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Abstract

Variational methods are frequently used to approximate or bound the partition
or likelihood function of a Markov random field. Methods based on mean field
theory are guaranteed to provide lower bounds, whereas certain types of convex
relaxations provide upper bounds. In general, loopy belief propagation (BP) pro-
vides often accurate approximations, but not bounds. We prove that for a class of
attractive binary models, the so—called Bethe approximation associated with any
fixed point of loopy BP always lower bounds the true likelihood. Empirically,
this bound is much tighter than the naive mean field bound, and requires no fur-
ther work than running BP. We establish these lower bounds using a loop series
expansion due to Chertkov and Chernyak, which we show can be derived as a
consequence of the tree reparameterization characterization of BP fixed points.

1 Introduction

Graphical models are widely used in many areas, including statistical machine learning, computer
vision, bioinformatics, and communications. Such applications typically require computationally
efficient methods for (approximately) solving various problems, including computing marginal dis-
tributions and likelihood functions. The variational framework provides a suite of candidate meth-
ods, including mean field approximations [3, 9], the sum—produbtebef propagation(BP) algo-

rithm [11, 14], Kikuchi and cluster variational methods [23], and related convex relaxations [21].

The likelihood or partition function of an undirected graphical model is of fundamental interest in
many contexts, including parameter estimation, error bounds in hypothesis testing, and combina-
torial enumeration. In rough terms, particular variational methods can be understood as solving
optimization problems whose optima approximate the log partition function. For mean field meth-
ods, this optimal value is desirably guaranteed to lower bound the true likelihood [9]. For other
methods, including th@&ethe variational problenunderlying loopy BP [23], optima may either
over—estimate or under—estimate the truth. Although “convexified” relaxations of the Bethe problem
yield upper bounds [21], to date the best known lower bounds on the partition function are based on
mean field theory. Recent work has studiedp series expansiorjg, 4] of the partition function,

which generate better approximations but not, in general, bounds.

Several existing theoretical results show that loopy BP, and the corresponding Bethe approximation,
have desirable properties for graphical models with long cycles [15] or sufficiently weak depen-
dencies [6, 7, 12, 19]. However, these results do not explain the excellent empirical performance
of BP in many graphs with short cycles, like the nearest—neighbor grids arising in spatial statistics
and low—level vision [3, 18, 22]. Such models often encode “smoothness” priors, and thus have
attractiveinteractions which encourage connected variables to share common values. The first main
contribution of this paper is to demonstrate a family of attractive models for which the Bethe varia-
tional method always yields lower bounds on the true likelihood. Although we focus on models with
binary variables (but arbitrary order of interactions), we suspect that some ideas are more generally
applicable. For such models, these lower bounds are easily computed from any fixed point of loopy
BP, and empirically improve substantially on naive mean field bounds.



Our second main contribution lies in the route used to esfalfie Bethe lower bounds. In partic-

ular, Sec. 3 uses the reparameterization characterization of BP fixed points [20] to provide a simple
derivation for the loop series expansion of Chertkov and Chernyak [2]. The Bethe approximation
is the first term in this representation of the true partition function. Sec. 4 then identifies attrac-
tive models for which all terms in this expansion are positive, thus establishing the Bethe lower
bound. We conclude with empirical results demonstrating the accuracy of this bound, and discuss
implications for future analysis and applications of loopy BP.

2 Undirected Graphical Models

Given an undirected gragh = (V, E), with edgeqs, t) € E connecting: verticess € V, a graph-
ical model associates each node with a random variahléaking valuesr, € X. For pairwise
Markov random field§MRFs) as in Fig. 1, the joint distribution of := {z, | s € V'} is specified
via a normalized product of locabmpatibility functions:

p(z) = ﬁ H Vs (s) H Vst(Ts, 71) 1)

seV (s,t)EE
The partition functionZ(v) == >_ cxn [1s¥s(@s) [l ¥st(zs, 2¢), whose value depends on
the compatibilities), is defined so thai(z) is properly normalized. We also consider distributions

defined by hypergraph§ = (V,C), where each hyperedgec C connects some subset of the
vertices (cC V). Lettingz.. := {z; | s € ¢}, the corresponding joint distribution equals

1
nr) = ——% P (s Pe(e (2)
@)= gy L v L vt
where as beforeZ(v) = > n [I, ¥s(zs) T].%e(xc). Such higher—order random fields are
conveniently described by the bipartfeetor graphgq11] of Fig. 2.

