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Abstract

We present an efficient generalization of the sparse pseymld-Gaussian pro-
cess (SPGP) model developed by Snelson and Ghahramanipflj;ireg it to
binary classification problems. By taking advantage of tR&B prior covari-
ance structure, we derive a numerically stable algorithth @i( N M ?) training
complexity—asymptotically the same as related sparse adstkuch as the in-
formative vector machine [2], but which more faithfully regents the posterior.
We present experimental results for several benchmarklgmabshowing that
in many cases this allows an exceptional degree of spardityut compromis-
ing accuracy. Following [1], we locate pseudo-inputs bydigat ascent on the
marginal likelihood, but exhibit occasions when this i®likto fail, for which we
suggest alternative solutions.

1 Introduction

Gaussian processes are a flexible and popular approach tpanametric modelling. Their con-
ceptually simple architecture is allied with a sound Bagedoundation, so that not only does their
predictive power rival state-of-the-art discriminativeetimods such as the support vector machine,
but they also have the additional benefit of providing amesste of variance, giving an error bar for
their prediction. However, there is a computational pricpay for this robust framework: the time
for training scales a&/® for N data points, and the cost of predictior®N?) per test case.

Recently, there has been great interest in finding sparsexpmtions to the full Gaussian process
(GP) in order to accelerate training and prediction timepeetively toO(NM?) and O(M?),
whereM < N is the size of an auxiliary set, often a subset of the traidiatg, termed variously
the inducing inputs, pseudo-inputs or the active set [3,,2,%, 7, 1]; in this paper, we use the
terms interchangeably. Quifionero-Candela and Rasmy8felemonstrated how many of these
schemes are related through different approximationsggofint prior over training and test points.
In this paper we consider the “fully independent trainingaitional” or FITC approximation, which
appeared originally in Snelson and Ghahramani [1] as thesegeseudo-input GP (SPGP).

Restricted to a Gaussian noise model, the FITC approximadi@ntirely tractable; however, for
many problems, the Gaussian assumption is inappropriatinid paper, we describe an extension
for non-Gaussian likelihoods, considering as an exampbipnoise for binary classification. This
is not only a common problem, but our results bear out thatiatuthat sparse methods are well-
suited: many data sets enjoy the property that class lalesloiat fluctuate rapidly in the input space,
often allowing large regions to be summarized with very feducing inputs. Contrast this with
regression problems, where higher frequency componertegifatent signal demand the pseudo-
inputs appear in much higher density.

The informative vector machine (IVM) of Lawrence et al. [8]another sparse GP method that has
been extended to non-Gaussian noise models. It is a subdataofmethod in which the active set



is grown incrementally from the training data using a fagbimation gain heuristic to find at each
stage the optimal inclusion. When a threshold number oftpdiave been added, the algorithm
terminates: only data accumulated into the active set degamet for prediction; remaining points
influence the model only in the weak sense of guiding prevétess of the algorithm. Our method is
an improvement in three regards: firstly, the FITC approtiomemakes use of all the data, yielding
for the same active set a closer approximation to the postdistribution. Secondly, unlike the
standard IVM approach, we fit a stable posterior at eachtitergoroviding more accurate marginal
likelihood estimates, and derivatives thereof, to allowreneliable model selection. Finally, we
argue with experimental justification that the ability te#dbe inducing inputs independently of the
training data, as compared with the greedy approach thatglthe IVM, can be a great advantage
in finding the sparsest solutions. We discuss these poidteter related work in greater detail in
section 6.

The structure of this paper is as follows: in section 2 we diesdhe FITC approximation; this is
followed in section 3 by a detailed description of its repraation for a non-Gaussian noise model;
section 4 provides a brief account of the procedure for mselelction; experimental results appear
in section 5, which we discuss in section 6; our concludimgaeks are in section 7.

2 TheFITC approximation

Given a domaint and covariance functiok'(-,-) € X x X — R, a Gaussian process (GP) over
the space of real-valued functions&fspecifies the joint distribution at any finite Stc X

p(f[X) = N(f; 0, Ke),

where thef = {f,})_, are (latent) values associated with each € X, andKg is the Gram

matrix, the evaluation of the covariance function at all p&its x;). We apply Bayes’ rule to obtain
the posterior distribution over th& given the observe®X andy, which with the assumption of
i.i.d. Gaussian corrupted observations is also norma#ijriduted. Predictions &, are made by
marginalizing ovef in the (Gaussian) joini(f, f,| X, y, X,). See [9] for a thorough introduction.

