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Abstract
Variational methods are frequently used to approximate or bound the partition
or likelihood function of a Markov random field. Methods based on mean field
theory are guaranteed to provide lower bounds, whereas certain types of convex
relaxations provide upper bounds. In general, loopy belief propagation (BP) pro-
vides often accurate approximations, but not bounds. We prove that for a class of
attractive binary models, the so–called Bethe approximation associated with any
fixed point of loopy BP always lower bounds the true likelihood. Empirically,
this bound is much tighter than the naive mean field bound, and requires no fur-
ther work than running BP. We establish these lower bounds using a loop series
expansion due to Chertkov and Chernyak, which we show can be derived as a
consequence of the tree reparameterization characterization of BP fixed points.

1 Introduction
Graphical models are widely used in many areas, including statistical machine learning, computer
vision, bioinformatics, and communications. Such applications typically require computationally
efficient methods for (approximately) solving various problems, including computing marginal dis-
tributions and likelihood functions. The variational framework provides a suite of candidate meth-
ods, including mean field approximations [3, 9], the sum–product orbelief propagation(BP) algo-
rithm [11, 14], Kikuchi and cluster variational methods [23], and related convex relaxations [21].

The likelihood or partition function of an undirected graphical model is of fundamental interest in
many contexts, including parameter estimation, error bounds in hypothesis testing, and combina-
torial enumeration. In rough terms, particular variational methods can be understood as solving
optimization problems whose optima approximate the log partition function. For mean field meth-
ods, this optimal value is desirably guaranteed to lower bound the true likelihood [9]. For other
methods, including theBethe variational problemunderlying loopy BP [23], optima may either
over–estimate or under–estimate the truth. Although “convexified” relaxations of the Bethe problem
yield upper bounds [21], to date the best known lower bounds on the partition function are based on
mean field theory. Recent work has studiedloop series expansions[2, 4] of the partition function,
which generate better approximations but not, in general, bounds.

Several existing theoretical results show that loopy BP, and the corresponding Bethe approximation,
have desirable properties for graphical models with long cycles [15] or sufficiently weak depen-
dencies [6, 7, 12, 19]. However, these results do not explain the excellent empirical performance
of BP in many graphs with short cycles, like the nearest–neighbor grids arising in spatial statistics
and low–level vision [3, 18, 22]. Such models often encode “smoothness” priors, and thus have
attractiveinteractions which encourage connected variables to share common values. The first main
contribution of this paper is to demonstrate a family of attractive models for which the Bethe varia-
tional method always yields lower bounds on the true likelihood. Although we focus on models with
binary variables (but arbitrary order of interactions), we suspect that some ideas are more generally
applicable. For such models, these lower bounds are easily computed from any fixed point of loopy
BP, and empirically improve substantially on naive mean field bounds.
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Our second main contribution lies in the route used to establish the Bethe lower bounds. In partic-
ular, Sec. 3 uses the reparameterization characterization of BP fixed points [20] to provide a simple
derivation for the loop series expansion of Chertkov and Chernyak [2]. The Bethe approximation
is the first term in this representation of the true partition function. Sec. 4 then identifies attrac-
tive models for which all terms in this expansion are positive, thus establishing the Bethe lower
bound. We conclude with empirical results demonstrating the accuracy of this bound, and discuss
implications for future analysis and applications of loopy BP.

2 Undirected Graphical Models

Given an undirected graphG = (V,E), with edges(s, t) ∈ E connectingn verticess ∈ V , a graph-
ical model associates each node with a random variableXs taking valuesxs ∈ X . For pairwise
Markov random fields(MRFs) as in Fig. 1, the joint distribution ofx := {xs | s ∈ V } is specified
via a normalized product of localcompatibility functions:

p(x) =
1

Z(ψ)

∏

s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs, xt) (1)

The partition functionZ(ψ) :=
∑

x∈Xn

∏

s ψs(xs)
∏

(s,t) ψst(xs, xt), whose value depends on
the compatibilitiesψ, is defined so thatp(x) is properly normalized. We also consider distributions
defined by hypergraphsG = (V,C), where each hyperedgec ∈ C connects some subset of the
vertices (c⊂ V ). Lettingxc := {xs | s ∈ c}, the corresponding joint distribution equals

p(x) =
1

Z(ψ)

∏

s∈V

ψs(xs)
∏

c∈C

ψc(xc) (2)

where as beforeZ(ψ) =
∑

x∈Xn

∏

s ψs(xs)
∏

c ψc(xc). Such higher–order random fields are
conveniently described by the bipartitefactor graphs[11] of Fig. 2.