In statistical physics, the partition function arises in the study of how physical systems respond to
changes in external stimuli or temperature [23]. Alternatively, when compatibility functions are
parameterized by exponential families [2RJg Z(v) is the family’'scumulant generating function,

and thus intrinsically related to the model’s marginal statistics. For directed Bayesian networks
(which can be factored as in eq. (2)(«) is the marginal likelihood of observed data, and plays a
central role in learning and model selection [9]. However, for general graphs coupling discrete ran-
dom variables, the cost of exactly evaluatii)) grows exponentially witm [8]. Computationally
tractable families of bounds on the true partition function are thus of great practical interest.

2.1 Attractive Discrete Random Fields

In this paper, we focus on binary random vectors {0,1}". We say that a pairwise MRF, with
compatibility functionsy,, : {0, 1} — R™, hasattractiveinteractions if

’(/}st(07 0) ’(/}st(la 1) Z ’(/}st(oa 1) ’(/}st(la O) (3)
for each edgés, t) € E. Intuitively, this condition requires all potentials to place greater weight
on configurations where neighboring variables take the same value. Our later analysis is based on
pairwise marginal distributions;; (x5, x;), which we parameterize as follows:
1- Ts — Tt + Tst Tt — Tst Ts - = ETst[XS] (4)
Ts — Tst Tst Tst = Er,, [Xs Xt

We letE, ,[-] denote expectation with respect 1o, (x5, z¢), SO thatry is the probability that
X = X; = 1. This normalized matrix is attractive, satisfying eq. (3), if and onbyif> 757;.

Tt (T, T¢) =

For binary variables, the pairwise MRF of eq. (1) provides one representation of a general, inho-
mogeneousdsing model. In the statistical physics literature, Ising models are typically expressed
by coupling random spins, € {—1, +1} with symmetric potential®g 14 (25, 2¢:) = 0s:252:. The
attractiveness condition of eq. (3) then becoifigs> 0, and the resulting model h&srromagnetic
interactions. Furthermore, pairwise MRFs satisfy tbgularity condition of [10], and thus allow
tractable MAP estimation via graph cuts [5], if and only if they are attractive. Even for attractive
models, however, calculation of the partition function in non—planar graphs is #P—complete [8].

To define families of higher—order attractive potentials, we first consider a probability distribution
7.(zc) Onk = |c| binary variables. Generalizing eq. (4), we parameterize such distributions by the



following collection of2¥ — 1 mean parameters:

Ta ::ETC[HXS:l @#agc (5)
s€a
For example sy, (x5, z¢, ., ) would be parameterized blyrs, 7¢, 7w, Tsts Tsu, Teu, Tstw }- FOr @ny
subset: C ¢, we then define the following central moment statistic:

Rq = ETC|:H(XS_TS):| @#G/QC (6)
s€a
Note thatx, = 0, while ks = Cov. (X, X;) = 75t — 7s7¢. The third—order central moment then
equals the cumulamts;, = et — TstTu — TsuTt — TtuTs + 2TsTeTu-

Given these definitions, we say that a probability distributigix..) is attractive if the central mo-
ments associated with all subsets_ ¢ of binary variables are non—negative, (& 0). Similarly, a
compatibility functiomp.(x..) is attractive if the probability distribution attained by normalizing its
values has non—-negative central moments. For example, the following potential is easily shown to
satisfy this condition for all degreés= |c|, and any scalaff. > 0:

96 :L'1:£U2:"':xk
log (@1, ..., ak) = { —9 otherwise @

2.2 Bedlief Propagation and the Bethe Variational Principle

Many applications of graphical models require estimates of the posterior marginal distributions of
individual variablesrs(xz;) or factorst.(z.). Loopy belief propagation(BP) approximates these
marginals via a series ohiessagepassed among nodes of the graphical model [14, 23] T'Let
denote the set of factors which dependXp or equivalently the neighbors of noden the corre-
sponding factor graph. The BP algorithm then iterates the following message updates:

Msc(s) — hs(s)  [[ mas(zs) Mes(ws) — Y ve(we) [ muclz)  (8)
deT'(s)\c Te\s tec\s
The left—-hand expression updates the messagér ) passed from variable nodeo factorc. New
outgoing messages..;(z,) from factorc to eachs € ¢ are then determined by marginalizing the
incoming messages from other nodes. At any iteration, appropriately normalized products of these
messages define estimates of the desired marginals:

Ts(xs X 1/) Ig H mcs s Tc('rc) X ¢c(zc) Hmtc(xt) (9)
cel'(s) tec
In tree—structured graphs, BP defines a dynamic programming recursion which converges to the
exact marginals after finitely many iterations [11, 14]. In graphs with cycles, however, convergence
is not guaranteed, ambeudo—marginalsomputed via eq. (9) are (often good) approximations.

