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Abstract

We describe an analog-VLSI neural network for face recognition based on
subspace methods. The system uses a dimensionality-reduction network
whose coefficients can be either programmed or learned on-chip to per-
form PCA, or programmed to perform LDA. A second network with user-
programmed coeflicients performs classification with Manhattan distances.
The system uses on-chip compensation techniques to reduce the effects of
device mismatch. Using the ORL database with 12x12-pixel images, our
circuit achieves up to 85% classification performance (98% of an equivalent
software implementation).

1 Introduction

Subspace-based techniques for face recognition, such as Eigenfaces [1] and Fisherfaces [2],
take advantage of the large redundancy present in most images to compute a lower-
dimensional representation of their input data and stored patterns, and perform classifica-
tion in the reduced subspace. Doing so substantially lowers the storage and computational
requirements of the face-recognition task.

However, most techniques for dimensionality reduction require a high computational
throughput to transform images from the large input data space to the feature subspace.
Therefore, software [3] even dedicated digital hardware implementations [4,5] are too large
and power-hungry to be used in highly portable systems. Analog VLSI circuits can com-
pute using orders of magnitude less power and die area than their digital counterparts,
but their performance is limited by signal offsets, parameter mismatch, charge leakage and
nonlinear behavior, particularly in large-scale systems. Traditional circuit-design techniques
can reduce these effects, but they increase power and area, rendering analog solutions less
attractive.

In this paper, we present a neural network for face recognition which implements Principal
Components Analysis (PCA) and Linear Discriminant Analysis (LDA) for dimensionality
reduction, and Manhattan distances and a loser-take-all (LTA) circuit for classification.
We can download the network weights in a chip-in-the loop configuration, or use on-chip
learning to compute PCA coefficients. We use local adaptation to achieve good classification
performance in the presence of device mismatch. The circuit die area is 2.2mm? in a 0.35um
CMOS process, with an estimated power dissipation of 18mW. Using PCA reduction and
a hard classifier, our network achieves up to 83% accuracy on the Olivetti Research Labs
(ORL) face database [6] using 12x12-pixel images, which corresponds to 99% of the accuracy
of a software implementation of the algorithm. Using LDA projections and a software Radial
Basis Function (RBF) network on the hardware-computed distances yields 85% accuracy
(98% of the software performance).



2 Eigenspace based face recognition methods

The problem of face recognition consists of assigning an identity to an unknown face by
comparing it to a database of labeled faces. However, the dimensionality of the input
images is usually so high that performing the classification on the original data becomes
prohibitively expensive.

Fortunately, human faces exhibit relatively regular statistics; therefore, their intrinsic di-
mensionality is much lower than that of their images. Subspace methods transform the
input images to reduce their dimensionality, and perform the classification task on this
lower-dimensional feature space. In particular, the Eigenfaces [1] method performs dimen-
sionality reduction using PCA, and classification by choosing the stored face with the lowest
distance to the input data.

Principal Components Analysis uses a linear transformation from the input space to the
feature space, which preserves most of the information (in the mean-square error sense)
present in the original vector. Consider a column vector x of dimension n, formed by
the concatenated columns of the input image. Let the matrix X,xny = {x1,%X2,...,Xn}
represent a set of N images, such as the image database available for a face recognition
task. PCA computes a new matrix Y,,«xn, with m < n:

Y =W"TX (1)

The columns of Y are the lower-dimensional projections of the original images in the feature
space. The columns of the orthogonal transformation matrix W* are the eigenvectors
associated to the m largest eigenvalues of the covariance matrix of the original image space.

Upon presentation of a new face image, the Eigenfaces method first transforms this image
into the feature space using the transformation matrix W*, and then computes the distance
between the reduced image and each image class in the reference database. The image is
classified with the identity of the closest reference pattern.