In order to derive the FITC approximation, we follow [8] amdrbduce a set af/ inducing inputs
X = {x1,%2,..., X} With associated latent values By the consistency of GPs, we have

p(f, £]X, X,, X) :/p(f,f*lu,X,X*)p(UIX)du%/Q(flu,X)q(f*lu,X)p(UIX)du,

wherep(u|X) = AM(u; 0, K,y). In the final expression we make the critical approximatign b
imposing a conditional independence assumption on thé pior over training and test cases:
communication between them must pass through the bot#esfeébe inducing inputs. The FITC
approximation follows by letting

q(flu, X) = N (f; KK bu, diag (Kg — Q) , 1)
q(fifu, X)) = N(f*§ K*uKl_nle-a diag (K — Q**)) ) 7))

whereQ.p, = Kau K, Kup. Of interest for predictions is the posterior distributmrer the induc-
ing inputs; this is most efficiently obtained via Bayes’ raléer inferring the distribution ovef.
Using (1) and marginalizing over the exact prior@me obtain the approximate prior dn

G(EX) = / N(£; KraKlu, ding (Kgt — Qar)) A(; 0, Kua) du
= N(f; 0, Qg + diag (Kg — Qg)) . (3)

In the original paper, Snelson and Ghahramani placed thedpseputs randomly and learned their
locations by non-linear optimization of the marginal likelod. We have adopted the idea in this
paper, but as emphasized in [8], the FITC approximationpiegble regardless of how the inducing

1We could also infer the posterior overdirectly, rather than marginalizing over the inducing itgas here.
Running EP in this setting, each site maintains a belief eth@full M/ x M covariance, and we obtain a slower
O(NM?) algorithm. Furthermore, calculations to evaluate thevadisies of the log marginal likelihood with
respect to inducing inputs,,, are significantly complicated by their presence in bothrpaitd likelihood.



inputs are obtained, and other schemes for their initiatimacould equally well be married with our
algorithm.

In the case of classification, a sigmoidal function assidassdabels),, € {+1} with a probability
that increases monotonically with the latgiht We use the probit with bias,

yn(fn,+6)
Dl B) = 0 (yn(fn + B)) = / N(z:0, 1)dz. ()

— 00

The posterior distributiop(f| X, y) is only tractable for Gaussian likelihoods, hence we mussinte
to a further approximation, either by generating Monte €admples from it or fitting deterministi-
cally a Gaussian approximation. Of the latter methods, etgtien propagation is possibly the most
accurate (at least for GP classification; see [10]), andftésapproach we follow below.

3 Inference

We begin with a very brief account of expectation propagaf(ieP); for more details, see [11,
12]. Suppose we have an intractable distribution dvethose unnormalized form factorizes into
a product of terms, such as a dense Gaussian fy{6y and a series of independent likelihoods
{tn(ynlfa)}N_,. EP constructs the approximate posterior as a product tédssie functions,, .
For computational tractability, these sites are usualyseim from an exponential family with natural
parameter®, since in this case their product retains the same fundtfona as its components.
The Gaussiatip, X) has a natural parameterizatig, IT) = (27tp, —1X71). If the prior is of
this form, its site function is exact:

N N
p(fly) = %tO(f) H tn(ynlfn) = q(£;0) = to(f) H Zn{n(fmen)v %)
n=1

n=1

whereZ is the marginal likelihood and,, are the scale parameters. Ideally, we would cha@bae
the global minimum of some divergence measi(ig|q), but the necessary optimization is usually
intractable. EP is an iterative procedure that finds a mireémdfKL (p(f|y)||¢(f; 6)) on a pointwise
basis: at each iteration, we select a newsijtand from the product of theavitydistribution formed
by the current marginal with the omission of that site, aredttbe likelihood ternt,,, we obtain the
so-calledilted distributiong™(f,,; 6\"). A simpler optimizationning,, KL (¢"(fn; 0\")||q(fn;0))
then fits only the parametefis: this is equivalent tonoment matchingetween the two distributions,
with scalez,, chosen to match the zeroth-order moments. After each sitatapthe moments at the
remaining sites are liable to change, and several iteratiway be required before convergence.