A wide range of inference algorithms can be derived via variational approximations [9] to the true
partition function. Loopy BP is implicitly associated with the followiBgthe approximation:

IOng '(/]7 = ZZTS Ts 1ngs Ts +ZZTC Te Ingc c)

sEV xs ceC xc
7e(Te)
_ g;ﬂ; xs)log 7s(s) ;;TC Te 1og (@) (10)

Fixed points of loopy BP correspond to stationary points of this Bethe apprOX|mati0n [23], subject
to the local marginalization constraingmc\s Te(we) = Ts(xs).

3 Reparameterization and Loop Series Expansions

As discussed in Sec. 2.2, any BP fixed point is in one—to—one correspondence witfra et
of pseudo—marginals associated with each of the graph’s node¥ and factorss € C. These
pseudo—marginals then lead to an alternqbiaEameterizatiorIZO] of the factor graph of eq. (2):

T SL'
Ts(xs) (@) (12)
7t e g o
For pairwise MRFs, the reparameterlzed compatlblllty functions equét, x;)/7s(xs) e (xt).

The BP algorithm effectively searches for reparameterizations whiclreeconsistent, so that



7.(z.) is the exact marginal distribution of.. for any tree (or forest) embedded in the original
graph [20]. In later sections, we take expectations with respecgt(tq.) of functions f(z.) de-
fined over individual factors. Although these pseudo—marginals will in general not equali¢he
marginalsp.(z.), BP fixed points ensure local consistency so thaf f(X.)] is well-defined.

Using eq. (10), it is easily shown that the Bethe approximafigfr; ) = 1 for anyjoint distribu-

tion defined by reparameterized potentials as in eq. (11). For simplicity, the remainder of this paper
focuses on reparameterized models of this form, and analyzes properties of the corresponding exact
partition functionZ (7). The resulting expansions and bounds are then related to the original MRF’s
partition function via the positive constafi{vy))/Z(7) = Z3(¢; 7) of eq. (10).

Recently, Chertkov and Chernyak proposed a filuitg series expansiof2] of the partition func-

tion, whose first term coincides with the Bethe approximation. They provide two derivations: one
applies a trigonometric identity to Fourier representations of binary variables, while the second em-
ploys a saddle point approximation obtained via an auxiliary field of complex variablegalige
transformationsinderlying these derivations are a type of reparameterization, but their form is com-
plicated by auxiliary variables and extraneous degrees of freedom. In this section, we show that the
fixed point characterization of eq. (11) leads to a more direct, and arguably simpler, derivation.

3.1 PairwiseL oop Series Expansions

We begin by developing a loop series expansion for pairwise MRFs. Given an undirected graph
G = (V, E), and some subsét C F of the graph’s edges, lét (F') denote the degree (number of
neighbors) of node in the subgraph induced k. As illustrated in Fig. 1, any subsétfor which

all nodess € V have degred(F') # 1 defines ageneralized loof2]. The partition function for

any binary, pairwise MRF can then be expanded via an associatedisepaorrections.

Proposition 1. Consider a pairwise MRF defined on an undirectee= (V, E), with reparameter-
ized potentials as in e11). The associated partition function then equals

2(r) =1+ Y Bp [ En [(X, = )0 Bri= [[ B (12)
0#FCE sEV (s,t)eF
B 1= Tet — TsTi Cov,,, (X5, Xt) (13)

7s(1 = 7)1 (1 — 1) B Var,, (X;) Varr, (Xt)

where only generalized loogs lead to non—zero terms in the sum of ), and
E. [(Xs — 7)Y = 7e(1 = 75) [(1 = 7)1 + (=14 (15)47] (14)

are central moments of the binary variables at individual nodes.