Fisherfaces [2| performs dimensionality reduction using Linear Discriminant Analysis (LDA).
LDA takes advantage of labeled data to maximize the distance between classes in the pro-
jected subspace. Considering X, ,c = 1,..., N, as subsets of X containing N; images of
the same subject, LDA defines two matrices:
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where Sy represents the scatter (variance) within classes, and Sp is the scatter between
different classes. To perform the dimensionality reduction of Eqn. (1), LDA constructs W*
such that its columns are the m largest eigenvectors of S;Vl Sp. This requires Sy to be non-
singular, which is often not the case; therefore, LDA frequently uses a PCA preprocessing
stage [2].

Fisherfaces can perform classification using a hard classifier on the computed distances
between the test data and stored patterns in the LDA subspace, as in Eigenfaces, or it
can use a Radial Basis Function (RBF) network. RBF uses a hidden layer of neurons with
Gaussian activation functions to detect clusters in the projected subspace.

Traditionally, the subspace method use Euclidian distances. However, our experiments show
that, as long as the dimensionality reduction preserves enough distance between classes,
less computationally expensive distance metrics such as Manhattan distance are equally
effective for classification. The Manhattan distance between two vectors x = [x1 ... )]
andy = [y1 ... Yn] is given by:

dzszyﬂ (4)
i=1
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Figure 1: Face-recognition hardware. (a) Architecture. A dimensionality-reduction network
projects a n-dimensional image onto m dimensions, and loser-take-all (LTA) circuit labels
the image by choosing the nearest stored face in the reduced space. (b) The dimensionality
reduction network is an array of linear combiners with weights that have been pre-computed
or learned on chip. (c) The distance circuit computes the Manhattan distance between the
m projections of the test image and the stored face database. In our current implementation,
n = 144, m = 39, and k = 40.

3 Hardware Implementation

Fig. 1(a) shows the architecture of our face-recognition network. It follows the signal flow
described in Section 2, where the n-dimensional test image x is first projected onto the m-
dimensional feature space (test data y) using an array of m n-input analog linear combiners,
shown in Fig. 1(b). The constant input ¢ is a bias used to compensate for the offset intro-
duced by the analog multipliers. The network also stores the m projections of the database
face set (the training set) in an array of analog memories. A distance computation block,
shown in Fig. 1(c), computes the Manhattan distance between each labeled element in the
stored training set and the reduced test data y. A loser-take-all (LTA) circuit, currently
implemented in software, selects the smallest distance and labels the test image with the
selected class.

The linear combiners are based on the synapse shown in Fig. 2(a). An analog Gilbert mul-
tiplier computes the product of each pixel of the input image, represented as a differential
voltage, and the local synaptic weight. An accurate transformation requires a multiplier
response that is linear in the pixel value, therefore we designed the multipliers to maximize
the linearity of that input. Device mismatch introduces offsets and gain variance across dif-
ferent multipliers in the network; we describe the calibration techniques used to compensate
for these effects in Section 4. The multipliers provide a differential current output, therefore
we can add them across a single neuron by connecting them to common wires.

Each synaptic weight is stored in an analog nonvolatile memory cell [7] based on floating-
gate transistors, shown also in Fig. 2(a). The cell features linear weight-updates based on
digital pulses applied to the terminals ¢nc and dec. Using local calibration, also based on
floating gates, we independently tune each synapse to achieve symmetric updates in the
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Figure 2: (a) The synapse is comprised by a Gilbert multiplier and a nonvolatile analog
memory cell with local calibration. The output currents are summed across each neuron.
(b) Each component of the Manhattan distance is computed as the subtraction of the
corresponding principal components and an optional inversion based on the sign of the
result. The output currents are summed across all components.

presence of device mismatch, and to make the update rates uniform across the entire chip.
As a result, the resolution of the memory cell exceeds 12 bits in a 0.35um CMOS process.

Fig. 2(b) depicts the circuit used to compute the Manhattan distance between the test data
and the stored patterns. Each projection of the training set is stored as a current in an analog
memory cell, simpler and smaller than the cell used in the dimensionality reduction network,
and written using a self-limiting write process. The difference between each projection of
the pattern and the test input is computed by inverting the polarity of one of the signals
and adding the currents. To compute the absolute value, a current comparator based on a
simple transconductance amplifier determines the sign of the result and uses a 2 x 2 crossbar
switch to invert the polarity of the outputs if needed.

