). Initially, Bayes’ theorem is used to find the
posterior distribution overu from the inferred posterior overf :

p(u|f) ∝ p(f |u)p(u) = N (u |R−1
0 c,R−1

0 CR−T
0 ),

where c = CR0P
T
0 D−1

0 f and C−1 = I + R0P
T
0 D−1

0 P0R
T
0 .

3If the factor πn

1+πnAnn

is negative, we make a rank-1update, guaranteed to preserve the positive definite
property. Note that on rare occasions, loss of precision cancause a downdate to result in a non-positive definite
covariance matrix. If this occurs, we should abort the update and refresh the posterior from scratch. In any
case, to improve conditioning, it is recommended to add a small multiple of the identity to the priorM0.
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Let our posterior approximation beq(f |y) = N (f ; h , A). Hence

p(u|y) ≈

∫

p(u|f)q(f |y)df = N (u |R−1
0 µ,R−1

0 ΣR−T
0 ),

where µ = CR0P
T
0 D−1

0 h and Σ = C + CR0P
T
0 D−1

0 AD−1
0 P0R

T
0 C.

Obtaining these terms isO(NM2) if we take advantage of the structure ofA; the most stable
method is via the Cholesky factorization ofC−1, rather than forming the explicit inverse. Atx⋆,

p(f⋆|x⋆,y) =

∫

p(f⋆|u)p(u|y)du = N (f⋆ |µ⋆, σ
2
⋆);

after precomputations,µ⋆ = kT
⋆ RT

0 µ is O(M), andσ2
⋆ = k⋆⋆ + kT

⋆ RT
0 (Σ− I)R0k⋆ is O(M2).

In the classification domain, we will usually be interested in

p(y⋆|x⋆,y) =

∫

p(y⋆|f⋆)p(f⋆|x⋆,y)df⋆ = σ

(

y⋆µ⋆
√

1 + σ2
⋆

)

.

4 Model selection

EP provides an estimate of the log evidence by matching the 0th-order momentszn at each inclusion.
When our posterior approximation is exponential family, Seeger [12] shows the estimate to be

L =
N
∑

n=1

log Cn + Φ(θpost) − Φ(θprior), where log Cn = log zn − Φ(θpost) + Φ(θ\n),

whereΦ(·) denotes the log partition function andθ are again the natural parameters, with super-
scripts indicating prior, posterior and cavity. Of interest for model selection are derivatives of the
marginal likelihood with respect to hyperparameters{ξ, X̄, β}, respectively the kernel parameters,
pseudo-input locations, and noise model parameters. When the EP fixed point conditions hold (that
is, the moments of the tilted distributions match the marginals up to second order for all sites),

∇θpriorL = ηpost− ηprior and ∇βn
L = log zn,

whereη denotes the moment parameters of the exponential family (for the Gaussian, these are
(µ,Σ + µµT )) andβn is a parameter of siten (and does not feature in the prior). Finally, we need
derivatives∇ξθ

prior and∇X̄θprior. The long-winded details are omitted, but by careful consideration
of the covariance structure, it is again possible to limit the complexity toO(NM2).

Since we run EP until convergence, our estimates for the marginal likelihood and its derivatives are
accurate, allowing us reliablty to fit a model that maximizesthe evidence. This is in contrast to the
IVM, in which sites excluded from the active set have parameters clamped to zero, and where those
included are not iterated to convergence, such that the necessary fixed point conditions do not hold.
A particular problem, suffered also by the similar algorithm in [13], is that derivative calculations
must be interleaved with site inclusions, and the latter operation tends to disrupt gradient information
gained from the previous step. These complications are all sidestepped in our SPGP implementation.

5 Experiments

We conducted tests on a variety of data, including two small sets from [14]4 and the benchmark
suite of Rätsch.5 The dimensionality of these classification problems rangesfrom two to sixty, and
the size of the training sets is of the order of 400 to 1000. Results are presented in table 1. For
crabsand the Rätsch sets, we average over ten folds of the data; for thesynthproblem, Ripley has
already divided the data into training and test partitions.Comparisons are made with the full GP
classifier, and the SVM, a widely-used discriminative modelwhich in practice is found to yield
relatively sparse solutions; we consider also the IVM, a popular framework for building sparse

4Available fromhttp://www.stats.ox.ac.uk/pub/PRNN/ .
5Available fromhttp://ida.first.fhg.de/projects/bench/benchmarks.h tm .
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Table 1: Test errors and predictive accuracy (smaller is better) for the GP classifier, the support
vector machine, the informative vector machine, and the sparse pseudo-input GP classifier.