In the discussion below we omit the moment calculationdfergrobit model, since they correspond
to those of traditional GP classification (for more detaitmsult [9]). Of greater interest is how the
mean and covariance structure of the approximate postefqweserved. Examining the form of the
prior (3), we see the covariance consists of a diagonal coetd, and a rankA/ termPoMP,
whereP, = Kg, andM, = K ! (zero subscripts refer to these initial values; the masrae
updated during the course of the EP iterations). Since tlserghtiong,,, are generated i.i.d., we
can expect this decomposition to persist in the posterior.

EP requires efficient operations for marginalization toadbp( f,,), and for updating the posterior
distribution after refining a site, as well as for refreshthg posterior to avoid loss of numerical
precision. Decomposinyl = R” R into its Cholesky factof,we represent the posterior covariance
A and mearh by

A =D+ PRTRP7, h=v+ P,

2Care must be taken that the factors share the correct di@mt&Vhen our environment offers only upper
Cholesky factor® TR, the initialization ofRo = chol (K;&) can be achieved without computing the explicit
inverse via the following matrix rotations:

R := rot180 (chol(rotlso (Kuw) )"\ I) .



whereD is diagonaly is N x 1 and~y is M x 1. Writing p% = P, . andd, = Dy,
App = dy + |Rpy|| B = vy + DL, obtaining marginals i) (M?).

Now consider a change in the precision at sitey ,,. Define the vectoe of length N such that
e, = 1 and all other elements are zero. The new covariahgg, is obtained by inverting the sum
of the old precision matrix and the change in precision. Hetd& = D~! + 7,ee”, so that
ST and (DED) '=D"! - 7T7eeT,

1+ 7Tndn 1+ 7Tndn
then from the matrix inversionlemma,~! = D~!-D'PRT(RP'D'PRT+I)"'RPTD!,
and incorporating the update to site

E'=D

—1
Anew=E"! —E"'D"'PR? (RPT(DED)‘lPRT I- RPTD—lpRT) RPTDE"!
= Dnew + Pneer?eaneWPr?ewv

where we expand the inversion to obtain a rank-1 downdateet€holesky factoR ;% in summary

2
mpd; T

Tndn

Dpew=D __ntm
new 1+ mod, €ep,

O(M) update,
Tn
Riew = ChOll (RT (I — an mpZRT) R) O(M2) Update.
If the second site parameter, corresponding to precisimegimean, is changed by, then
An_e{,\rhnew =A"'h+ bpe = hpew= Anew (An_e%/v - WneeT) h + Apenbrne
= Vnew + PhnewYnew,

where

(bn, + T )dn, by — T,

Vpew =V + We (O(1)), Ynew="7+ 1n+ Tod RnTeaneWPn (O(M2))'

Itis necessary to refresh the covariance and mean everylemfP cycle to avoid loss of precision.
Drew= (I+DoII)"'Dy  (O(N)),  Prew= (I+DoIl)"'Py  (O(NM)),

T
Rpew = rot180 (chol (rot180(T + RoPYTI (I + DoTI) ™" PoRY) ) ) \Ro (O(NII2)),

whereR ey is Obtained being careful to ensure the orientations ofdl#ofizations are not mixed.
Finally, the mean is refreshed using

Vnew = Dpewb iN O(N)a Ynew = RnTemRneWPZeWb in O(NM)a
where we have assumég = 0.

Reviewing the algorithm above, we see that EP costs are @dety theD()/2) Cholesky down-
date at each site inclusion. After visiting each of ffiaites, we are advised to perform a full refresh,
which isO(N M?), together leading to asymptotic complexity@fN M ?).

3.1 Predictions

To make predictions, we marginalize awtfrom (2). Initially, Bayes’ theorem is used to find the
posterior distribution oven from the inferred posterior ovet

p(ulf) o< p(flu)p(u) = N(u|Rg e, Ry 'CRg "),
where ¢ = CRoPJD;'f and C™!'=1+R\PiD;'PoR].