In statistical physics, the partition function arises in the study of how physical systems respond to
changes in external stimuli or temperature [23]. Alternatively, when compatibility functions are
parameterized by exponential families [20],logZ(ψ) is the family’scumulant generating function,
and thus intrinsically related to the model’s marginal statistics. For directed Bayesian networks
(which can be factored as in eq. (2)),Z(ψ) is the marginal likelihood of observed data, and plays a
central role in learning and model selection [9]. However, for general graphs coupling discrete ran-
dom variables, the cost of exactly evaluatingZ(ψ) grows exponentially withn [8]. Computationally
tractable families of bounds on the true partition function are thus of great practical interest.

2.1 Attractive Discrete Random Fields

In this paper, we focus on binary random vectorsx ∈ {0, 1}n. We say that a pairwise MRF, with
compatibility functionsψst :{0, 1}2 → R

+, hasattractiveinteractions if

ψst(0, 0) ψst(1, 1) ≥ ψst(0, 1) ψst(1, 0) (3)

for each edge(s, t) ∈ E. Intuitively, this condition requires all potentials to place greater weight
on configurations where neighboring variables take the same value. Our later analysis is based on
pairwise marginal distributionsτst(xs, xt), which we parameterize as follows:

τst(xs, xt) =

[

1− τs − τt + τst τt − τst

τs − τst τst

]

τs := Eτst
[Xs]

τst := Eτst
[XsXt]

(4)

We let Eτst
[·] denote expectation with respect toτst(xs, xt), so thatτst is the probability that

Xs = Xt = 1. This normalized matrix is attractive, satisfying eq. (3), if and only ifτst ≥ τsτt.

For binary variables, the pairwise MRF of eq. (1) provides one representation of a general, inho-
mogeneousIsing model. In the statistical physics literature, Ising models are typically expressed
by coupling random spinszs ∈ {−1,+1} with symmetric potentialslogψst(zs, zt) = θstzszt. The
attractiveness condition of eq. (3) then becomesθst ≥ 0, and the resulting model hasferromagnetic
interactions. Furthermore, pairwise MRFs satisfy theregularity condition of [10], and thus allow
tractable MAP estimation via graph cuts [5], if and only if they are attractive. Even for attractive
models, however, calculation of the partition function in non–planar graphs is #P–complete [8].

To define families of higher–order attractive potentials, we first consider a probability distribution
τc(xc) on k = |c| binary variables. Generalizing eq. (4), we parameterize such distributions by the
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following collection of2k − 1 mean parameters:

τa := Eτc

[

∏

s∈a

Xs

]

∅ 6= a ⊆ c (5)

For example,τstu(xs, xt, xu) would be parameterized by{τs, τt, τu, τst, τsu, τtu, τstu}. For any
subseta ⊆ c, we then define the following central moment statistic:

κa := Eτc

[

∏

s∈a

(Xs − τs)

]

∅ 6= a ⊆ c (6)

Note thatκs = 0, while κst = Covτ (Xs, Xt) = τst − τsτt. The third–order central moment then
equals the cumulantκstu = τstu − τstτu − τsuτt − τtuτs + 2τsτtτu.

Given these definitions, we say that a probability distributionτc(xc) is attractive if the central mo-
ments associated with all subsetsa ⊆ c of binary variables are non–negative (κa ≥ 0). Similarly, a
compatibility functionψc(xc) is attractive if the probability distribution attained by normalizing its
values has non–negative central moments. For example, the following potential is easily shown to
satisfy this condition for all degreesk = |c|, and any scalarθc > 0:

logψc(x1, . . . , xk) =

{

θc x1 = x2 = · · · = xk

−θc otherwise
(7)