Data set GPC SVM IVM SPGPC
name train:test dim err nlp err #sv err nlp M err nlp M

synth 250:1000 2 0.097 0.227 0.098 98 0.096 0.235 150 0.087 0.234 4
crabs 80:120 5 0.039 0.096 0.168 67 0.066 0.134 60 0.043 0.105 10
banana 400:4900 2 0.105 0.237 0.106 151 0.105 0.242 200 0.107 0.261 20
breast-cancer200:77 9 0.288 0.558 0.277 122 0.307 0.691 120 0.281 0.557 2
diabetes 468:300 8 0.231 0.475 0.226 271 0.230 0.486 400 0.230 0.485 2
flare-solar 666:400 9 0.346 0.570 0.331 556 0.340 0.628 550 0.338 0.569 3
german 700:300 20 0.230 0.482 0.247 461 0.290 0.658 450 0.236 0.491 4
heart 170:100 13 0.178 0.423 0.166 92 0.203 0.455 120 0.172 0.414 2
image 1300:1010 18 0.027 0.078 0.040 462 0.028 0.082 400 0.031 0.087 200
ringnorm 400:7000 20 0.016 0.071 0.016 157 0.016 0.101 100 0.014 0.089 2
splice 1000:2175 60 0.115 0.281 0.102 698 0.225 0.403 700 0.126 0.306 200
thyroid 140:75 5 0.043 0.093 0.056 61 0.041 0.120 40 0.037 0.128 6
titanic 150:2051 3 0.221 0.514 0.223 118 0.242 0.578 100 0.231 0.520 2
twonorm 400:7000 20 0.031 0.085 0.027 220 0.031 0.085 300 0.026 0.086 2
waveform 400:4600 21 0.100 0.229 0.107 148 0.100 0.232 250 0.099 0.228 10

linear models. In all cases, we employed the isotropic squared exponential kernel, avoiding here the
anisotropic version primarily to allow comparison with theSVM: lacking a probabilistic foundation,
its kernel parameters and regularization constant must be set by cross-validation. For the IVM,
hyperparameter optimization is interleaved with active set selection as described in [2], while for the
other GP models, we fit hyperparameters by gradient ascent onthe estimated marginal likelihood,
limiting the process to twenty conjugate gradient iterations; we retained for testing that of three
to five randomly initialized models which the evidence most favoured. Results on the Rätsch data
for the semi-parametric radial basis function network are omitted for lack of space, but available at
the site given in footnote 5. In comparison with that model, SPGP tends to give sparser and more
accurate results (with the benefit of a sound Bayesian framework).

Identical tests were run for a range of active set sizes on theIVM and SPGP classifier, and we have
attempted to present the large body of results in its most comprehensible form: we list only the
sparsestcompetitive solution obtained. This means that usingM smaller than shown tends to cause
a deterioriation in performance, but not that there is no advantage in increasing the value. After all,
asM → N we expect error rates to match those of the full model (at least for the IVM, which
uses a subset of the training data).6 However, we believe that in exploring the behaviour of a sparse
model, the essential question is: what is the greatest sparsity we can achieve without compromising
performance? (since if sparsity were not an issue, we would simply revert to the original GP).
Small values ofM for the FITC approximation were found to give remarkably lowerror rates, and
incremented singly would often give an improved approximation. In contrast, the IVM predictions
were no better than random guesses for even moderateM—it usually failed if the active set was
smaller than a threshold aroundN/3, where it was simply discarding too much information—and
greater step sizes were required for noticeable improvements in performance. With a few exceptions
then, for FITC we explored smallM , while for the IVM we used larger values, more widely spread.

More challenging is the task of discriminating 4s from non-4s in the USPS digit database: the data
are 256-dimensional, and there are 7291 training and 2007 test points. With 200 pseudo-inputs (and
51,200 parameters for optimization), error rates for SPGPCare 1.94%, with an average negative log
probability of 0.051 nats. These figures improve when the allocation is raised to 400 pseudo-inputs,
to 1.79% and 0.048 nats. When provided with only 200 points, the IVM figures are 9.97% and 0.421
nats—this can be regarded as a failure to generalize, since it corresponds to labelling all test inputs
as “not 4”—but given an active set of 400 it reaches error rates of 1.54% and NLP of 0.085 nats.