Proof. To establish the expansion of eq. (12), we exploit the following polynomial representation of
reparameterized pairwise compatibility functions:

Tst(xsa (Et)
Ts(xs)Tt(xt) =1 + ﬁst(xs TS)<xt Tt) (15)
As verified in [17], this expression is satisfied for afw.,x;) € {0,1}? if 3, is defined as in
eq. (13). For attractive models satisfying eq. (3); > 0 for all edges. UsingE;[-] to denote
expectation with respect to the fully factorized distributigr) = [], 7s(x5), we then have
Tt (Ts, Tt)
2(r) Z . H 7s(s) H Ts(xs)Te(e)
ze{0,1} s€V (s,t)eE
= E.;|: H H 1+ ﬂst(Xs - Ts)(Xt - Tt):l (16)
(s,t)eE s,t)EE
Expanding this polynomial via the expectation operator’s linearity, we recover one term for each
non—empty subsdt C E of the graph’s edges:

Z(r)=1+ > Ei [] Bea(Xs—r)(X:— Tt):| 17)
0#AFCE  “(sit)eF
The expression in eq. (12) then follows from the independence structurérdf and standard
formulas for the moments of Bernoulli random variables. To evaluate these terms, note that if
ds(F) = 1, itfollows thatE,_[X — 75] = 0. There is thus one loop correction for each generalized
loop F', in which all connected nodes have degree at least two. O

Tst(XS7Xt) 1 _ -
TS(XS)Tt(Xt)_ _ET|:(
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Figure 1:A pairwise MRF coupling ten binary variables (left), and the nine generalized loops in its loop series
expansion (right). For attractive potentials, two of the generalized loops may have negative signs (second &
third from right), while the core graph of Thm. 1 contains eight variables (far right).

Figure 1 illustrates the set of generalized loops associated with a particular pairwise MRF. These
loops effectively define corrections to the Bethe estiniéte) ~ 1 of the partition function for
reparameterized models. Tree—structured graphs do not contain any non-trivial generalized loops,
and the Bethe variational approximation is thus exact.

The loop expansion formulas of [2] can be precisely recovered by transforming binary variables to
a spin representation, and refactoring terms from the denominator of edge wgjgtisadjacent
vertices. Explicit computation of these loop corrections is in general intractable; for example, fully
connected graphs with > 5 nodes have more thaf generalized loops. In some cases, accounting

for a small set of significant loop corrections may lead to improved approximation&/tp[4], or

more accurate belief estimates for LDPC codes [1]. We instead use the series expansion of Prop. 1
to establish analytic properties of BP fixed points.

3.2 Factor Graph Loop Series Expansions

We now extend the loop series expansion to higher—order MRFs defined on hypergrapis C).

Let E = {(s,c) | c € C,s € c} denote the set of edges in the factor graph representation of this
MRF. As illustrated in Fig. 2, we define a generalized loop to be a subsetF of edges such that

all connected factor and variable nodes have degree at least two.

Proposition 2. Consider any factor graplz = (V,C) with reparameterized potentials as in
eg.(11), and associated edgds The partition function then equals

Z(T) =1+ Z /6F H ETS |:(Xs - Ts)ds(F):| ,BF = H ﬁac(F) (18)
0AFCE seV ceC
Ba = Fa _ Br, [Toea(Xs —75)] (19)

Ht€a Tt(l - Tt) HtEa Vath (Xt)
wherea.(F) := {s € ¢ | (s,c) € F} denotes the subset of variables linked to factor nobg the
edges inF'. Only generalized loop8' lead to non—zero terms in the sum of EB).

Proof. As before, we employ a polynomial representation of the reparameterized factors in eq. (11):

TC((EC
=1+ Ba Ts — Ts) 20
Teertan ~ 22 LI @
For factor graphs with attractive reparameterized potentials, the constant 0 for all a C c.
Note that this representation, which is derived in [17], reduces to that of eq. (15)avhefs, t}.
Single—variable subsets are excluded in eq. (20) becauseE, [X; — 7] =0

Applying eq. (20) as in our earlier derivation for pairwise MRFs (see eq. (16)), we may express the
partition function of the reparameterized factor graph as follows:

20 =i [T oty | =B IL 1+ S s Tl e

ceC HtEC Tt( t ceC 0#aCc  s€a

Note that3, = 0 for any subset wher| = 1. There is then a one—to—one correspondence between
variable node subsetsC ¢, and subset§(s, ¢) | s € a} of the factor graph’s edges. Expanding

this expression by’ C E, it follows that each factor € C contributes a term corresponding to the
chosen subset. (F') of its edges:

D=1+ ¥ E{Hﬁam I (Xs—m] (22)
0#AFCE ceC s€ac(F)

Note that3; = 1. Equation (18) then follows from the independence propertiés.of. For a term
in this loop series to be non-zero, there must be no degree one variable$ sif¢g— 7] = 0.
In addition, the definition off, implies that there can be no degree one factor nodes. O

5
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Figure 2: A factor graph (left) with three binary variables (circles) and four factor nodes (squares), and the
thirteen generalized loops in its loop series expansion (right, along with the full graph).