2.2 Belief Propagation and the Bethe Variational Principle

Many applications of graphical models require estimates of the posterior marginal distributions of
individual variablesτs(xs) or factorsτc(xc). Loopy belief propagation(BP) approximates these
marginals via a series ofmessagespassed among nodes of the graphical model [14, 23]. LetΓ(s)
denote the set of factors which depend onXs, or equivalently the neighbors of nodes in the corre-
sponding factor graph. The BP algorithm then iterates the following message updates:

m̄sc(xs)← ψs(xs)
∏

d∈Γ(s)\c

mds(xs) mcs(xs)←
∑

xc\s

ψc(xc)
∏

t∈c\s

m̄tc(xt) (8)

The left–hand expression updates the messagem̄sc(xs) passed from variable nodes to factorc. New
outgoing messagesmcs(xs) from factorc to eachs ∈ c are then determined by marginalizing the
incoming messages from other nodes. At any iteration, appropriately normalized products of these
messages define estimates of the desired marginals:

τs(xs) ∝ ψs(xs)
∏

c∈Γ(s)

mcs(xs) τc(xc) ∝ ψc(xc)
∏

t∈c

m̄tc(xt) (9)

In tree–structured graphs, BP defines a dynamic programming recursion which converges to the
exact marginals after finitely many iterations [11, 14]. In graphs with cycles, however, convergence
is not guaranteed, andpseudo–marginalscomputed via eq. (9) are (often good) approximations.

A wide range of inference algorithms can be derived via variational approximations [9] to the true
partition function. Loopy BP is implicitly associated with the followingBethe approximation:

logZβ(ψ; τ) =
∑

s∈V

∑

xs

τs(xs) logψs(xs) +
∑

c∈C

∑

xc

τc(xc) logψc(xc)

−
∑

s∈V

∑

xs

τs(xs) log τs(xs)−
∑

c∈C

∑

xc

τc(xc) log
τc(xc)

∏

t∈c τt(xt)
(10)

Fixed points of loopy BP correspond to stationary points of this Bethe approximation [23], subject
to the local marginalization constraints

∑

xc\s

τc(xc) = τs(xs).

3 Reparameterization and Loop Series Expansions
As discussed in Sec. 2.2, any BP fixed point is in one–to–one correspondence with a set{τs, τc}
of pseudo–marginals associated with each of the graph’s nodess ∈ V and factorsc ∈ C. These
pseudo–marginals then lead to an alternativeparameterization[20] of the factor graph of eq. (2):

p(x) =
1

Z(τ)

∏

s∈V

τs(xs)
∏

c∈C

τc(xc)
∏

t∈c τt(xt)
(11)

For pairwise MRFs, the reparameterized compatibility functions equalτst(xs, xt)/τs(xs)τt(xt).
The BP algorithm effectively searches for reparameterizations which aretree–consistent, so that
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τc(xc) is the exact marginal distribution ofXc for any tree (or forest) embedded in the original
graph [20]. In later sections, we take expectations with respect toτc(xc) of functionsf(xc) de-
fined over individual factors. Although these pseudo–marginals will in general not equal thetrue
marginalspc(xc), BP fixed points ensure local consistency so thatEτc

[f(Xc)] is well–defined.

Using eq. (10), it is easily shown that the Bethe approximationZβ(τ ; τ) = 1 for any joint distribu-
tion defined by reparameterized potentials as in eq. (11). For simplicity, the remainder of this paper
focuses on reparameterized models of this form, and analyzes properties of the corresponding exact
partition functionZ(τ). The resulting expansions and bounds are then related to the original MRF’s
partition function via the positive constantZ(ψ)/Z(τ) = Zβ(ψ; τ) of eq. (10).

Recently, Chertkov and Chernyak proposed a finiteloop series expansion[2] of the partition func-
tion, whose first term coincides with the Bethe approximation. They provide two derivations: one
applies a trigonometric identity to Fourier representations of binary variables, while the second em-
ploys a saddle point approximation obtained via an auxiliary field of complex variables. Thegauge
transformationsunderlying these derivations are a type of reparameterization, but their form is com-
plicated by auxiliary variables and extraneous degrees of freedom. In this section, we show that the
fixed point characterization of eq. (11) leads to a more direct, and arguably simpler, derivation.