As stated in Section 5, our current implementation considers 12x12-pixel images (n = 144
in Fig. 1). We compute 39 projections using PCA and LDA, and perform the classification
using 40 Manhattan-distance units on the 39-dimensional projections. The next section
analyzes the effects of device mismatch on the dimensionality-reduction network.

4 Analog implementation of dimensionality reduction networks

The arithmetic distortions introduced by the nonlinear transfer function of the analog mul-
tipliers, coupled with the effects of device mismatch (offsets and gains), affect the accuracy
of the operations performed by the reduction network and become the limiting factor in
the classification performance. In order to achieve good performance, we must calibrate the
network to compensate for the effect of these limitations.

In this section, we analyze and design solutions for two different cases. First, we consider the
case when a computer performs PCA or LDA to determine W* off-line, and downloads the
weights onto the chip. Second, we analyze the performance of adaptive on-chip computation
of PCA using a Hebbian-learning algorithm. In both cases, we design mechanisms that use
local on-chip adaptation to compensate for the offsets and gain variances introduced by
device mismatch, thus improving classification performance. In the following analysis we
assume that the inputs have zero mean and have been normalized. Also, for simplicity, we
assume that the inputs and weights are operating within the linear range of the multipliers.
We remove these assumptions when presenting experimental results. Thus, our analysis uses
a simplified model of the analog multipliers given by:

0= (az7 + v2)(Aww + Vo) (5)

where o is the multiplier output, z and w are the inputs, 7, and =, represent the input
offsets, and a, and a,, are the multiplier gains associated with each input. These parameters
vary across different multipliers due to device mismatch and are unknown at design time,
and difficult to determine even after circuit fabrication.



4.1 Dimensionality reduction with precomputed weights

Let us consider an analog linear combiner such as the one depicted in Fig. 1(b), which
computes the first projection y of x, using the first column w* of the software precomputed
optimal transformation W* of Eqn. (1). Using the simplified multiplier linear model of
Eqn. (5), the linear combiner computes the first projection as:

Y= XT(Awaw* + Ax7w) + ’YE(AWW* + ’YW) (6)
where Ay = diag([as, ... a.,]), Aw = diag([aw, --- @w,]), ¥ = [Yz, --- Yz,]T, and
Yo = [Ywy - Yw, |t represent the gains and offsets of each multiplier. Eqn. (6) shows that
device mismatch has two effects on the output: the first term modifies the effective weight
value of the network, and the second term represents an offset added to the output (w* is
a constant).

Replacing w* with an adaptive version wy, the structure becomes a classic adaptive linear
combiner which, using the optimal weights to generate a reference output signal, can be
trained using the well known Least-Mean Squares (LMS) algorithm. Adding a bias synapse
b with constant input ¢ and training the network with LMS, the weights converge to [7]:

w (AxAw) H(W* — Axvy,) (7)
b = — (Ve (AW + Yw) + ) (cap) (8)

where a; and v, are the gain and offset of the analog multiplier associated to the bias input
c. These weight values fully compensate for the effects of gain mismatch and offsets.

In our hardware implementation, we use m adaptive linear combiners to compute every
projection in the feature space, and calibrate these circuits using on-chip LMS local adapta-
tion to compute and store the optimal weight values of Eqns. (7) and (8), achieving a good
approximation of the optimal output Y. Fig. 3(a) shows our analog-VLSI implementation
of LMS. We train the weight values in the memory cells by providing inputs and a reference
output to each linear combiner, and use an on-chip pulse-based compact implementation
of the LMS learning rule. In order to improve the convergence of the algorithm, we draw
the inputs from a zero-mean random Gaussian distribution. Thus, the performance of the
dimensionality reduction network is ultimately limited by the resolution of the memory
cells, the reference noise, the learning rate of the LMS training stage and linearity of the
multipliers. This last effect can be controlled by restricting the dynamic range of the input
to linear range of the multipliers.