6Note that the evidence is a poor metric for choosingM since it tends to increase monotonically as the
explicative power of the full GP is restored.
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6 Discussion

A sparse approximation closely related to FITC is the “deterministic training conditional” (DTC),
whose covariance consists solely of the low-rank termLMLT ; it has appeared elsewhere under
the nameprojected latent variables[13]. In generative terms, DTC first obtains a posterior process
by conditioning on the inducing inputs; observationsy are then drawn as noisy samples of the
mean of this process. FITC is similar, but the draws are noisysamples from the posterior process
itself—hence, while the noise component for DTC is a constant corruptionσ2, for FITC it grows
away from the inducing inputs toKnn+σ2. In comparing their SPGP model with DTC, Snelson and
Ghahramani [1] suggest that it is for this reason (i.e. due tothe diagonal component in the covariance
in FITC) that the optimization of pseudo-inputs by gradientascent on the marginal likelihood can
succeed: without the noise reduction afforded locally by relocating pseudo-inputs, DTC does not
provide a sufficiently large gradient for them to move, and the optimization gets stuck. We believe
the same mechanism operates in general for non-Gaussian noise.

This difficulty would not be significant if alternative heuristics for building the active set greedily
were effective. We hypothesize however that the most informative vectors in the greedy sense of
the IVM tend to be those which lie close to the decision boundary. Such points will have a rela-
tively strong influence on its shape since the effect of the kernel falls off exponentially in distance
squared. A preferable solution may be that empirically found to occur with Tipping’s relevance
vector machine (RVM) [15], a degenerate GP where a particular prior on weights means only a few
basis functions survive an evidence maximization procedure to form the model;7 there, the classi-
fier was often parameterized by points distant from the decision boundary, suggested to be more
“representative” of the data.

We illustrate with a simple example that, provided the optimization is feasible, very sparse solutions
may more easily be found if the inducing inputs can be positioned independently of the data. This
allows the size of the active set to grow with the complexity of the problem, rather than withN , the
number of training points. We drew samples from a two-dimensional “xor” problem, consisting of
four unit-variance Gaussian clusters at(±1.5,±1.5) with a small overlap, giving an optimal error
rate of around 13% and in loose terms a complexity which requires an active set of size four. By
increasing the size of the training setN in increments from 40 to 400, we obtained the learning
curves of figure 1 for the IVM and FITC models: plotted againstN is the size of active set required
for the error rate to fall below 15%. Whereas the FITC model requires a constant four points to
explain the data, the demands of the IVM appear to increase almost linearly withN .

Evidently, the FITC model is able to capture salient detailsmore readily than the IVM, but we
may object that it is also a richer likelihood. We therefore show learning curves for the FITC
approximation run using the IVM active set and, generously,optimal kernel parameters. With a
relatively simple and low-dimensional problem, the benefitof the adaptable active set that FITC
offers is clearly less significant than that of the improved approximation itself—although there is
a factor of 2 difference, and we believe the effects will be more pronounced for more complex
data. However, a sensible compromise where optimization ofall pseudo-inputs is computationally
infeasible is to run the IVM to obtain an initial active set, but then switch to the FITC approximation
and optimize only kernel parameters, or just a small selection of the pseudo-inputs. Another option,
explored by Snelson and Ghaharamani [17] for this model in the case of regression, is to learn a
low dimensional projection of the data—advantageous, since in this setting the pseudo-inputs only
operate under projection and can be treated as low-dimensional, potentially reducing significantly
the scale of the optimization problem. We report results of this extension in future work.

7 Conclusions

We have presented an efficient and numerically stable way of implementing the sparse FITC model
in Gaussian processes. By way of example we considered binary classification in which extra data
points are introduced to form a continuously adaptable active set. We have demonstrated that the
locations of these pseudo-inputs can be fit synchronously with parameters of the kernel, and that

7We have not compared our model with the RVM since that approximation suffers from nonsensical variance
estimates away from the data. Rasmussen and Quiñonero-Candela [16] show how it can be “healed” through
augmentation, but the resulting model is no longer sparse inthe sense of providingO(M2) predictions.
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Figure 1: Left: learning curves for the toy problem described in the text. Right: contours of posterior
probability for FITC in ten CG iterations from a random initialization of pseudo-inputs (black dots).

this procedure allows for very sparse solutions. Certain data sets, particularly those of very high
dimensionality, are not amenable to this approach since thenumber of hyperparameters is unfeasibly
large for non-linear optimization. In this case, we suggestresorting to a greedy approach, using a
fast heuristic like the IVM to build the active set, but adopting the FITC approximation thereafter.
An alternative which deserves investigation is to attempt an initial round of k-means clustering.
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