3.1 Pairwise Loop Series Expansions

We begin by developing a loop series expansion for pairwise MRFs. Given an undirected graph
G = (V,E), and some subsetF ⊆ E of the graph’s edges, letds(F ) denote the degree (number of
neighbors) of nodes in the subgraph induced byF . As illustrated in Fig. 1, any subsetF for which
all nodess ∈ V have degreeds(F ) 6= 1 defines ageneralized loop[2]. The partition function for
any binary, pairwise MRF can then be expanded via an associated set ofloop corrections.

Proposition 1. Consider a pairwise MRF defined on an undirectedG = (V,E), with reparameter-
ized potentials as in eq.(11). The associated partition function then equals

Z(τ) = 1 +
∑

∅6=F⊆E

βF

∏

s∈V

Eτs

[

(Xs − τs)
ds(F )

]

βF :=
∏

(s,t)∈F

βst (12)

βst :=
τst − τsτt

τs(1− τs)τt(1− τt)
=

Covτst
(Xs, Xt)

Varτs
(Xs)Varτt

(Xt)
(13)

where only generalized loopsF lead to non–zero terms in the sum of eq.(12), and

Eτs

[

(Xs − τs)
d
]

= τs(1− τs)
[

(1− τs)
d−1 + (−1)d (τs)

d−1
]

(14)
are central moments of the binary variables at individual nodes.

Proof. To establish the expansion of eq. (12), we exploit the following polynomial representation of
reparameterized pairwise compatibility functions:

τst(xs, xt)

τs(xs)τt(xt)
= 1 + βst(xs − τs)(xt − τt) (15)

As verified in [17], this expression is satisfied for any(xs, xt) ∈ {0, 1}
2 if βst is defined as in

eq. (13). For attractive models satisfying eq. (3),βst ≥ 0 for all edges. UsingEτ̃ [·] to denote
expectation with respect to the fully factorized distributionτ̃(x) =

∏

s τs(xs), we then have

Z(τ) =
∑

x∈{0,1}n

∏

s∈V

τs(xs)
∏

(s,t)∈E

τst(xs, xt)

τs(xs)τt(xt)

= Eτ̃

[

∏

(s,t)∈E

τst(Xs, Xt)

τs(Xs)τt(Xt)

]

= Eτ̃

[

∏

(s,t)∈E

1 + βst(Xs − τs)(Xt − τt)

]

(16)

Expanding this polynomial via the expectation operator’s linearity, we recover one term for each
non–empty subsetF ⊆ E of the graph’s edges:

Z(τ) = 1 +
∑

∅6=F⊆E

Eτ̃

[

∏

(s,t)∈F

βst(Xs − τs)(Xt − τt)

]

(17)

The expression in eq. (12) then follows from the independence structure ofτ̃(x), and standard
formulas for the moments of Bernoulli random variables. To evaluate these terms, note that if
ds(F ) = 1, it follows thatEτs

[Xs − τs] = 0. There is thus one loop correction for each generalized
loopF , in which all connected nodes have degree at least two.
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Figure 1:A pairwise MRF coupling ten binary variables (left), and the nine generalized loops in its loop series
expansion (right). For attractive potentials, two of the generalized loops may have negative signs (second &
third from right), while the core graph of Thm. 1 contains eight variables (far right).

Figure 1 illustrates the set of generalized loops associated with a particular pairwise MRF. These
loops effectively define corrections to the Bethe estimateZ(τ) ≈ 1 of the partition function for
reparameterized models. Tree–structured graphs do not contain any non–trivial generalized loops,
and the Bethe variational approximation is thus exact.

The loop expansion formulas of [2] can be precisely recovered by transforming binary variables to
a spin representation, and refactoring terms from the denominator of edge weightsβst to adjacent
vertices. Explicit computation of these loop corrections is in general intractable; for example, fully
connected graphs withn ≥ 5 nodes have more than2n generalized loops. In some cases, accounting
for a small set of significant loop corrections may lead to improved approximations toZ(ψ) [4], or
more accurate belief estimates for LDPC codes [1]. We instead use the series expansion of Prop. 1
to establish analytic properties of BP fixed points.

3.2 Factor Graph Loop Series Expansions

We now extend the loop series expansion to higher–order MRFs defined on hypergraphsG = (V,C).
Let E = {(s, c) | c ∈ C, s ∈ c} denote the set of edges in the factor graph representation of this
MRF. As illustrated in Fig. 2, we define a generalized loop to be a subsetF ⊆ E of edges such that
all connected factor and variable nodes have degree at least two.