To measure the accuracy of our implementation, we computed (in software) the first 10
principal components of one half the Olivetti Research Labs (ORL) face database, reduced
to 12x12 pixels, and used our on-chip implementation of LMS to train the hardware network
to learn the coefficients. We then measured the output of the circuit on the other half of
the database. Fig. 3(b) plots the RMS value of the error between the circuit output and the
software results, normalized to the RMS value of each principal component. The figure also
shows the error when we wrote the coefficients onto the circuit in open-loop, without using
LMS. In this case, offset and gain mismatch completely obscure the information present
in the signal. LMS training compensates for these effects, and reduces the error energy to
between 0.25% and 1% of the energy of the signal. A different experiment (not shown)
computing LDA coeflicients yields equivalent results.

4.2 On-chip PCA computation

In some cases, such as when the face-recognition network is integrated with a camera on a
single chip, it may be necessary to train the face database on-chip. It is not practical for the
chip to include the hardware resources to compute the optimal weights from the eigenvalue
analysis of the training set’s covariance matrix, therefore we compute them on chip using
the standard Generalized Hebbian Algorithm (GHA). The computation of the first principal
component and the learning rule to update the weights at time k are:

Yk = XLWg (9)
Awy = pyr(xp —x'p) (10)
X/k. = YrWg (1 1)
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Figure 3: Training the PCA network with LMS. (a) Block diagram of our LMS implementa-
tion. We present random inputs to each linear combiner, and provide a reference output. A
pulse-based implementation of the LMS learning rule updates the memory cells. (b) RMS

value of the error for the first 10 principal components, normalized to the RMS value of
each PC.

where p is the learning rate of the algorithm and x’y is the reconstruction of the input
Xy from the first principal component. The distortion introduced to the output by gain
mismatch and offsets in Eqn. (9) is identical to Eqn. (6). Similarly to LMS, it is easy
to show that a bias input ¢ connected to a synapse b with an anti-Hebbian learning rule
Aby, = ppcyx removes the constant offset added to the output. Therefore, we can eliminate
the second term of Eqn. (6) and express the output as:

Up = X (AxAwwy, + Axy,) = X} Wi (12)

Using analog multipliers to compute x'y, we obtain:
X'y = T (Ay AL Wi + Ayl + 7y (Ay Wi +75) (13)
where Ay, A, Yy, and ~., are the gains and offsets associated with the multipliers used

to compute y,wy. Replacing Eqns. (12) and (13) in Eqn. (10), we determine the effective
learning rule modified by device mismatch:

Aw = g, (x = U (Ay Ay Wi + AyYy,)) = 15 (X = T, W) (14)

If we use the same analog multipliers to compute 7, and xg, then A, = Ay, A, = AL,
and v, = v, and the learning rule becomes:

Awy, = pgy,(x — 7, W) (15)
where 7, and Wy are the modified weight and output defined in Eqn. (12). Eqn. (15) is

equivalent to the original learning rule in Eqn. (10), but with a new weight vector modified
by device mismatch.

A convergence analysis for Eqn. (15) is complicated, but by analogy to LMS we can show that
the weights indeed converge to the same values given in Eqns. (7) and (8), which compensate
for the effects of gain mismatch and offset. Simulation results verify this assumption. Note
that this will only be the case if we use the same hardware multipliers to compute y; and
x'r. The analysis extends naturally to the higher-order principal components.

Fig. 4(a) shows our implementation of the GHA learning rule. The multiplexer shares the
analog multipliers between the computation of y; and X'y, and is controlled by a digital signal
that alternates its value during the computation and adaptation phases of the algorithm.
Unlike LMS, GHA trains the algorithm using the images from the training set. Fig. 4(b)
shows the normalized RMS value of the output error for the first 10 principal components.
Comparing it to Fig. 3(b), the error is significantly higher than LMS, moving between 4%
and 35% of the enery of the output. This higher error is due in part to the nonlinear
multiply in the computation of x’j, and because there is a strong dependency between
the learning rates used to update the bias synapse and the other weights in the network.
However, as Section 5 shows, this error does not translate into a large degradation in the
face classification performance.
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Figure 4: Training the PCA network with GHA. (a) We reuse the multiplier to compute
x'y, and use a pulse-based implementation of the GHA rule. (b) RMS value of the error for
the first 10 principal components, normalized to the RMS value of each PC.