4 Lower Boundsin Attractive Binary Models

The Bethe approximation underlying loopy BP differs from mean field methods [9], vidnedr
boundthe true log partition functioZ (¢), in two key ways. First, while the Bethe entropy (second
line of eq. (10)) is exact for tree—structured graphspproximateqrather than bounds) the true
entropy in graphs with cycles. Second, the marginalization condition imposed by loomlBESs
(rather than strengthens) the global constraints characterizing valid distributions [21]. Neverthe-
less, we now show that for a large family of attractive graphical models, the Bethe approximation
Zs(v; 1) of eq. (10) lower boundZ (). In contrast with mean field methods, these bounds hold
only at appropriate BP fixed pointsot for arbitrarily chosen pseudo—marginalgz..).

4.1 Partition Function Boundsfor Pairwise Graphical M odels

Consider a pairwise MRF defined @n = (V, E), as in eq. (1). Le/y C V denote the set of
nodes which either belong to some cyclegdnor lie on a path (sequence of edges) connecting two
cycles. We then define thmre graphH = (Vy, Ey) as the node—induced subgraph obtained by
discarding edges from nodes outsidg, so thatEy = {(s,t) € E'| s,t € Vi }. The unique core
graph H underlying any graplt; can be efficiently constructed by iteratively pruning degree one
nodes, or leaves, until all remaining nodes have two or more neighbors. The following theorem
identifies conditions under which all terms in the loop series expansion must be non—negative.

Theorem 1. Let H = (Vy, Ex) be the core graph for a pairwise binary MRF, with attractive
potentials satisfying eq3). Consider any BP fixed point for which all nodes Vy with three or
more neighbors i have marginals, < % (or equivalently,rs > %). The corresponding Bethe
variational approximationZz(i; 7) then lower bounds the true partition functicf().

Proof. It is sufficient to show thaZ (7) > 1 for any reparameterized pairwise MRF, as in eq. (11).
From eq. (9), note that loopy BP estimates the pseudo—margip@als, z;) via the product of
Vs (xs, ) With message functions afingle variables. For this reason, attractive pairwise com-
patibilities always lead to BP fixed points with attractive pseudo—marginals satisfying7s7;.

Consider the pairwise loop series expansion of eq. (12). As shown by eq. (13), attractive models
lead to edge weight§,; > 0. It is thus sufficient to show thdf[, E,, [(X, — 7,)% 7] > 0 for

each generalized loop C E. Suppose first that the graph has a single cycle, and thus exactly one
non—zero generalized lodp. Because all connected nodes in this cycle have degree two, the bound
follows becausé, [(Xs — 7‘9)2] > 0. More generally, we clearly havé(r) > 1 in graphs where

every generalized loop' associates an even number of neighki(g") with each node.

Focusing on generalized loops containing nodes with odd degiree 3, eq. (14) implies that
E., [(Xs — 75)%] > 0 for marginals satisfying — 7, > 7,. For BP fixed points in which, < §

for all nodes, we thus havé(r) > 1. In particular, the symmetric fixed point = % leads to uni-
formly positive generalized loop corrections. More generally, the marginals of moftesvhich
ds(F) < 2 for every generalized loop’ do not influence the expansion’s positivity. Theorem 1
discards these nodes by examining the topology of the core dilafdee Fig. 1 for an example).
For fixed points where, > 1 for all nodes, we rewrite the polynomial in the loop expansion of
eq. (15) ag1 + Bs:(7s — xs) (7 — ¢)), and employ an analogous line of reasoning. O

In addition to establishing Thm. 1, our arguments show thetrire partition functiomonotonically
increases as additional edges, with attractive reparameterized potentials as in eq. (11), are added to
a graph with fixed pseudo—marginats < % For such models, the accumulation of particular

loop corrections, as explored by [4], produces a sequence of increasingly tight boufidg orin

addition, we note that the conditions required by Thm. 1 are similar to those underlying classical



correlation inequalitieg16] from the statistical physics literature. Indeed, the Griffiths—Kelly—
Sherman (GKS) inequality leads to an alternative proof in cases wbef%l for all nodes.