Proposition 2. Consider any factor graphG = (V,C) with reparameterized potentials as in
eq.(11), and associated edgesE. The partition function then equals

Z(τ) = 1 +
∑

∅6=F⊆E

βF

∏

s∈V

Eτs

[

(Xs − τs)
ds(F )

]

βF :=
∏

c∈C

βac(F ) (18)

βa :=
κa

∏

t∈a τt(1− τt)
=

Eτc

[
∏

s∈a(Xs − τs)
]

∏

t∈a Varτt
(Xt)

(19)

whereac(F ) := {s ∈ c | (s, c) ∈ F} denotes the subset of variables linked to factor nodec by the
edges inF . Only generalized loopsF lead to non–zero terms in the sum of eq.(18).
Proof. As before, we employ a polynomial representation of the reparameterized factors in eq. (11):

τc(xc)
∏

t∈c τt(xt)
= 1 +

∑

a⊆c,|a|≥2

βa

∏

s∈a

(xs − τs) (20)

For factor graphs with attractive reparameterized potentials, the constantβa ≥ 0 for all a ⊆ c.
Note that this representation, which is derived in [17], reduces to that of eq. (15) whenc = {s, t}.
Single–variable subsets are excluded in eq. (20) becauseκs = Eτs

[Xs − τs] = 0.

Applying eq. (20) as in our earlier derivation for pairwise MRFs (see eq. (16)), we may express the
partition function of the reparameterized factor graph as follows:

Z(τ) = Eτ̃

[

∏

c∈C

τc(Xc)
∏

t∈c τt(Xt)

]

= Eτ̃

[

∏

c∈C

1 +
∑

∅6=a⊆c

βa

∏

s∈a

(Xs − τs)

]

(21)

Note thatβa = 0 for any subset where|a| = 1. There is then a one–to–one correspondence between
variable node subsetsa ⊆ c, and subsets{(s, c) | s ∈ a} of the factor graph’s edgesE. Expanding
this expression byF ⊆ E, it follows that each factorc ∈ C contributes a term corresponding to the
chosen subsetac(F ) of its edges:

Z(τ) = 1 +
∑

∅6=F⊆E

Eτ̃

[

∏

c∈C

βac(F )

∏

s∈ac(F )

(Xs − τs)

]

(22)

Note thatβ∅ = 1. Equation (18) then follows from the independence properties ofτ̃(x). For a term
in this loop series to be non–zero, there must be no degree one variables, sinceEτs

[Xs − τs] = 0.
In addition, the definition ofβa implies that there can be no degree one factor nodes.
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Figure 2: A factor graph (left) with three binary variables (circles) and four factor nodes (squares), and the
thirteen generalized loops in its loop series expansion (right, along with the full graph).

4 Lower Bounds in Attractive Binary Models
The Bethe approximation underlying loopy BP differs from mean field methods [9], whichlower
boundthe true log partition functionZ(ψ), in two key ways. First, while the Bethe entropy (second
line of eq. (10)) is exact for tree–structured graphs, itapproximates(rather than bounds) the true
entropy in graphs with cycles. Second, the marginalization condition imposed by loopy BPrelaxes
(rather than strengthens) the global constraints characterizing valid distributions [21]. Neverthe-
less, we now show that for a large family of attractive graphical models, the Bethe approximation
Zβ(ψ; τ) of eq. (10) lower boundsZ(ψ). In contrast with mean field methods, these bounds hold
only at appropriate BP fixed points,not for arbitrarily chosen pseudo–marginalsτc(xc).

4.1 Partition Function Bounds for Pairwise Graphical Models

Consider a pairwise MRF defined onG = (V,E), as in eq. (1). LetVH ⊆ V denote the set of
nodes which either belong to some cycle inG, or lie on a path (sequence of edges) connecting two
cycles. We then define thecore graphH = (VH , EH) as the node–induced subgraph obtained by
discarding edges from nodes outsideVH , so thatEH = {(s, t) ∈ E | s, t ∈ VH}. The unique core
graphH underlying any graphG can be efficiently constructed by iteratively pruning degree one
nodes, or leaves, until all remaining nodes have two or more neighbors. The following theorem
identifies conditions under which all terms in the loop series expansion must be non–negative.