5 Classification Results

We designed and fabricated arithmetic circuits for the building blocks described in the
previous sections using a 0.35um CMOS process, including analog memory cells, multipliers,
and weight-update rules for LMS and GHA. We characterized these circuits in the lab and
built a software emulator that allows us to test the static performance of different network
configurations with less than 0.5% error. We simulated the LTA circuit in software. Using
the emulator, we tested the performance of the face-recognition network on the Olivetti
Research Labs (ORL) database, consisting on 10 photos of each of 40 total subjects. We
used 5 random photos of each subject for the training set and 5 for testing. Limitations
in our circuit emulator forced us to reduce the images to 12 x 12 pixels. The estimated
power consumption of the circuit with these 144 inputs and 39 projections is 18mW (540nJ
per classification with 30us settling time), and the layout area is 2.2mm?. These numbers
represent a 2-5x reduction in area and more than 100x reduction in power compated to
standard cell-based digital implementations [4,5].

Fig. 5(a) shows the classification performance of the network using PCA for dimensionality
reduction, versus the number of principal components in the subspace. First, we tested
the network using PCA for dimensionality reduction. The figure shows the performance
of a software implementation of PCA with Euclidean distances, hardware PCA trained
with LMS and software-computed weights, and hardware PCA trained with on-chip GHA.
Both hardware implementations use Manhattan distances and a software LTA. The plots
show the mean of the classification accuracy computed for each of the 40 individuals in the
database. The error bars show one standard deviation above and below the mean. The
software implementation peaks at 84% classification accuracy, while the hardware LMS and
GHA implementations peak at 83% and 79%, respectively. Note that GHA performs only
slightly worse than LMS, mainly because we compute and store the principal components
of the training set in the face database using the same PCA network used to reduce the
dimensionality of the test images, which helps to preserve the distance between classes in
the feature space. The standard deviations are similar in all cases. Using an uncalibrated
network brings the performance below 5%, mainly due to the offsets in the multipliers which
change the PCA projection and take the signals outside of their nominal operating range.

Fig. 5(a) shows the classification results using the LDA in the dimensionality reduction
network. The results are slightly better than PCA, and the error bars show also a lower
variance. The performance of the software implementation of LDA and an a hard-classifier
based on Euclidean distances is 83%. The LMS-trained hardware network with Manhattan
distances and a software LTA yields 82%. Replacing the LTA with a software RBF classifier,
the chip achieves 85% classification performance, while the software implementation (not
shown) peaks at 87%. Using 40x40-pixel images and 39 projections, the software LDA
network with RBF achieves more than 98% classification accuracy. Therefore, our current
results are limited by the resolution of the input images.
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Figure 5: Classification performance for a 12 x 12-pixel version of the ORL database ver-
sus number of projections, using PCA and LDA for dimensionality reduction. Computing
coefficients off-chip and writing them on the chip using LMS yields between 83% and 85%
classification performance for PCA and LDA, respectively. This represents 98%-99% of the
performance of a software implementation.

6 Conclusions

We presented an analog-VLSI network for face-recognition using subspace methods. We
analyzed the effects of device mismatch on the performance of the dimensionality-reduction
network and tested two techniques based on local adaptation which compensate for gain
mismatch and offsets. We showed that using LMS to train the network on precomputed
coefficients to perform PCA or LDA performs better than using GHA to learn PCA coeffi-
cients on chip. Ultimately, both techniques perform similarly in the face-classification task
with the ORL database, achieving a classification performance of 83%-85% (98%-99% of a
software implementation of the algorithms). Simulation results show that the performance
is currently limited by the resolution of the input images. We are currently working on the
integration LTA and RBF classifiers on chip, and on support of higher-dimensional inputs.
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