3If the factor T H’ZLAM is negative, we make a ranktfpdate, guaranteed to preserve the positive definite
property. Note that on rare occasions, loss of precisiorcaase a downdate to result in a non-positive definite
covariance matrix. If this occurs, we should abort the updatd refresh the posterior from scratch. In any

case, to improve conditioning, it is recommended to add dlsmdtiple of the identity to the prioM.



Let our posterior approximation kgf|y) = N(f; h, A). Hence

puly) ~ [ plalf)a(Ely)df = Au| Ry s Ry 'SR )
where p = CRyP{D;'h and ¥ =C+ CR(P{D,'AD,'P,R]C.

Obtaining these terms i©(NM?) if we take advantage of the structure Af the most stable
method is via the Cholesky factorization©f !, rather than forming the explicit inverse. At,

p(felxsy) = /p(f*IU)p(uly)du = N(fu | ur 02);

after precomputationg,, = kIR is O(M), ando? = ki, + kIR (Z — I) Rok, is O(M?).
In the classification domain, we will usually be interested i

pxesy) = [ Dol £y = o (%) |

4 Model selection

EP provides an estimate of the log evidence by matching thefer moments, at each inclusion.
When our posterior approximation is exponential familye&er [12] shows the estimate to be

N
L=> logC, + ®(6) — &(6*"), where logC, =logz, — B(6°) + (6'\"),

n=1

where®(-) denotes the log partition function adare again the natural parameters, with super-
scripts indicating prior, posterior and cavity. Of inteérés model selection are derivatives of the
marginal likelihood with respect to hyperparametg§sX, 3}, respectively the kernel parameters,
pseudo-input locations, and noise model parameters. WigelBR fixed point conditions hold (that
is, the moments of the tilted distributions match the maalginp to second order for all sites),

V gpior L = ’l’]pOSt— ,r,prior and VﬁnL = log zp,,

wheren denotes the moment parameters of the exponential familytifi® Gaussian, these are
(1, = + ppT)) andg, is a parameter of site (and does not feature in the prior). Finally, we need
derivativesV0P"" andV ¢ 8P"". The long-winded details are omitted, but by careful coesition

of the covariance structure, it is again possible to limit tomplexity toO (N M?).

Since we run EP until convergence, our estimates for the imalrikelihood and its derivatives are
accurate, allowing us reliablty to fit a model that maximitesevidence. This is in contrast to the
IVM, in which sites excluded from the active set have pararstlamped to zero, and where those
included are not iterated to convergence, such that theseacgefixed point conditions do not hold.
A particular problem, suffered also by the similar algaritin [13], is that derivative calculations
must be interleaved with site inclusions, and the latterafien tends to disrupt gradient information
gained from the previous step. These complications ar@atepped in our SPGP implementation.

5 Experiments

We conducted tests on a variety of data, including two snei# §om [14} and the benchmark
suite of Ratsc. The dimensionality of these classification problems rarfiges two to sixty, and
the size of the training sets is of the order of 400 to 1000.uResre presented in table 1. For
crabsand the Ratsch sets, we average over ten folds of the datdnefeynthproblem, Ripley has
already divided the data into training and test partitio@e@mparisons are made with the full GP
classifier, and the SVM, a widely-used discriminative modhlch in practice is found to yield
relatively sparse solutions; we consider also the IVM, autapframework for building sparse

4 Available fromhttp://www.stats.ox.ac.uk/pub/PRNN/ .
SAvailable fromhttp://ida.first.fhg.de/projects/bench/benchmarks.h tm.



Table 1. Test errors and predictive accuracy (smaller itebefor the GP classifier, the support

vector machine, the informative vector machine, and thesgpaseudo-input GP classifier.