Theorem 1. Let H = (VH , EH) be the core graph for a pairwise binary MRF, with attractive
potentials satisfying eq.(3). Consider any BP fixed point for which all nodess ∈ VH with three or
more neighbors inH have marginalsτs ≤ 1

2 (or equivalently,τs ≥ 1
2 ). The corresponding Bethe

variational approximationZβ(ψ; τ) then lower bounds the true partition functionZ(ψ).

Proof. It is sufficient to show thatZ(τ) ≥ 1 for any reparameterized pairwise MRF, as in eq. (11).
From eq. (9), note that loopy BP estimates the pseudo–marginalτst(xs, xt) via the product of
ψst(xs, xt) with message functions ofsinglevariables. For this reason, attractive pairwise com-
patibilities always lead to BP fixed points with attractive pseudo–marginals satisfyingτst ≥ τsτt.

Consider the pairwise loop series expansion of eq. (12). As shown by eq. (13), attractive models
lead to edge weightsβst ≥ 0. It is thus sufficient to show that

∏

s Eτs

[

(Xs − τs)
ds(F )

]

≥ 0 for
each generalized loopF ⊆ E. Suppose first that the graph has a single cycle, and thus exactly one
non–zero generalized loopF . Because all connected nodes in this cycle have degree two, the bound
follows becauseEτs

[

(Xs − τs)
2
]

≥ 0. More generally, we clearly haveZ(τ) ≥ 1 in graphs where
every generalized loopF associates an even number of neighborsds(F ) with each node.

Focusing on generalized loops containing nodes with odd degreed ≥ 3, eq. (14) implies that
Eτs

[

(Xs − τs)
d
]

≥ 0 for marginals satisfying1− τs ≥ τs. For BP fixed points in whichτs ≤ 1
2

for all nodes, we thus haveZ(τ) ≥ 1. In particular, the symmetric fixed pointτs = 1
2 leads to uni-

formly positive generalized loop corrections. More generally, the marginals of nodess for which
ds(F ) ≤ 2 for every generalized loopF do not influence the expansion’s positivity. Theorem 1
discards these nodes by examining the topology of the core graphH (see Fig. 1 for an example).
For fixed points whereτs ≥ 1

2 for all nodes, we rewrite the polynomial in the loop expansion of
eq. (15) as(1 + βst(τs − xs)(τt − xt)), and employ an analogous line of reasoning.

In addition to establishing Thm. 1, our arguments show that the true partition functionmonotonically
increases as additional edges, with attractive reparameterized potentials as in eq. (11), are added to
a graph with fixed pseudo–marginalsτs ≤ 1

2 . For such models, the accumulation of particular
loop corrections, as explored by [4], produces a sequence of increasingly tight bounds onZ(ψ). In
addition, we note that the conditions required by Thm. 1 are similar to those underlying classical
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correlation inequalities[16] from the statistical physics literature. Indeed, the Griffiths–Kelly–
Sherman (GKS) inequality leads to an alternative proof in cases whereτs = 1

2 for all nodes.

For attractive Ising models in which some nodes have marginalsτs >
1
2 and othersτt < 1

2 , the loop
series expansion may contain negative terms. For small graphs like that in Fig. 1, it is possible to
useupperbounds on the edge weightsβst, which follow fromτst ≤ min(τs, τt), to cancel negative
loop corrections with larger positive terms. As confirmed by the empirical results in Sec. 4.3, the
lower boundZ(ψ) ≥ Zβ(ψ; τ) thus continues to hold for many (perhaps all) attractive Ising models
with less homogeneous marginal biases.

4.2 Partition Function Bounds for Factor Graphs

Given a factor graphG = (V,C) relating binary variables, define a core graphH = (VH , CH) by
excluding variable and factor nodes which are not members of any generalized loops. As in Sec. 2.2,
let Γ(s) denote the set of factor nodes neighboring variable nodes in the core graphH.

Theorem 2. Let H = (VH , CH) be the core graph for a binary factor graph, and consider an
attractive BP fixed point for which one of the following conditions holds:

(i) τs ≤
1
2 for all nodess ∈ VH with |Γ(s)| ≥ 3, andκa ≥ 0 for all a ⊆ c, c ∈ CH .

