
Appendix

Joseph K. Bradley
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

jkbradle@cs.cmu.edu

Robert E. Schapire
Department of Computer Science

Princeton University
Princeton, NJ 08540

schapire@cs.princeton.edu

1 Proof of Theorem 1

Let π(F + αh) = E[ln(1 + e−y(F (x)+αh(x)))]. Given the previous estimate F (x), we first fix α and
choose h(x) to minimize a second-order expansion of π(F + αh) around h(x) = 0.

π(F + αh) = E
[
ln(1 + e−yF (x))− yαh(x)

1 + eyF (x)
+

1
2

y2α2h(x)2eyF (x)

(1 + eyF (x))2

]
= E

[
ln(1 + e−yF (x))− yαh(x)

1 + eyF (x)
+

1
2

α2eyF (x)

(1 + eyF (x))2

]
For α > 0, minimizing this approximation of π(F + αh) with respect to h(x) is equivalent to
maximizing the weighted expectation Eq[yh(x)] ≡ E[q(x, y)yh(x)] where q(x, y) = 1

1+eyF (x) .
This criterion is optimized for f(x) = sign(Eq[y|x]).

Now, given h(x), FilterBoost chooses α to minimize the upper bound

π(F + αh) ≤ E[e−y(F (x)+αh(x))].

This is the same optimization objective used by AdaBoost and is minimized when α = 1
2 log( 1/2+γ

1/2−γ )
where γ is the edge of h(x); this is exactly the α used by FilterBoost. �

2 Proof of Lemma 1

πt − πt+1 =
∑
(x,y)

D(x, y) ln
(1− qt+1(x, y)

1− qt(x, y)

)
(1)

Since qt(x, y) = 1
1+eyFt(x) , Ft(x) =

∑t−1
t′=1 αt′ht′(x),

eyFt(x) =
1

qt(x, y)
− 1 and (2)

qt+1(x, y) =
1

1 + eyFt(x)+αtyht(x)
(3)

Defining vt(x, y) = αtyht(x), combining (2) and (3) gives

qt+1(x, y) =
1

1 + ( 1
qt(x,y) − 1)evt(x,y)

=
qt(x, y)

qt(x, y) + (1− qt(x, y))evt(x,y)
(4)

Substituting (4) into (1), and using ln(1 + z) ≤ z, gives

πt − πt+1 = −
∑

(x,y) D(x, y) ln(qt(x, y)e−vt(x,y) + 1− qt(x, y))
≥ −

∑
(x,y) D(x, y)(−qt(x, y) + qt(x, y)e−vt(x,y))

=
∑

(x,y) D(x, y)qt(x, y)−
∑

(x,y) D(x, y)qt(x, y)e−vt(x,y)

1



Let Dt(x, y) = D(x,y)qt(x,y)
pt

. Then we can write

πt − πt+1 ≥ pt − pt

∑
(x,y)

Dt(x, y)e−αtyht(x) (5)

Using αt = 1
2 ln( 1/2+γt

1/2−γt
) and εt ≡ PrDt [sign(ht(x)) 6= y] lets us write

∑
(x,y)

Dt(x, y)e−αtyht(x) = e−αt(1− εt) + eαtεt = 2

√
1
4
− γ2

t

Substituting this factor into (5) completes the proof. �

3 Proof of Theorem 4

Suppose pt > ε/2. Then the probability that the filter rejects n sequential examples is (1− pt)n <
(1− ε/2)n. So, if (1− ε/2)n ≤ δ′t, then pt ≤ ε/2 with probability at least 1− δ′t. From Theorem
2, we know pt ≤ ε/2 implies errt ≤ ε. The condition (1 − ε/2)n ≤ δ′t gives our bound on n to
ensure errt ≤ ε with high probability. �

4 Proof of Lemma 2

The proof is identical to Lemma 1 up to (5). Now, though, αt = 1
2 ln( 1/2+γ̂′

t

1/2−γ̂′
t
). Using Pr[|γ̂t−γt| ≤

τγt] > 1 − δt and γ̂′t = γ̂t

1+τ , we know γt ≥ γ̂t

1+τ with probability at least 1 − δt, which in turn
implies γ̂′t ≤ γt. So we may rewrite and bound the sum in (5) as:∑

(x,y)

Dt(x, y)e−αtyht(x) = e−αt(1− εt) + eαtεt

=
( 1

2 − γ̂′t
1
2 + γ̂′t

)1/2 (
1
2

+ γt

)
+

( 1
2 + γ̂′t
1
2 − γ̂′t

)1/2 (
1
2
− γt

)

≤
( 1

2 − γ̂′t
1
2 + γ̂′t

)1/2 (
1
2

+ γ̂′t

)
+

( 1
2 + γ̂′t
1
2 − γ̂′t

)1/2 (
1
2
− γ̂′t

)
= 2

√
1/4− γ̂′2t

Substituting in γ̂′t = γ̂t

1+τ and using γ̂t ≥ γt(1− τ) gives∑
(x,y) Dt(x, y)e−αtyht(x) ≤ 2

√
1/4− ( γ̂t

1+τ )2

≤ 2
√

1/4− γ2
t ( 1−τ

1+τ )2

Substituting into (5) gives the required bound. �

5 Datasets

Majority is generated by a majority vote rule among 40 of 100 binary attributes, with labels cor-
rupted with 10% probability. Twonorm is a noisy synthetic dataset with 20 real-valued attributes
from Breiman (1998). Adult is from the UCI Machine Learning Repository (Newman et al., 1998,
donated by Ron Kohavi). Adult consists of 14-attribute census data, with labels indicating income
level, and eliminating examples with missing attribute values left 45222 examples. Covertype (copy-
righted by Jock A. Blackard and Colorado State U.) is also from the UCI Machine Learning Reposi-
tory. It contains 54-attribute forestry data, where examples are locations and labels indicate the type
of tree cover. The original dataset has 7 classes, but we combined the 6 smallest to make the dataset
binary, leaving the largest (49% of the examples) alone.
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