Unsupervised Learning of a Probabilistic Grammar for Object Detection and Parsing

Part of Advances in Neural Information Processing Systems 19 (NIPS 2006)

Bibtex Metadata Paper


Yuanhao Chen, Long Zhu, Alan L. Yuille


We describe an unsupervised method for learning a probabilistic grammar of an object from a set of training examples. Our approach is invariant to the scale and rotation of the objects. We illustrate our approach using thirteen objects from the Caltech 101 database. In addition, we learn the model of a hybrid object class where we do not know the specific object or its position, scale or pose. This is illustrated by learning a hybrid class consisting of faces, motorbikes, and airplanes. The individual objects can be recovered as different aspects of the grammar for the object class. In all cases, we validate our results by learning the probability grammars from training datasets and evaluating them on the test datasets. We compare our method to alternative approaches. The advantages of our approach is the speed of inference (under one second), the parsing of the object, and increased accuracy of performance. Moreover, our approach is very general and can be applied to a large range of objects and structures.