Data set GPC SVM VM SPGPC
name traintest dim| err nlp err  #sv err np M err nlp M
synth 2501000 2 | 0.097 0.227 | 0.098 98 | 0.096 0.235 150 | 0.087 0.234 4
crabs 80:120 5 | 0.039 0.096 | 0.168 67 | 0.066 0.134 60 | 0.043 0.105 10
banana 4004900 2 | 0.1050.237 | 0.106 151| 0.105 0.242 200 | 0.107 0.261 20
breast-cancer20077 9 | 0.288 0.558 | 0.277 122 | 0.307 0.691 120 | 0.281 0.557 2
diabetes 468300 8 | 0.231 0.475| 0.226 271 | 0.230 0.486 400 | 0.230 0.485 2
flare-solar 666400 9 | 0.346 0.570| 0.331 556 | 0.340 0.628 550 | 0.338 0.569 3
german 700300 20 | 0.230 0.482 | 0.247 461| 0.290 0.658 450 | 0.236 0.491 4
heart 170100 13 | 0.178 0.423 | 0.166 92 | 0.203 0.455 120 | 0.172 0.414 2
image 13001010 18 | 0.027 0.078 | 0.040 462| 0.028 0.082 400 | 0.031 0.087 200
ringnorm  40G:7000 20 | 0.016 0.071| 0.016 157| 0.016 0.101 100 | 0.014 0.089 2
splice 10002175 60 | 0.115 0.281 | 0.102 698 | 0.225 0.403 700 | 0.126 0.306 200
thyroid 14075 5 | 0.043 0.093| 0.056 61 | 0.041 0.120 40 | 0.037 0.128 6
titanic 1502051 3 | 0.221 0.514 | 0.223 118 | 0.242 0.578 100 | 0.231 0.520 2
twonorm 4007000 20 | 0.031 0.085 | 0.027 220| 0.031 0.085 300 | 0.026 0.086 2
waveform 4004600 21 | 0.100 0.229 | 0.107 148| 0.100 0.232 250 | 0.099 0.228 10

linear models. In all cases, we employed the isotropic sfiexponential kernel, avoiding here the
anisotropic version primarily to allow comparison with tB&M: lacking a probabilistic foundation,
its kernel parameters and regularization constant musebéyscross-validation. For the IVM,
hyperparameter optimization is interleaved with activtessection as described in [2], while for the
other GP models, we fit hyperparameters by gradient ascethteoestimated marginal likelihood,
limiting the process to twenty conjugate gradient itemragiowe retained for testing that of three
to five randomly initialized models which the evidence masioured. Results on the Ratsch data
for the semi-parametric radial basis function network arétied for lack of space, but available at
the site given in footnote 5. In comparison with that mod&GP tends to give sparser and more
accurate results (with the benefit of a sound Bayesian framw

Identical tests were run for a range of active set sizes oiMieand SPGP classifier, and we have
attempted to present the large body of results in its mostpeehensible form: we list only the
sparsestompetitive solution obtained. This means that usiigmaller than shown tends to cause
a deterioriation in performance, but not that there is naathge in increasing the value. After all,
asM — N we expect error rates to match those of the full model (att laghe VM, which
uses a subset of the training datdjowever, we believe that in exploring the behaviour of a spar
model, the essential question is: what is the greatestigpases can achieve without compromising
performance? (since if sparsity were not an issue, we waualglg revert to the original GP).
Small values of\/ for the FITC approximation were found to give remarkably lewor rates, and
incremented singly would often give an improved approxioratin contrast, the IVM predictions
were no better than random guesses for even mod@ératat usually failed if the active set was
smaller than a threshold aroudd/3, where it was simply discarding too much information—and
greater step sizes were required for noticeable improvesmeperformance. With a few exceptions
then, for FITC we explored small, while for the IVM we used larger values, more widely spread.

More challenging is the task of discriminating 4s from nani#the USPS digit database: the data
are 256-dimensional, and there are 7291 training and 280 pénts. With 200 pseudo-inputs (and
51,200 parameters for optimization), error rates for SP@rCL.94%, with an average negative log
probability of 0.051 nats. These figures improve when thecalion is raised to 400 pseudo-inputs,
to 1.79% and 0.048 nats. When provided with only 200 poihts]¥M figures are 9.97% and 0.421
nats—this can be regarded as a failure to generalize, dicoeresponds to labelling all test inputs
as “not 4"—but given an active set of 400 it reaches errorsrafel.54% and NLP of 0.085 nats.

®Note that the evidence is a poor metric for choosivigsince it tends to increase monotonically as the
explicative power of the full GP is restored.