For attractive Ising models in which some nodes have margmals% and othersr; < % the loop

series expansion may contain negative terms. For small graphs like that in Fig. 1, it is possible to
useupperbounds on the edge weights;, which follow from 7g; < min(7g, 7¢), to cancel negative

loop corrections with larger positive terms. As confirmed by the empirical results in Sec. 4.3, the
lower boundZ(vy) > Z3(v; ) thus continues to hold for many (perhaps all) attractive Ising models
with less homogeneous marginal biases.

4.2 Partition Function Boundsfor Factor Graphs

Given a factor grapld: = (V, C) relating binary variables, define a core gragh= (Vy,Cy) by
excluding variable and factor nodes which are not members of any generalized loops. As in Sec. 2.2,
letI'(s) denote the set of factor nodes neighboring variable nddehe core grapiH.

Theorem 2. Let H = (Vy,Cpy) be the core graph for a binary factor graph, and consider an
attractive BP fixed point for which one of the following conditions holds:

i) 75 < % for all nodess € Vi with [T'(s)| > 3, andk, > 0foralla C ¢, c € Cp.

(i) 7, > 1 forall nodess € Vi with |T(s)| > 3, and(—1)l%lk, > 0foralla C ¢, c € Cp.
The Bethe approximatiofiz(1; 7) then lower bounds the true partition functiéf{s)).

For the case where, < % the proof of this theorem is a straightforward generalization of the

arguments in Sec. 4.1. When > 1, we replace al(z, — 7,) terms by(r, — z,) in the expansion
of eq. (20), and again recover uniformly positive loop corrections.

For any given BP fixed point, the conditions of Thm. 2 are easy to verify. For factor graphs, it is
more challenging to determine which compatibility functiahgz.) necessarily lead to attractive
fixed points. For symmetric potentials as in eq. (7), however, one can show that the conditions on
Kq,a C c are necessarily satisfied whenever all variable neded’y; have the same bias.

4.3 Empirical Comparison of M ean Field and Bethe L ower Bounds

In this section, we compare the accuracy of the Bethe variational bounds established by Thm. 1
to those produced by a naive, fully factored mean field approximation [3, 9]. Using the
spin representation, € {—1,+1}, we examine Ising models with attractive pairwise potentials
log st (2s, 2t) = 01252, O varying strengthd,, > 0. We first examine a 2D torus, with potentials

of uniform strengthd,, = 6 and no local observations. For such MRFs, the exact partition func-
tion may be computed via Onsager’s classical eigenvector method [13]. As shown in Fig. 3(a), for
moderatd the Bethe bounds(v; 7) is substantially tighter than mean field. For lagg@nly two

states (all spins “up” or “down”) have significant probability, so tHdt)) ~ 2 exp(0|E|). In this
regime, loopy BP exhibits “symmetry breaking” [6], and converges to one of these states at random
with corresponding bounds(y; 7) ~ exp(0|E|). As verified in Fig. 3(a), a8 — oo the difference

log Z(¢) — log Zg(1; T) =~ log 2 ~ 0.69 thus remains bounded.

We also consider a set of randar® x 10 nearest—neighbor grids, with inhomogeneous pairwise
potentials sampled according ;| ~ N(O,HQ), and observation potentialsg s(zs) = 0525,

05| ~ N(0,0.12). For each candidate we samplel00 random MRFs, and plot the average differ-
encelog Zg(v; ) — log Z(1)) between the true partition function and the BP (or mean field) fixed
point reached from a random initialization. Fig. 3(b) first considers MRFs where 0 for all
nodes, so that the conditions of Thm. 1 are satisfied for all BP fixed points. For these models, the
Bethe bound isxtremelyaccurate. In Fig. 3(c), we also consider MRFs where the observation
potentialsd, are of mixed signs. Although this sometimes leads to BP fixed points with negative
associated loop corrections, the Bethe variational approximation neverthblesslower bounds

the true partition function in these examples. We hypothesize that this bound in fact holds for all
attractive, binary pairwise MRFs, regardless of the observation potentials.

5 Discussion

We have provided an alternative, direct derivation of the partition function’s loop series expansion,
based on the reparameterization characterization of BP fixed points. We use this expansion to prove
that the Bethe approximation lower bounds the true partition function in a family of binary attractive
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models. These results have potential implications for the suitability of loopy BP in approximate
parameter estimation [3], as well as its convergence dynamics. We are currently exploring general-
izations of our results to other families of attractive, or “nearly” attractive, graphical models.
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