(ii) τs ≥
1
2 for all nodess ∈ VH with |Γ(s)| ≥ 3, and(−1)|a|κa ≥ 0 for all a ⊆ c, c ∈ CH .

The Bethe approximationZβ(ψ; τ) then lower bounds the true partition functionZ(ψ).

For the case whereτs ≤ 1
2 , the proof of this theorem is a straightforward generalization of the

arguments in Sec. 4.1. Whenτs ≥ 1
2 , we replace all(xs − τs) terms by(τs − xs) in the expansion

of eq. (20), and again recover uniformly positive loop corrections.

For any given BP fixed point, the conditions of Thm. 2 are easy to verify. For factor graphs, it is
more challenging to determine which compatibility functionsψc(xc) necessarily lead to attractive
fixed points. For symmetric potentials as in eq. (7), however, one can show that the conditions on
κa, a ⊆ c are necessarily satisfied whenever all variable nodess ∈ VH have the same bias.

4.3 Empirical Comparison of Mean Field and Bethe Lower Bounds

In this section, we compare the accuracy of the Bethe variational bounds established by Thm. 1
to those produced by a naive, fully factored mean field approximation [3, 9]. Using the
spin representationzs ∈ {−1,+1}, we examine Ising models with attractive pairwise potentials
logψst(zs, zt) = θstzszt of varying strengthsθst ≥ 0. We first examine a 2D torus, with potentials
of uniform strengthθst = θ̄ and no local observations. For such MRFs, the exact partition func-
tion may be computed via Onsager’s classical eigenvector method [13]. As shown in Fig. 3(a), for
moderatēθ the Bethe boundZβ(ψ; τ) is substantially tighter than mean field. For largeθ̄, only two
states (all spins “up” or “down”) have significant probability, so thatZ(ψ) ≈ 2 exp(θ̄|E|). In this
regime, loopy BP exhibits “symmetry breaking” [6], and converges to one of these states at random
with corresponding boundZβ(ψ; τ) ≈ exp(θ̄|E|). As verified in Fig. 3(a), as̄θ →∞ the difference
logZ(ψ)− logZβ(ψ; τ) ≈ log 2 ≈ 0.69 thus remains bounded.

We also consider a set of random10 × 10 nearest–neighbor grids, with inhomogeneous pairwise
potentials sampled according to|θst| ∼ N

(

0, θ̄ 2
)

, and observation potentialslogψs(zs) = θszs,
|θs| ∼ N

(

0, 0.12
)

. For each candidatēθ, we sample100 random MRFs, and plot the average differ-
encelogZβ(ψ; τ)− logZ(ψ) between the true partition function and the BP (or mean field) fixed
point reached from a random initialization. Fig. 3(b) first considers MRFs whereθs > 0 for all
nodes, so that the conditions of Thm. 1 are satisfied for all BP fixed points. For these models, the
Bethe bound isextremelyaccurate. In Fig. 3(c), we also consider MRFs where the observation
potentialsθs are of mixed signs. Although this sometimes leads to BP fixed points with negative
associated loop corrections, the Bethe variational approximation neverthelessalwayslower bounds
the true partition function in these examples. We hypothesize that this bound in fact holds for all
attractive, binary pairwise MRFs, regardless of the observation potentials.

5 Discussion
We have provided an alternative, direct derivation of the partition function’s loop series expansion,
based on the reparameterization characterization of BP fixed points. We use this expansion to prove
that the Bethe approximation lower bounds the true partition function in a family of binary attractive
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Figure 3:Bethe (dark blue, top) and naive mean field (light green, bottom) lower bounds onlogZ(ψ) for three
families of attractive, pairwise Ising models. (a)30 × 30 torus with no local observations and homogeneous
potentials. (b)10× 10 grid with random, inhomogeneous potentials and all pseudo–marginalsτs >

1

2
, satisfy-

ing the conditions of Thm. 1. (c)10 × 10 grid with random, inhomogeneous potentials and pseudo–marginals
of mixed biases. Empirically, the Bethe lower bound also holds for these models.

models. These results have potential implications for the suitability of loopy BP in approximate
parameter estimation [3], as well as its convergence dynamics. We are currently exploring general-
izations of our results to other families of attractive, or “nearly” attractive, graphical models.
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