6 Discussion

A sparse approximation closely related to FITC is the “detaristic training conditional” (DTC),
whose covariance consists solely of the low-rank t&ML”; it has appeared elsewhere under
the nameprojected latent variablefl 3]. In generative terms, DTC first obtains a posterior pssc
by conditioning on the inducing inputs; observatignsare then drawn as noisy samples of the
mean of this process. FITC is similar, but the draws are nsésyples from the posterior process
itself—hence, while the noise component for DTC is a cortstarruptions?, for FITC it grows
away from the inducing inputs t& ,,, +02. In comparing their SPGP model with DTC, Snelson and
Ghahramani[1] suggest that it is for this reason (i.e. dukdaliagonal componentin the covariance
in FITC) that the optimization of pseudo-inputs by gradiastent on the marginal likelihood can
succeed: without the noise reduction afforded locally Hgaating pseudo-inputs, DTC does not
provide a sufficiently large gradient for them to move, areldptimization gets stuck. We believe
the same mechanism operates in general for non-Gausssa noi

This difficulty would not be significant if alternative hestics for building the active set greedily
were effective. We hypothesize however that the most inébira vectors in the greedy sense of
the IVM tend to be those which lie close to the decision boapnd&uch points will have a rela-
tively strong influence on its shape since the effect of thadiefalls off exponentially in distance
squared. A preferable solution may be that empirically tbtm occur with Tipping’s relevance
vector machine (RVM) [15], a degenerate GP where a partigular on weights means only a few
basis functions survive an evidence maximization procetmform the modef;there, the classi-
fier was often parameterized by points distant from the @@tisoundary, suggested to be more
“representative” of the data.

We illustrate with a simple example that, provided the ofation is feasible, very sparse solutions
may more easily be found if the inducing inputs can be pas#tibindependently of the data. This
allows the size of the active set to grow with the complexftthe problem, rather than witly, the
number of training points. We drew samples from a two-dinmre “xor” problem, consisting of
four unit-variance Gaussian clusters(atl.5, +-1.5) with a small overlap, giving an optimal error
rate of around 13% and in loose terms a complexity which reglan active set of size four. By
increasing the size of the training s&tin increments from 40 to 400, we obtained the learning
curves of figure 1 for the IVM and FITC models: plotted agaiNsis the size of active set required
for the error rate to fall below 15%. Whereas the FITC modgliees a constant four points to
explain the data, the demands of the IVM appear to increasesillinearly with/NV.

Evidently, the FITC model is able to capture salient detaitsre readily than the IVM, but we
may object that it is also a richer likelihood. We therefor®w learning curves for the FITC
approximation run using the IVM active set and, generousbtimal kernel parameters. With a
relatively simple and low-dimensional problem, the benefithe adaptable active set that FITC
offers is clearly less significant than that of the improvegraximation itself—although there is
a factor of 2 difference, and we believe the effects will berenpronounced for more complex
data. However, a sensible compromise where optimizatiail giseudo-inputs is computationally
infeasible is to run the IVM to obtain an initial active seattthen switch to the FITC approximation
and optimize only kernel parameters, or just a small s@edcif the pseudo-inputs. Another option,
explored by Snelson and Ghaharamani [17] for this model énctiise of regression, is to learn a
low dimensional projection of the data—advantageousgsinchis setting the pseudo-inputs only
operate under projection and can be treated as low-dimeaisipotentially reducing significantly
the scale of the optimization problem. We report resultdisf éxtension in future work.

7 Conclusions

We have presented an efficient and numerically stable wayplementing the sparse FITC model
in Gaussian processes. By way of example we consideredytitessification in which extra data
points are introduced to form a continuously adaptablesactét. We have demonstrated that the
locations of these pseudo-inputs can be fit synchronougly parameters of the kernel, and that

"We have not compared our model with the RVM since that appration suffers from nonsensical variance
estimates away from the data. Rasmussen and Quifioneel@agi6] show how it can be “healed” through
augmentation, but the resulting model is no longer sparteeisense of providing (1/?) predictions.
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Figure 1: Left: learning curves for the toy problem desalibethe text. Right: contours of posterior
probability for FITC in ten CG iterations from a random ialtzation of pseudo-inputs (black dots).

this procedure allows for very sparse solutions. Certaia dats, particularly those of very high
dimensionality, are not amenable to this approach sinceuh#er of hyperparametersis unfeasibly
large for non-linear optimization. In this case, we suggesbrting to a greedy approach, using a
fast heuristic like the IVM to build the active set, but adagtthe FITC approximation thereafter.
An alternative which deserves investigation is to attenmghéial round of k-means clustering.
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